HS 2022 Structural Design D-BAUG - MIBS

Prof. Dr. Joseph Schwartz · Prof. Dr. Philippe Block Federico Bertagna · Davide Tanadini · Dr. Ole Ohlbrock

Prof. Dr. Joseph Schwartz

Prof. Dr. Philippe Block

Federico Bertagna

Davide Tanadini

Dr. Patrick Ole Ohlbrock

Week 1	22.9.	
Week 2	29.9.	Global Equilibrium
Week 3	06.10.	
Week 4	13.10.	
Week 5	20.10.	Local Equilibrium
Week 6	27.10.	
Week 7	03.11.	Design Exemples (midterm)
Week 8	10.11.	Design Exercise (indicerin)
Week 9	17.11.	Material and construction
Week 10	24.11.	Material and construction
Week 11	01.12.	
Week 12	08.12.	Derive Francisc (Grad)
Week 13	15.12.	Design Exercise (final)
Week 14	22.12.	

		Lecture	Exercise session / Task	Submission (Friday 23:59)
Week 1	22.9.	Introduction		
Week 2	29.9.		Basics of graphic statics	
Week 3	06.10.		Task 0	
Week 4	13.10.	Theory of Plasticity		Submission of Task 0
Week 5	20.10.		Strut-and-tie models	
Week 6	27.10.		Design exercise (Task 1)	
Week 7	03.11.		Design exercise (Task 1)	
Week 8	10.11.		Midterm review	Submission of Task 1
Week 9	17.11.	Stress fields		
Week 10	24.11.		From STM to stress fields	
Week 11	01.12.			
Week 12	08.12.		Design exercise (Task 2)	
Week 13	15.12.			Submission of Task 2
Week 14	22.12.		Final review	

		Lecture	Exercise session / Task	Submission (Friday 23:59)
Week 1	22.9.	Introduction		
Week 2	29.9.		Basics of graphic statics	
Week 3	06.10.		Task 0	
Week 4	13.10.	Theory of Plasticity		Submission of Task 0
Week 5	20.10.		Strut-and-tie models	
Week 6	27.10.		Design exercise (Task 1)	
Week 7	03.11.		Design exercise (Task 1)	
Week 8	10.11.		Midterm review	Submission of Task 1
Week 9	17.11.	Stress fields		
Week 10	24.11.		From STM to stress fields	
Week 11	01.12.			
Week 12	08.12.		Design exercise (Task 2)	
Week 13	15.12.			Submission of Task 2
Week 14	22.12.		Final review	

Theory of Plasticity

Methods bases on plastic theory have been developed to determine the collapse load of structures at their **ultimate limit state**. They comprise the static solution, based on the lower bound theorem, and the dual kinematic solution, based on the upper bound theorem. When the two plastic solutions coincide, the complete solution is achieved.

Condition	Static solution	Complete solution	Kinematic solution
Equilibrium	Ok	Ok	Ok
Yield conditions	Ok	Ok	5
Mechanism	?	Ok	Ok
Result	Lower bound	Collapse load	Upper bound
	$[Q_S] \le [Q_R]$	$[Q_R]$	$[Q_K] \ge [Q_R]$
Method	Static method	_	Mechanism method

Methods bases on plastic theory have been developed to determine the collapse load of structures at their **ultimate limit state**. They comprise the static solution, based on the lower bound theorem, and the dual kinematic solution, based on the upper bound theorem. When the two plastic solutions coincide, the complete solution is achieved.

Condition	Static solution	Complete solution	Kinematic solution
Equilibrium	Ok	Ok	Ok
Yield conditions	Ok	Ok	5
Mechanism	?	Ok	Ok
Result	Lower bound	Collapse load	Upper bound
	$[Q_S] \le [Q_R]$	$[Q_R]$	$[Q_K] \ge [Q_R]$
Method	Static method	-	Mechanism method

For a lower bound solution to be valid, **three fundamental conditions** must be fulfilled: a rigid plastic behaviour, an admissible state of equilibrium, and compliance with the yield conditions. If these three requirements are met, the lower bound theorem is valid, without further considerations.

