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Abstract

More than 150 years after Culmann (1864) established the methods of 2D
graphic statics at ETH Zurich, this research aims to establish the methods
of 3D graphic statics based on the historical concept of 3D reciprocal dia-
grams. It clarifies and develops the concept of geometric representation of
the equilibrium of forces in polyhedral frames based on the proposition by
Rankine (1864) in 1864 . It uses Rankine’s proposition on the reciprocity
between the form of a polyhedral frame and its force diagram and redefines
the topological relationships to be used as the basis for the 3D graphic stat-
ics methods. It also provides a computational framework to construct 3D
reciprocal diagrams from convex polyhedral cells.

Using 3D structural reciprocity, this thesis provides methods to find global
equilibrium for systems of forces in 3D and establishes step–by–step geo-
metric procedures to construct spatial funicular forms that are geometri-
cally constrained to given boundary conditions and applied loads. More-
over, it describes the procedures to show the equilibrium of internal and
external forces in the members of general polyhedral frames using force
polyhedrons.

In addition to the 3D graphic statics methods, this research introduces
valuable design and optimization techniques for form finding of complex
spatial structural systems by aggregating force polyhedrons and subdivid-
ing the global equilibrium in the force diagram. These methods are valu-
able in deriving complex compression–only structural solutions with dif-
ferent topological properties for given boundary conditions. Lastly, this
research provides additional examples to show the extensive design po-
tential of these methods to generate non–conventional structural systems
with a combination of compressive and tensile forces in their members.
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Abstrakt

150 Jahre nachdem Culmann die Methoden der zweidimensionalen graphischen
Statik an der ETH Zürich bestimmte, begründet diese Forschung die Methoden
der dreidimensionalen graphischen Statik basierend auf dem historischen
Konzept der dreidimensional-reziproken Diagramme. Sie erklärt und entwickelt
das Konzept der geometrischen Darstellung des Gleichgewichts der Kräfte in
polyedrischen Rahmen, welche 1864 von Rankine eingeführt wurden. Es nutzt
Rankins Aussage über die Gegenseitigkeit zwischen der Form eines polyedrischen
Rahmens und dessen Kräfteplan und definiert ihre topologischen Beziehungen
neu, um sie als Grundlage für die Methoden der dreidimensionalen graphischen
Statik zu verwenden. Sie stellt auch rechnergestützte Grundlagen bereit, um
dreidimensional-reziproke Diagramme von konvexen polyedrischen Zellen zu
konstruieren.

Mit Hilfe der dreidimensionalen reziproken Diagramme stellt diese Arbeit
Methoden vor, um ein globales Gleichgewicht für räumliche Kraftsysteme zu
finden und begründet sukzessive geometrische Verfahren zur Konstruktion von in
ihren Teilen rein druck- und/oder zugbeanspruchten Formen, die zu gegebenen
Randbedingungen und angewendeten Lasten geometrisch beschränkt sind.
Darüber hinaus beschreibt sie Verfahren, um das Gleichgewicht der inneren und
äußeren Kräfte in den Teilen der allgemeinen polyedrischen Rahmen durch
Kräftepolyeder anzuzeigen.

Zusätzlich zu den Methoden der dreidimensionalen graphischen Statik führt
diese Forschung durch die Ansammlung von Kräftepolyedern und die
Unterteilung des globalen Gleichgewichts im Kräfteplan wertvolle Entwurfs- und
Optimierungstechniken zur Formfindung von komplexen räumlichen
Struktursystemen ein. Diese Methoden sind wertvoll bei der Herleitung von
komplexen, rein druckbeanspruchten Strukturlösungen, die unterschiedliche
topologischen Eigenschaften für gegebene Randbedingungen vorweisen.
Abschließend zeigt diese Forschung weitere Beispiele für die umfangreichen und
durch die beschriebenen Methoden hergeleiteten Gestaltungsmöglichkeiten von
unkonventionellen, in ihren Teilen rein auf druck- oder zugbeanspruchten
Tragwerkssystemen.
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Chapter1

Introduction

“Science must become sensual and poesy scientific”

Neumeyer (1997) in Friedrich Gilly. Essays zur Architektur 1796–1799.

