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Prefabricated floor systems

Angelo Mangiarotti: Nostra Signora della Misericordia church, Baranzate, Italien, 1957
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Sverre Fehn: Nordischer Pavillon, Venedig, 1958-1962 © Åke E:son Lindman
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Sverre Fehn: Nordischer Pavillon, Venedig, 1958-1962 © Åke E:son Lindman
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Brauen Wälchli, A. Muttoni: Erweiterung Olympisches Museum, Lausanne, 2014
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Brauen Wälchli, A. Muttoni: Erweiterung Olympisches Museum, Lausanne, 2014
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Wingårdh Arkitektkontor: Bushaltestelle in Umeå, Sweden, 2017 © André Pihl, Wingårdh Arkitektkontor
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Wingårdh Arkitektkontor: Bushaltestelle in Umeå, Sweden, 2017 © André Pihl, Wingårdh Arkitektkontor
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Livio Vacchini, R. Rossi: Mehrzweckhalle Losone, 1997
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Livio Vacchini, R. Rossi: Mehrzweckhalle Losone, 1997
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David Chipperfield Architects: Saint Louis Art Museum, Missouri, 2013 ©David Chipperfield Architects
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David Chipperfield Architects: Saint Louis Art Museum, Missouri, 2013 © Saint Louis Art Museum
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João Batista Vilanova Artigas: Faculty of Architecture and Urbanism at University of São Paulo, Brazil, 1969
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João Batista Vilanova Artigas: Faculty of Architecture and Urbanism at University of São Paulo, Brazil, 1969
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Ludwig Mies van der Rohe, H. Dienst: Neue Nationalgalerie, Berlin, 1968 © Staatliche Museen zu Berlin
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Ludwig Mies van der Rohe, H. Dienst: Neue Nationalgalerie, Berlin, 1968
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Louis Kahn, Henry A. Pfisterer: Art Gallery, Yale University, New Haven, 1953
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Heinrich Degelo, Joseph Schwartz: Erweiterung Kongresshaus, Davos, 2011
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Heinrich Degelo, Joseph Schwartz: Erweiterung Kongresshaus, Davos, 2011
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Pier Luigi Nervi: Wollfabrik Gatti, Rom, 1953
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Pipers Row Car Park, Wolverhampton, 1997
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Arch. & Ing.: Robert Maillart: Lagerhaus Giesshübelstrasse, Zürich, 1910
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Frank Lloyd Wright: Johnson Wax Building, Racine, 1939
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Toyo Ito: National Taiwan University Library, Taiwan, 2013
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h
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Span of  plate 6 m:

Spannweite Platte 6 m:

h = 24 – 30 cm

h = 18 – 21 cm

h = l/x = 6 m /25 = 0.24 m 
h = l/x = 6 m /20 = 0.3 m

In Prestressed concrete:

Aus Spannbeton:

Span of  plate 9 m:

Spannweite Platte 9 m:

h = 36 – 45 cm

h = 26 – 33 cm

h = l/x = 9 m /25 = 0.36 m 
h = l/x = 9 m /20 = 0.45 m

In Prestressed concrete:

Aus Spannbeton:
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Span of  plate 6 m:

Spannweite Platte 6 m:

h = 24 – 30 cm

h = 18 – 21 cm

Span of  plate 9 m:

Spannweite Platte 9 m:

h = 36 – 45 cm

h = 26 – 32 cm
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Sergio Musmeci, Sergio Ortolani, Antonio Cattaneo: Cinema San Pietro, Montecchio Maggiore, 1957
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Sergio Musmeci, Sergio Ortolani, Antonio Cattaneo: Cinema San Pietro, Montecchio Maggiore, 1957
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Sergio Musmeci, Leo Calini, Eugenio Montuori: Stabilimento per la lavorazione del marmo, Pietrasanta, 1956
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Sergio Musmeci, Leo Calini, Eugenio Montuori: Stabilimento per la lavorazione del marmo, Pietrasanta, 1956
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Sergio Musmeci, Leo Calini, Eugenio Montuori: Stabilimento per la lavorazione del marmo, Pietrasanta, 1956
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Sergio Musmeci, Leo Calini, Eugenio Montuori: Stabilimento per la lavorazione del marmo, Pietrasanta, 1956
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Foreign Office Architects: Yokohama International Port Terminal, 2002
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Howard Ashley & Hisham Albakri & Baharuddin Kassim: Masjid Negara Moschee, Kuala Lumpur, 1965
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Louis Kahn, August Komendant: Kimbell Art Museum, Forth Worth, 1972
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Louis Kahn, August Komendant: Kimbell Art Museum, Forth Worth, 1972
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a) b)