Theoretical model

In a **rigid-plastic behaviour**, the plastic strain is considerably larger than the yield strain, so the latter can be neglected. In this case, no deformations occur until the yielding point is reached and the plastic collapse takes place. Furthermore, the assumption of a rigid-plastic behaviour allows the presence of static discontinuities, which facilitate the development of the equilibrium state.

Given external forces and a geometric boundary, the designer is free to define the path of the internal forces by means of stress fields and the corresponding strut-and-ties models. The resulting internal stress state must be in static equilibrium, meaning that the resultant force at each node of the strut-and-tie model is null. If also the boundary conditions are respected, an **admissible state of equilibrium** is achieved.

The **yield conditions** describe the structural limits of a system. At first, the single failure modes are identified and defined. The yield conditions are composed of the combination of the single failure modes and they must not be violated at any point. Once defined, for any stress, it is possible to establish if and how system failure occurs.

Strass state:

 σ_i Principal stress

Failure parameters:

- c' Cohesion
- φ Friction
- $f_{y,t}$ Max. tension stress

Failures:

Sliding $|\tau| = \mathbf{c'} - \tan(\varphi) \cdot \sigma$ Tension $\sigma = \mathbf{f}_{y,t}$

Special cases:

CoulombNo tension failureTrescaNo tension failure, $\varphi = 0$ Modified Mohr-CoulombTension failure (vertical line)

The plastic theory assumes a rigid-plastic behaviour of the material. In civil engineering, this assumption does not necessarily imply the presence of a rigid-plastic material, but rather that the **overall behaviour of the structural system** can be assumed to be rigid-plastic. In particular, the structural system must guarantee the necessary deformation capacity, which allows the plastic redistribution of the internal forces according to the predefined plastic model.

Of the three fundamental conditions imposed by the limit analysis, the derivation of yielding conditions requires a real deep understanding of the mechanical behaviour of the material, and in particular the **different failure modes**. In order to obtain the completed yield condition of a material, each failure mode must be identified and described.

Condition	Static solution	Complete solution	Kinematic solution
Equilibrium	Ok	Ok	Ok
Yield conditions	Ok	Ok	Ş
Mechanism	?	Ok	Ok
Result	Lower bound	Collapse load	Upper bound
	$[Q_S] \le [Q_R]$	$[Q_R]$	$[Q_K] \ge [Q_R]$
Method	Static method	-	Mechanism method

Equilibrium based Design

« In a plastic design a stress field is chosen such that the **equilibrium conditions** and the **statical boundary conditions** are fulfilled. The dimensions of cross-section and the reinforcement have to be proportioned such that the **resistances** are everywhere greater than or equal to the corresponding internal forces. »

Source: Aurelio Muttoni, Joseph Schwartz, Bruno Thürlimann, Design of concrete structures with stress fields, 1996

Combination of cantilever-subsystems

Studio Vacchini: Sportausbildungszentrum Mulimatt in Brugg

L. Mies van der Rohe: Crown Hall IIT in Chicago

Masonry

Structural Typologies

Cable structures

Arches and shells

Arch-cable systems

Trusses

Beams

Frames

Structural Typologies

Cable structures

Arches and shells

Arch-cable systems

Trusses

Beams

Frames

Form diagram

Force diagram

Form diagram

Scale 1 : 100

Force diagram Scale 1 cm ≜ 1 kN

Eero Saarinen: Dulles International Airport, Washington, 1962

Alvaro Siza, Cecil Balmond : Expo Pavillion of Portugal, Lissabon, 1998

D Р Р Р

Ρ P Ρ Р Ρ

Veil & Jörg Steli, Thomas Zoidl, pedestrian bridge Bruneck, Innsbruck, 2004

Sergio Musmeci, competition for Ponte sullo Stretto di Messina, 1970

Peter Rice, Arup: Fingal Country Council. Dublin, 2002

Peter Rice: Serres de la Villette. Paris, 1982

Renzo Piano: Kansai International Airport. Osaka, 1994

 $q_1 < q_2$

Herzog and Partner, Schlaich Bergermann and Partner: Exhibition center 26, Hannover, 1996