1.1 A brief history of graphical statics

Geometric methods of structural design represent a group of techniques
that originated in the pre-digital era and continue to be used and devel-
oped even today. These techniques investigate the static equilibrium of
structures using geometric constructions. The use of geometry in finding
the equilibrium of forces has a history as early as 1586. Stevin (1586) pro-
posed that the forces on two sides of inclined planes are in equilibrium if
the magnitude of the force on each side is proportional to the lengths of the
side (Fig. 1.1).

However, Varignon (1725) was probably the first person who laid the foun-
dation for the use of geometry in the field of structural design by introduc-
ing the concept of the funicular polygon and polygon of forces in his book
Nouvelle Mécanique ou Statique in 1725 (Fig. 1.2).

According to Varignon, funicular polygon is the equilibrium geometry of
an inelastic rope suspended from two points and subjected to applied loads.
Figure 1.2 shows a funicular polygon ACDPQB of a suspended rope at A
and B and loaded by K, L, M , and N weights. In addition, the force poly-
gon includes force triangles representing the equilibrium of a node in the
funicular polygon. For instance, triangle SFG represents the equilibrium
of the forces in the node D of the funicular form. The length of each edge
of the triangle represents the magnitude of the forces in the members con-
nected to the node D.

3



4 Introduction

Figure 1.1: Drawings by Simon Stevin representing the equilibrium of forces on
the sides of inclined planes where the magnitude of the forces are proportional to
the length of each side (Stevin, 1586).

Poncelet (1822) subsequently used the funicular polygon to determine the
center of gravity in his lectures at the artillery and military engineering
school in Metz (Chatzis, 2004; Kurrer, 2008). Later, Lamè and Clapeyron
(1828) applied Varignon’s funicular polygon and polygon of forces for the
first time in construction engineering and used it to analyze the dome of
the St. Isaac Cathedral.

In Britain, the funicular polygon was used by Rankine (1858) to determine
the internal forces of a statically determinate truss system in 1858. He ap-
plied this concept in developing the theory of equilibrium of polygonal frames
in his Manual of Applied Mechanics (see Chapter 2).

In Germany, Culmann (1864) published the methods of graphical statics for
the first time in his monograph Die graphische Statik in 1866 and invested
his time to implement the methods of graphical statics in the curriculum of
the Swiss Federal Institute of Technology. Culmann discovered that the fu-
nicular polygon and polygon for the concurrent system of forces are inter-
changeable and called such diagrams reciprocal (Scholz, 1989; Kurrer, 2008).

However, Maxwell (1864, 1870) was the first person to formulate the prop-
erties of the reciprocal diagrams and their relationship to the diagram of
forces. Maxwell proved that two diagrams are reciprocal in 2D, if both are
projections of polyhedrons with planar faces.

In 1872, Cremona (1890) extended the work by Maxwell and combined it
with Culmann’s methods of graphical statics. He generalized Maxwell’s
theory of reciprocal diagrams and developed a methodology to draw a
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Figure 1.2: Drawings by Varignon representing the equilibrium/funicular form of
an inelastic rope loaded in various directions and the force polygon representing
the magnitude of the forces in equilibrium (Varignon, 1725).
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Figure 1.3: Cremona diagrams representing the form of a truss (right) and its
reciprocal force diagram (left) (Cremona, 1890).

diagram of forces for structural systems with non-concurrent, externally
applied loads (Scholz, 1989) (Fig. 1.3). Cremona’s methods encouraged
engineers to use graphical methods to analyze the forces in a given struc-
tural form, such as trusses. Later in 1873, Bow (1873) in his monograph The
Economics of Construction in Relation to Framed Structures presented a catalog
of various types of trusses and divided them into four categories with their
reciprocal force diagrams and simplified the use of graphical methods of
analysis for engineers in the design of trussed frameworks (Fig. 1.4).

Graphical methods were also used to analyze masonry vaults and domes
in the late nineteenth century (Wittmann, 1879; Ungewitter, 1890). How-
ever, during the end of the nineteenth century, numerical computational
methods based on linear algebra defeated graphical analysis methods in
dealing with complex problems; therefore, engineers at that time lost in-
terest in the use of graphical analysis. However, the form-finding potential
of graphical methods has preserved their importance among architects and
engineers until today.