Auflagersituationen und innere Kräfte in Stützen unter einer zentrischen (a) und exzentrischen (b) Beanspruchung
Support conditions and internal forces in columns under centric (a) and eccentric (b) loads
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Stützen mit exzentrischer Druckbeanspruchung
Columns with eccentric compressive loads
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b

b

t

Nc,d

σd ≤

q

g

c,dN
b  ≤ 2 * t * fd

2 * b * t

Analogie zur Stützlinie im Bogen-Querschnitt
Analogy to the thrust line in the arch cross-section



86Stützen
Columns

Stützen mit exzentrischer Druckbeanspruchung
Columns with eccentric compressive loads
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The nature of  the instability problem

Kette unter Zugbeanspruchung
Chain under tensile load
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The nature of  the instability problem

Kette unter Druckbeanspruchung
Chain under compressive load
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The nature of  the instability problem

Knicklinie einer mehrfeldrigen Stütze (a); innere Kräfte in der Stütze (b)
Buckling line of a multi-span column (a); internal forces in the column (b)
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Resistance of  a column under compressive loads

Schlanke Stahlstütze unter Zug- und Druckbelastung
Slender steel column under tensile and compressive load
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Resistance of  a column under compressive loads

F. Doyelle, C. Cavique, M. Virlogeux: Port de Normandie, 1995
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Resistance of  a column under compressive loads

Norman Foster, Ove Arup: Verteilzentrum Renault, Swindom, 1982
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Influence of  the length of  a column on the critical load
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Einfluss der Stützenlänge auf den Druckwiderstand (Kritische Last)
Influence of the column length on the compression resistance (critical load)
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Influence of  the support conditions of  a column on the critical load

𝑙   = 2 𝑙
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Ausgewählte Auflagerbedingungen von Stützen
Selected support conditions of columns
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Influence of  the support conditions of  a column on the critical load

Windverband

sehr steifer Balken sehr steifer Balken

Auflager, welches horizontale 
Verschiebungen verhindert

Beispiele für eine schlanke Stütze mit nicht verschiebbarem Stützenkopf
Examples of a slender column with non-sliding column head
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Influence of  the support conditions of  a column on the critical load

Norman Foster, Ove Arup & OTH Méditerranée: Carré d‘art, Nimes, 1993
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Influence of  the support conditions of  a column on the critical load

cr

𝑙   = 𝑙

𝑙

𝑙

cr

𝑙   = 𝑙

sehr steifsehr steifer Balken

Beispiele von unten eingespannten, aber in horizontaler Richtung frei verschieblichen Stützen
Examples of columns clamped at the bottom but freely movable in the horizontal direction
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Influence of  the support conditions of  a column on the critical load

𝑙 cr   𝑙𝑙 2 =   𝑙 ≈ 2 𝑙𝑙cr

Steifigkeit hinsichtlich der 
Stützen vernachlässigbarGelenk

Beispiele von unten eingespannten und oben vollkommen freien Stützen
Examples of columns clamped at the bottom and completely free at the top
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Influence of  the support conditions of  a column on the critical load
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Kritische Last in Funktion der Stützenlänge (Stahl S235, Durchmesser 4mm) für verschiedene Auflagerbedingungen
Critical load as a function of column length (steel S235, diameter 4mm) for different support conditions
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Influence of  the support conditions of  a column on the critical load

𝑙𝑙𝑙𝑙 cr

𝑙𝑙𝑙𝑙 cr

𝑙𝑙𝑙𝑙 cr

Stützen des Centre Georges Pompidou, Paris
Columns of the Centre Georges Pompidou, Paris
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Influence of  the material stiffness of  a column on the critical load
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Kritische Last in Funktion der Stützenlänge in Abhängigkeit der Materialeigenschaften
Critical load as a function of column length as a function of material properties
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Influence of  the cross-section of  a column on the critical load
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Einfluss der Stützenabmessungen auf die kritische Last
Influence of the column dimensions on the critical load
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Influence of  the cross-section of  a column on the critical load
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Vergleich der kritischen Lasten von Stützen mit unterschiedlichen Querschnitten und konstanter Querschnittsfläche
Comparison of critical loads of columns with different cross-sections and constant cross-sectional area
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Columns with variable cross-section
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Columns with variable cross-section