Frei Otto, German Pavilion, Montreal 1967

Günter Behnisch, Frei Otto, Olympiapark München, 1972

Structural Typologies

Cable structures

Arches and shells

Arch-cable systems

Trusses

Beams

Frames

Gateway Arch, Eero Saarinen, St. Louis, 1965

Different behaviour of cables and arches for changing live loads

Prestress

Stiffness of the arch

Stiffness of the beam

Planar tension stiffening

Spatial cable net/membrane

Robert Maillart: Valtschielbachbridge, Donath, 1925

Robert Maillart: Salginatobelbridge, Schiers, 1930

A Pomerantsev, V. Shukhov: State warehouse GUM, Moscow, 1893

R. Brosi & Obrist and Partner, Peter Rice: Bus station Chur, 1992

Eladio Dieste: Cadyl Horizontal Silo, Young, Uruguay, 1978

Eugène Freyssinet: Hangars of the Orly Airport, France, 1923

New Norcia Cathedral in Perth, Arch.: P.L. Nervi, F. Vecchini & C. Vannoni

Structural Typologies

Cable structures

Arches and shells

Arch-cable systems

Trusses

Beams

Frames

Form diagram

Scale 1 : 100

Force diagram Scale 1 cm \triangleq 1 kN

Eugène Freyssinet: Pont Albert Louppe, Bretagne, 1930

Aussteifungskonzepte

Asp Architekten, Schlaich Bergermann & Partner: Mercedes Benz Arena, Stuttgart, 1993

Asp Architekten, Schlaich Bergermann & Partner: Mercedes Benz Arena, Stuttgart, 1993

Asp Architekten, Schlaich Bergermann & Partner: Mercedes Benz Arena, Stuttgart, 1993

Form diagram

Scale 1 : 100

Force diagram Scale 1 cm \triangleq 1 kN

Form diagram

Scale 1 : 100

Force diagram Scale 1 cm \triangleq 1 kN

F

Form diagram

Scale 1 : 100

A

Force diagram

Scale 1 cm \triangleq 1 kN

Sir John Fowler, Sir Benjamin Baker: Forth Bridge, South Quennsferry, 1890

Structural Typologies

Cable structures

Arches and shells

Arch-cable systems

Trusses

Beams

Frames

Michael Hopkins, Anthony Hunt, Mark Whitby: Patera Building, Stoke on Trent, 1982

R. Piano, R. Rogers, P. Rice: Centre Georges Pompidou, Paris, 1977

Structural Typologies

Cable structures

Arches and shells

Arch-cable systems

Trusses

Beams

Frames

Reinforced Concrete

Reinforced Concrete

Reinforced Concrete

Baserga, Mozzetti, Pedrazzini, Guidotti: Palestra Doppia, Chiasso, 2010

baserga mozzetti and Pedrazzini: Palestra Doppia, Chiasso, 2010

baserga mozzetti and Pedrazzini: Palestra Doppia, Chiasso, 2010

124

Haus Müller, Zurich, Arch.: Christian Kerez, Eng.: Joseph Schwartz, 2013

Haus Müller, Zurich, Arch.: Christian Kerez, Eng.: Joseph Schwartz, 2013

126

Haus Müller, Zurich, Arch.: Christian Kerez, Eng.: Joseph Schwartz, 2013

Haus Forsterstrasse, Zurich, Arch.: Christian Kerez, Eng.: Joseph Schwartz, 2003

Haus Forsterstrasse, Zurich, Arch.: Christian Kerez, Eng.: Joseph Schwartz, 2003

Structural Typologies

Cable structures

Arches and shells

Arch-cable systems

Trusses

Beams

Frames

Eugene Freyssinet: Brücke über die Marne, Luzanzy, 1946

Livio Vacchini, Andreoutti + Partners: Bürohaus La Ferriera, Locarno, 2003

Beyond Typologies

Sketches National Stadium Tokyo 2020 - P. D'Acunto, L. Ingold, O. P. Ohlbrock - 2016

Sketches National Stadium Tokyo 2020 - P. D'Acunto, L. Ingold, O. P. Ohlbrock - 2016