1.2 Graphical methods of form finding

Despite their limitations in analyzing complex structural systems, graphi-
cal methods are considered a powerful technique in finding efficient struc-
tural forms. In graphical statics, the structural equilibrium and force distri-
bution is controlled by geometric construction of form and force diagrams.
Moreover, these geometric constructions are reciprocally dependent. For
instance, each member of the force diagram is geometrically dependent on
a member in the form diagram; therefore, a change in one diagram affects
the geometry of the other. This property can be effectively used in find-
ing efficient structural forms. In the following paragraphs, I will expand
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Figure 1.4: Bow’s drawings of various truss systems with their corresponding
force diagram, highlighting the power of graphical methods to control forces in
truss design (Bow, 1873).

on the advantages of using graphical form-finding methods over physical
and numerical methods of form-finding.

1.2.1 Graphical vs. physical form finding

Using physical scale models to predict the structural behavior of materials
and find efficient structural forms is one of the techniques that has been
used extensively throughout the history of architecture and structural de-
sign (Fig. 1.5). Poleni (1748), for example, used Robert Hooke’s (1675)
hanging-chain idea to explain that the presence of the cracks in the dome of
St. Peter’s in Rome did not cause problems for its stability. Antoni Gaudı́,
Heinz Isler, Frei Otto, and many other master builders used physical mod-
els to derive efficient structural forms for their designs (Otto and Rasch,
1996).
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(a) (b)

Figure 1.5: a) Reproduction of Gaudı́’s hanging-chain model for the crypt
of Colònia Güell, Barcelona; b) form finding using fabric and polyester by
Heinz Isler.

Physical form–finding techniques are straightforward and do not require
the substantial body of structural design knowledge of a designer. A sim-
ple system of hanging chains or cloth can represent an optimal form of a
shell under gravitational loads (Billington, 2003). However, this technique
has the following limitations:

• Translating the geometric properties of the resulting form to the build-
ing scale might be quite tedious;

• building models for complex architectural concepts might take many
years to finish, particularly because the weight distribution needs to
be updated in an iterative manner (Collins, 1963);

• controlling the design features of the resulting form is extremely dif-
ficult because the local changes have global effects;

• measuring the internal forces in the elements of the structure and
designing them accordingly is unfeasible unless sophisticated mea-
suring devices are at hand;

• and finally, the behavior of the material cannot be scaled for all struc-
tural types (Addis, 2004).

Therefore, although physical models are quite powerful in providing the
initial step into the entire structural design process and in conveying the
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concept of efficient structural forms, they do not provide the designer with
a desirable level of control and sufficient freedom in design.

In contrast, graphical methods of form finding provide approaches with a
higher level of control in the design of efficient structural forms compared
to physical form-finding methods. The geometric dependencies between
the form and force diagrams in graphical statics not only make it possible
to construct one diagram from the other but also provide an unprecedented
control in design. The designer can geometrically define the internal forces
of a structure and derive the form of its individual elements according to
the preferred force distribution. This powerful feature of graphical form
finding has been exploited by many engineers and architects since the nine-
teenth century (Fig. 1.6).

(a) (b)

Figure 1.6: a) Graphical form finding of the Eiffel tower by Maurice Koech-
lin; b) Form and force diagram of Robert Maillart’s Magazzini Generali
Shed in Chiasso (Zalewski and Allen, 1998).

1.2.2 Graphical vs. numerical form finding

Advances in computer science and engineering have allowed engineers
and architects to develop numerical techniques to find efficient structural
forms in a computer-aided environment. Some of the developed tech-
niques simulate the physical transformation of materials and find an opti-
mal geometry of the structure under the given loading conditions. Particle-
spring systems (Kilian and Ochsendorf, 2005; Kilian, 2004), physics simu-
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Figure 1.7: Series of tensioned equilibrium networks constructed using the force
density method with different proportions of forces in their members (Schek, 1974).

lation engines (Piker, 2013), force density methods (Linkwitz and Schek,
1971; Schek, 1974), and dynamic relaxation (Barnes, 1999) are among them.