P.L. Nervi: Palazzetto dello sport, Rome 1957
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Columns with variable cross-section

P.L. Nervi: Palazzetto dello sport, Rome 1957
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Columns with variable cross-section

Richard Rogers: Vierendeelträger als Druckglieder im Millenium Dome, London, 1999
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Columns with variable cross-section

Richard Rogers: Vierendeelträger als Druckglieder im Millenium Dome, London, 1999
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Columns with variable cross-section

Renzo Piano: „Bigo“, Genoa, 1992
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Beulen einer Stütze mit einem sehr dünnwandigen Querschnitt
Bulging of a column with a very thin-walled cross-section
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Querschnitte mit dem gleichen Materialverbrauch
Cross sections with the same amount of material
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nicht anwendbar

wenig zweckmässig

Verwendung nur für Stützen mit 
kleiner Schlankheit

Verwendung nur für schwach 
beanspruchte Stützen

effizienter Querschnitt, relativ 
einfache Verbindungen

sehr effiziente Querschnitte, 
aufwändigere Verbindungen

Wahl der Querschnitte von Stahlstützen
Choice of cross-sections of steel columns
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Horizontal Loads
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Horizontal Loads

Stärke des Winddrucks auf Gebäude (dynamischer Druck) nach SIA 261
Strength of wind pressure on buildings (dynamic pressure) according to SIA 261
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Horizontal Loads

Einwirkung durch Wind
Effect due to wind
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Horizontal Loads

Erdbebenzonen nach SIA 261
Earthquake zones according to SIA 261
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Horizontal Loads

Einwirkung durch Erdbeben, Japan 1995
Effect due to earthquake, Japan 1995
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Horizontal Loads

Lasten und Kennwerte
Tragwerksentwurf III

S. 2 / 12

prof. schwartz Tragwerksentwurf III 1
Allgemein

Einwirkungen (Material unabhängig)

Einwirkungen (Materialunabhängig)
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1) Wandscheibe

2) Aufgelöste Wand

3) Rahmen

à Querscheibe

à Diagonale Tragelemente

à Biegesteife Verbindungen
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Wandscheibe: Barcelona Pavillon, Barcelona, Arch: Ludwig Mies van der Rohe, 1929
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Aufgelöste Wand: Zeichensaalprovisorien, ETH Hönggerberg, Arch: Benedikt Huber, 1987
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Aufgelöste Wand: Neubau Labor- und Bürogebäude, ETH Hönggerberg, Arch: Berrel Berrel Kräutler, Ing.: Ulaga Partner AG,  Wettbewerb 2016
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Rahmen: Hilti Pavillons, Schaan, Arch: Giuliani Hönger, Ing. Dr. Schwartz Consulting, 2016
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Rahmen: Hilti Pavillons, Schaan, Arch: Giuliani Hönger, Ing. Dr. Schwartz Consulting, 2016
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AUSSTEIFUNGSELEMENTE

Horizontallastabtragung im Fachwerk

MINIMALAUSSTEIFUNG

leitet hierbei die Horizontalkraft nach 
unten weiter. Wird nur eine Diagonale 
angeordnet, wird sie abhängig von der 
Windrichtung entweder auf Druck oder 
Zug belastet. Bei der Ausführung von 
zwei gegensinnig geneigten Diagonalen 
können auch nicht drucksteife Zugstäbe 
gewählt werden (z.B. Stahlseile). In die-
sem Fall wird die Horizontallast nur über 
eine Diagonale abgetragen.