National Stadium Tokyo 2020 - P. D'Acunto, L. Ingold, O. P. Ohlbrock - 2016

National Stadium Tokyo 2020 - P. D'Acunto, L. Ingold, O. P. Ohlbrock - 2016

Computational Equilibrium Tools

Equilibrium based design tools developed at ETH: https://compas.dev/extensions.html

Vector-based Graphic Statics (VGS)

Interactive modification of form and force diagram with VGS

Search or jump to... Vill requests Issues Marketplace Explore

Dierluigidacunto / VGS Public

<> Code 💿 Issues 🕄 Pull requests 💿 Actions 🗄 Projects 🕕 Security 🗠 Insights

@pierluigidacunto has invited you to collaborate on this repository.					About No description, website, or topics provided.
🐉 main 🗸 🐉 1 branch 📎 0 tags		Go to file	Add file •	Code +	다 Readme 최고 MIT license
YuchiSHEN Delete the numeric.txt		f6ab4bd 15 days ago 🕚 48 commits			 ☆ 5 stars ② 2 watching
Examples	Update 3D_SuspensionBridge.gh		5 1	months ago	양 2 forks
VGS1.00bela	Delete the numeric.txt		8	15 days ago	
	License and readme		8 1	months ago	Releases
README.md	Update README.md		2	23 days ago	No releases published

README.md

VGS Tool - Vector-based Graphic Statics

Vector-based Graphic Static (VGS) is a direct extension of traditional 2D graphic statics to the third dimension. VGS introduced a generalized procedure for the construction of a 3D vector-based force diagram for any given 3D form diagram of a spatial network in static equilibrium. By establishing an interdependency between form and force diagrams, VGS allows users to transform one of the diagrams and evaluate directly the resulting transformation of the other diagram. This property allows for a quick and interactive exploration of possible equilibrium solutions in the early design phase. VGS Tool is implemented as a plug-in for the CAD environment McNeel Rhino/Grasshopper for both Windows and MacOS.

Packages

No packages published

Contributors 2

Q + • 🚭

⊙ Watch 2 - 😵 Fork 2 - ☆ Star 5 -

YuchiSHEN YUCHI SHEN

https://www.youtube.com/watch?v=9_3iyEHmEy0&t=882s https://github.com/pierluigidacunto/VGS

Combinatorial Equilibrium Modelling (CEM)

Bridge design with CEM

Bridge design with CEM; Goián-Vila Nova footbridge over the Miño River, Spain-Portugal with Bernabeu Ingenierios

Bridge design with CEM; Goián-Vila Nova footbridge over the Miño River, Spain-Portugal with Bernabeu Ingenierios

Bridge design with CEM; Goián-Vila Nova footbridge over the Miño River, Spain-Portugal with Bernabeu Ingenierios

Building design with CEM

Building design with CEM

Infinite valid equilibrium options

compas_cem		latest - 🕥 👂
Search docs	compas_cem	COMPAS CEM Main features
Introduction	COMPAS CEM	Credits Table of Contents
Examples	The Combinatorial Equilibrium Modeling (CEM) framework for COMPAS.	
API Reference		
Changelog Citing		
License		

https://github.com/computational-structural-design/CEM https://arpastrana.github.io/compas_cem/latest/index.html

Rhino Vault 2

rV2 Funicular Form Finding	Block Research Group COMPAS GitHub	Q. Search
RhinoVAULT 2 QUICK START Quick install Workflow + UI Tutorial THEORETICAL BACKGROUND Thrust Network Analysis RhinoVAULT DOCUMENTATION Installation Xnown Issues	<page-header><page-header><section-header><section-header><image/><image/></section-header></section-header></page-header></page-header>	Q Search Image: Description of the search of the search platform COMPAS Main features Limitations Open Source Company Search
Powered By GitBook	The Rhinoceros® plug-in RhinoVAULT, developed by Dr. Matthias Rippmann at the Block Research	

https://www.youtube.com/watch?v=k6vKHs5YinI https://blockresearchgroup.gitbook.io/rv2/ 1. Pattern

2. Boundary conditions

3. Form diagram

4. Dual diagram

5. Horizontal equilibrium

6. Force diagram

7. Vertical equilibrium

8. Thrust diagram

https://blockresearchgroup.gitbook.io/rv2/

Big Picture