In fact, these methods are important substitutes for tedious physical form-
finding techniques. However, in these techniques, the final geometry is
the result of the numerous computational processes; therefore, the contri-
bution of the designer is minimal (for further reading on this topic, see
Adriaenssens et al. (2014)).

Other numerical techniques have been developed to merely analyze struc-
tural behavior and optimize certain objectives in the structure (such as
minimization of material, minimization of deflection, and maximization
of stiffness).

For example, use of the finite element method , with evolutionary algo-
rithms (genetic algorithms) in an iterative process, surpasses the role of
designer in the design process (Adriaenssens et al., 2014). These methods,
at the first step, choose the best individual designs in a random population
of potential design solutions and combine them to create better individual
designs at the next level of iteration/generation. In the end, the designer
is faced with a design that is the result of multiple steps of numerical it-
erations in which he or she was not involved. Consequently, the designer
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has limited control over the final geometry of the structure (Fig. 1.7). Re-
cent research is trying to enhance the role of the designer within the design
process (Mueller and Ochsendorf, 2013).

In general, these techniques cannot be used as design tools because they
do not provide a desirable level of control in the design process. Not hav-
ing an explicit relationship between the form and forces makes it difficult
for a designer to recognize the effective parameters in the design process.
Moreover, these methods cannot be used as an intuitive pedagogical tool
to explain the structural concepts for educational purposes. The mathe-
matical concepts underlying their calculations are not trivial and cannot be
easily understood by most architects and traditional engineers.

Unlike numerical methods, the relationship between the form and force
diagram is extremely transparent. The magnitude of the force is simply
represented by the length of the corresponding line in the force diagram.
Moreover, each line in the force diagram is parallel/perpendicular to a line
in the form diagram. In this regard, the designer can easily observe the
effects of a change in the form diagram as a result of a modification in the
force, or vice versa. Therefore, graphical statics can be considered an in-
tuitive method to explain structural concepts to architecture and engineer-
ing students, and its interactive implementation has become an important
part of the architectural curriculum at a number of renowned universities
(Greenwold, 2003; Van Mele and Block, 2010).

1.3 Limitations of graphical statics

Similar to other methods of structural form finding, graphical statics has
its own limitations: it has been developed as a 2D method. Thus, only 2D
abstractions of 3D structures can be designed. Moreover, this technique
was developed and used mostly to design and analyze determinate struc-
tures. Hence, it is not an efficient tool to analyze and design indeterminate
structures. Additionally, graphical statics separates structural design from
material properties, and proper sizing of the members (e.g., considering
buckling) has to be carried out as a post-process calculation.

Regardless of the mentioned restrictions, graphical statics is still consid-
ered to be an intuitive method of structural design among architects and
engineers. Moreover, the explicit relationship (geometric dependencies)
between the form and force diagram can explain complex structural con-
cepts in simple terms and provide a desirable level of control for designers.
Therefore, since 1864, graphical statics-based approaches have been used
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Figure 1.8: Couple of pages of the monograph intended to extend graphical statics
to the third dimension using projective geometry by Föppl (1892).

and are being further developed as extremely powerful methods of struc-
tural form finding for professional and educational purposes (Wolfe, 1921;
Zalewski and Allen, 1998; Van Mele et al., 2012; Beghini et al., 2013; Fivet
and Zastavni, 2013; Baker et al., 2013; Van Mele and Block, 2014).

1.3.1 3D extensions of graphical statics

Since the nineteenth century, several methods have been developed to ex-
tend graphical statics to 3D. One of these 3D extensions is the result of the
work of Föppl (1892), who used projective geometry to analyze 3D trusses.
This method is a method of analysis and cannot be used as a form-finding
apparatus (Fig. 1.8). Moreover, at a certain level of analysis, the process
becomes extremely counterintuitive as a result of the complicated repre-
sentation of forces in the third dimension.

In another effort, Schrems and Kotnik (2013) suggested the use of the force-
pair technique to design 3D structural forms. In this technique, in an iter-
ative process, any two forces in the system are taken as force pairs, and
the resultant will be added to the system to make another pair with the re-
maining forces. In this method, the configurations of the force pairs are not
unique. Therefore, this method does not result in a topologically-unique
solution and fails to preserve the intuitive aspect of graphical statics.
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Figure 1.9: Thrust Network Analysis uses the 2D reciprocal form (Γ) and
force (Γ∗) to create free-form compressive surface structures (Rippmann
and Block, 2013b).