Fachwerke, Zugdiagonalen
Rein gelenkig gelagerte Stützen können 
ein gegenseitiges Verschieben der 
Geschossdecken unter Horizontallast 
nicht verhindern. Die Anordnung von 
diagonal verlaufenden Fachwerkstäben 
kann jedoch eine aussteifende Wirkung 
erzielen. Es entstehen Fachwerke aus 
unverschieblichen Dreiecken, die Verfor-
mungen in der Fachwerkebene weitest-
gehend unterbinden. Die Diagonale 

dürfen nicht alle parallel zueinander 
ausgerichtet sein, da in diesem Fall keine 
aussteifende Wirkung bei Kräften ortho-
gonal zur Scheibenebene gegeben wäre. 
Nur bei Kräften mit Wirkungslinien paral-
lel zur Scheibenrichtung verhält sich das 
System stabil, unabhängig von der Lage 
der Kräfte. Das Schneiden aller Wirkungs-
linien der Aussteifungsebenen in einem 
Punkt (im Grundriss betrachtet) muss 

Minimalaussteifung
Um die Stabilität eines Geschosses 
unabhängig von der Richtung der 
auftretenden Horizontallasten sicherzu-
stellen, sind mindestens drei vertikale 
Aussteifungselemente erforderlich. 
Das Vorhandensein von horizontalen 
Scheiben (Decke bzw. Dach), die die 
Verteilung der Lasten auf die vertikalen 
Aussteifungselemente ermöglichen, wird 
voraus gesetzt. Die Aussteifungselemente  

ebenfalls vermieden werden. Alle Kräfte, 
die einen Hebelarm zum Kreuzungs-
punkt aufweisen, ergeben ein Moment 
um diesen Punkt. Da die Aussteifungs-
ebenen in diesem Fall keinen Hebelarm 
zum Drehpunkt haben, können sie dem 
Moment nicht ent gegenwirken.

Eingespannte Stützen
Die Verschiebung von Geschossdecken, 
die auf gelenkig angeschlossen Stützen 
gelagert sind, kann durch die Einspan-
nung einzelner Stützen am Stützenfuß 
reduziert werden. Es ist jedoch zu beach-
ten, dass bei dieser Variante die größten 
Verformungen auftreten. Die entstehen-
den Einspannmomente werden in die 
weiterführenden Bauteile übertragen.

Eingespannte Stützen ermöglichen die Horizontallast-
abtragung in allen Richtungen.

Labiles Verhalten paralleler Scheiben unter 
Horizontallast

Stabile Aussteifung durch einen Kern (verti-
kale Aussteifungselemente, im Grundriss an-
geordnet als geschlossene Röhre): Abtragung 
von horizontalen Lasten aus allen Richtungen 
möglich

Labiles Verhalten sich kreuzender Scheiben 
unter Horizontallast

Diagonalseile: Richtung der Horizontallast bestimmt, welches 
Seil zur Lastabtragung herangezogen wird.

Horizontallastabtragung über eingespannte Stütze Parallele Scheiben können nur Lasten parallel 
zur Scheibenrichtung abtragen.

Sich kreuzende Scheiben können nur Lasten, 
die in den Scheibenebenen wirken, abtragen.

Stabile Aussteifung durch drei vertikale Aus-
steifungselemente

Fachwerk Eingespannte StützeZugdiagonalen

Minimale Aussteifung
Minimal bracing
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ANORDNUNG DER AUSSTEIFUNGSELEMENTE IM GRUNDRISS

Stabile, günstige Anordnung: Windlasten 
in Richtung der zwei parallelen Scheiben 
werden durch diese abgetragen. Durch deren 
großen Abstand zueinander kann kein Ver-
drehen auftreten, Windlasten in Querrichtung 
werden durch die dritte Scheibe abgetragen. 
Dem dabei auftretenden Moment (Betrag 
der Resultierenden mal deren Abstand zur 
Scheibe in Windrichtung) wirkt ein Kräftepaar 
der zwei parallelen Scheiben entgegen.

Stabile, günstige Anordnung auch unter Tem-
peraturbelastung: Infolge von Temperatur-
dehnung verformt sich die Deckenscheibe in 
den Bereichen der Wandscheiben orthogonal 
zu den Wänden. Die Wände behindern die 
Verschiebung kaum, da sie sich orthogonal zu 
ihrer Ebene weich verhalten (wie Pendelstüt-
zen), sodass nur geringe Zwangsbeanspru-
chungen entstehen.

Stabile, günstige Anordnung: Es sind drei 
Scheiben vorhanden, die nicht parallel aus-
gerichtet sind und deren Wirkungslinien sich 
nicht in einem Punkt schneiden.