1.3.2 Extensions of the geometric basis of graphical statics

Although the development of the methods of graphic statics in 3D has
been limited, the geometric basis of this method has attracted researchers
since 1864. Reciprocal diagrams are the basis of the conventional graphical
methods of structural form finding. Since the nineteenth century, multiple
researchers have extended the use of these diagrams independent from the
methods of graphical statics.

Unloaded, pre-stressed, reciprocal surface structures

For instance, reciprocal diagrams on the local coordinates of a surface can
also be used to geometrically calculate the states of stress in surfaces that
are only loaded in their boundaries. If two unloaded pre-stressed surfaces
are reciprocal, the equilibrium of a node on one surface is ensured by a
closed polygon of forces on the other (Williams, 1986).

Surface structures and parallel loading

The problem of finding funicular structural forms in 3D using geometric
approaches has received a lot of attention in different fields of research.
The thrust network analysis (TNA) developed by Block and Ochsendorf
(2007) is a graphical statics-based method for finding a compression-only
funicular network of forces for given loads and boundary conditions. By



14 Introduction

requiring all loads to be vertical, it provides explicit control over the 3D
shape of a funicular network in compression through projected form and
force diagrams describing horizontal equilibrium in the system (Fig. 1.9).

As a consequence, TNA produces results in the form of heightfields over a
2D diagram of forces. This method has been investigated further by Vouga
et al. (2012); Liu et al. (2013); de Goes et al. (2013); Panozzo et al. (2013)
related to the design and construction of self–supporting surfaces. The
fundamental principle of these methods is to allow separating horizontal
and vertical equilibrium by requiring all loads to be vertical, or at least
parallel, and perpendicular to the planes of projection of the form and force
diagrams. Therefore, these methods cannot easily account for non–parallel
applied load cases.

3D reciprocal diagrams

In 1864, around the same time that 2D graphical statics was being artic-
ulated by engineers, such as Culmann (1864), in a half-page proposition
titled Principle of the Equilibrium of Polyhedral Frames,Rankine (1864) sug-
gested a possible reciprocal relationship between the form and forces in
3D (Fig. 1.10). However, he never proved or complemented his theory
with further explanations or illustrations. In the same year, in response to
Rankine’s proposition, Maxwell (1864) provided a geometric procedure to
construct 3D reciprocal diagrams for a specific case. However, in the same
publication, he acknowledged the complexity of solving these problems in
the third dimension and, consequently, the lack of interest to continue the
topic. Therefore, this topic has been left intact since 1864.

The geometrical relationships between the reciprocal figures described by
Rankine are very similar to the geometrical relationships in orthogonal
dual structures in the Poincaré duality theorem (Munkrez, 1993). However,
Poincaré duality is defined for n-manifold triangulated space, whereas the
reciprocal diagrams should not be limited to triangulated/tetrahedralized
space. There is a large body of research in the fields of computer graph-
ics, mathematics, and engineering that emphasizes the use of triangulated
dual structures and their constructing algorithms, such as those suggested
by de Goes et al. (2014) and Mullen et al. (2011). However, the investi-
gation of reciprocal polyhedrons and their relationship to the diagram of
forces have not been investigated since Rankine’s proposition.
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Figure 1.10: Rankine’s half-a-page proposition on the equilibrium of polyhedral
frames and 3D reciprocal diagrams Rankine (1864).
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1.4 Statement of the Problem

Today, the absorption of computational design tools into contemporary ar-
chitectural practices has motivated a renaissance of geometrically complex
formal projects to the extent that the complexity of these forms symbol-
izes creativity in a digital design environment. Many tools are available to
provide structural feedback during the design process, but for fully spatial
structures, there are no approaches or implementations that assist the de-
signer to steer the geometry by force considerations or that suggest how to
improve the structural behavior at the early stages of the design without
limiting the freedom of the designer. Among the different form-finding
methods, graphic statics is the closest to providing a desirable level of con-
trol in design for architects and engineers. However, the existing methods
of graphic statics in 3D cannot provide a fair level of freedom in the design
of spatial funicular forms or preserve the intuitive relationship between the
form and force diagrams.