Stabil, jedoch treten Zwänge unter Tempera-
turbeanspruchung auf: Die Deckeneckpunkte 
würden sich bei ungehinderter Temperatur-
dehnung diagonal vom Deckenmittelpunkt 
weg verschieben. Die dort angeordneten 
Scheiben wirken dem Verschiebungsanteil 
in Scheibenebene entgegen und führen zu 
Zwängen.

Instabil: Wirkungslinien der Scheiben verlau-
fen alle parallel, horizontale Einwirkungen 
mit Lastanteil orthogonal zur Scheibenebene 
führen zum Kippen. 

Instabil: Wirkungslinien der Scheiben schnei-
den sich in einem Punkt, eine Verdrehung des 
Systems um den Schnittpunkt ist möglich.

Stabil, jedoch ungünstig: Der Hebelarm 
zwischen den zwei parallelen Scheiben ist 
sehr gering. Dies führt zu großen Kräften 
infolge von Momenteneinleitung durch Wind 
orthogonal zu diesen Scheiben.

Stabil und günstig durch zentrale Anordnung 
des Kerns: Die Resultierende der Windlast 
verläuft durch den Kern. Dadurch wird eine 
Torsionsmomentenbeanspruchung des Kerns 
vermieden.

Günstig: Die Einzelscheibe reduziert die 
Torsionsbeanspruchung des Kerns. Ihr großer 
Abstand vom Kern ergibt einen großen  
Hebelarm und führt somit zu kleinen Kräften.

Stabil, jedoch ungünstig: Die Windlast  
ortho gonal zur Gebäudelängsseite, deren  
Resultierende einen großen Abstand zum 
Kern aufweist, führt zu einer deutlichen 
Torsions beanspruchung des Kerns.

Stabil, günstig: Torsion im exzentrisch ange-
ordneten Kern wird durch eine Einzelscheibe 
mit großem Hebelarm zum Kern vermindert.

Stabil, jedoch ungünstig: Windlast orthogonal 
zur Deckenquerseite verursacht durch die 
exzentrische Anordnung ein Moment, das nur 
über die schlanken Kerne abgetragen werden 
kann, sodass diese stark beansprucht werden.

ANORDNUNG DER AUSSTEIFUNGSELEMENTE IM GRUNDRISS

 

Drei Scheiben Vier Scheiben Drei parallele Scheiben

Drei Scheiben Vier Scheiben Drei Scheiben

Drei Scheiben Kern Scheibe und Kern

Kern Scheibe und Kern Zwei Kerne
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Stabil, jedoch ungünstig: Windlast orthogonal 
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Wooden Window Frames Sculpture, Ai Weiwei, Documenta 12, 2007, Kassel
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Aussteifungssysteme für Hochhäuser
Bracing systems for high-rise buildings
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Hancock Tower, Chicago, Arch: Skidmore, Owings und Merrill mit Bruce Graham, Ing.: Fazlur Rahman Khan, 1969
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Hancock Tower, Chicago, Arch: Skidmore, Owings und Merrill mit Bruce Graham, Ing.: Fazlur Rahman Khan, 1969
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Willis Tower, Chicago, Arch: SOM, Ing.: Fazlur Rahman Khan, 1974
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Burj Khalifa, Dubai, Arch: SOM, Ing.: Bill Baker, 2009
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Fallbeispiel: Haus R 128 (Sobek Haus), Stuttgart, Arch.: Werner Sobek, 2000
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+ =

Prestressing force

Fallbeispiel: Haus R 128 (Sobek Haus), Stuttgart, Arch.: Werner Sobek, 2000
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Fallbeispiel: Haus R 128 (Sobek Haus), Stuttgart, Arch.: Werner Sobek, 2000
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Structural concept of Sendai Mediateque, Sendai, 2001, arch. Toyo Ito
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Earthquake 2011Structural concept of Sendai Mediateque, Sendai, 2001, arch. Toyo Ito

https://www.youtube.com/watch?v=53JEfrBD-kg
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Gebäude HPH, ETH Hönggerberg, Arch.: Steiner & Gehrig, 1972
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Centre Pompidou, Paris, 1977, Arch.: Renzo Piano, Rogers & Franchini, Ing.: Peter Rice & Edmund Happold