1.5 Objectives

Unlike other research of extensions of graphical methods to 3D (Föppl,
1892; Block and Ochsendorf, 2007; Schrems and Kotnik, 2013), this research
is unique in its approach to tackling the problem of developing geometric
representations of forces in 3D. It builds on and advances the novel initial
theory of spatial, reciprocal, and polyhedral diagrams proposed by Rank-
ine and Maxwell in 1864, which, at that time, was abandoned because of
its complexity and the lack of proper representational and computational
tools and techniques..

Therefore, the ultimate goal of this thesis is to develop a foundation for
the methods of 3D graphical statics based on 3D reciprocal diagrams pro-
posed by Rankine (1864) to design and analyze 3D structural forms. This
objective can be achieved through developing the following main topics:

• the properties of 3D reciprocal diagrams;

• the geometric procedures of 3D graphical statics based on 3D recip-
rocal diagrams; and

• additional design techniques and geometric optimizations.
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1.6 Outline of the chapters

The chapters of this thesis are prepared according to different parts of the
objectives:

• Chapter 2 clarifies and develops the original concept of the reciprocal
relationship between the form and forces in 3D based on the propo-
sitions by Rankine (1858, 1864);

• Chapter 3 provides a computational framework to construct 3D re-
ciprocal diagrams explained in Chapter 2 from convex polyhedral
cells;

• Chapter 4 describes the geometric procedures to determine global
equilibrium for a system of forces in 3D using funicular polyhedral
constructions and explains the geometric steps to find spatial funicu-
lar forms for given boundary conditions;

• Chapter 5 expands on the global and nodal equilibrium of general
polyhedral frames and describes the equilibrium of tensile and com-
pressive forces at each node of the frame using its force polyhedron;

• Chapter 6 provides additional design and optimization techniques
that can be used with the methods of graphical statics to generate a
complex spatial structural system starting from simple concepts;

• Chapter 7 includes complementary examples of structural designs
using 3D graphical methods to highlight certain properties of these
systems and emphasize the potential of using this method in struc-
tural form finding; and

• Chapter 8 provides concluding remarks and reflections on the meth-
ods explained in this thesis as well as some possible research exten-
sions in the future.
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3D reciprocal diagrams
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Chapter2

Geometrical and topological clarifications

The following chapter clarifies geometrical and topological properties of
3D reciprocal diagrams based on Rankine’s proposition on the equilib-
rium of polyhedral frames. Rankine’s proposition in 3D is the extension
of his earlier propositions on the equilibrium of the polygonal frame in
2D. Therefore, this chapter briefly explains Rankine’s principle of equilib-
rium of the triangular frame as well as the polygonal frame and uses their
common elements to describe the principle of equilibrium of polyhedral
frames.

2.1 Reciprocal diagrams and diagrams of forces

The existing methods of 2D graphical statics are based on the reciprocal re-
lationship between the diagram of forces and the configuration of forces in
2D. The first person who referred to the reciprocal relationship between the
form and force diagrams and provided geometric recipes to construct them
was Maxwell (1864). Maxwell used the theory of duality, which was origi-
nally discovered by Möbius (1828) to define the properties of the reciprocal
diagrams. Möbius (1833), in his theory of duality, stated the following re-
lationship between two tetrahedrons in 3D space:

If the faces of a tetrahedron (e.g., B’C’D’) pass respectively
through the vertices of another tetrahedron (e.g., A), and if three
faces of the latter (e.g., ADB, DAC, ABC) pass through three
vertices of the former (e.g., C’, B’, D’), then the fourth face of
the second tetrahedron (DBC) will pass through the fourth ver-
tex of the first (A’). As a result, these tetrahedrons are recipro-
cal.(Fig. 2.1)

21
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Figure 2.1: Möbius’ reciprocal tetrahedrons in three dimensions and their ortho-
graphic projection.
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Figure 2.2: Maxwell’s reciprocal figures, which are similar to the orthographic
projection of the Möbius’ reciprocal tetrahedrons.

This theory is extendable to two polyhedrons, and the orthographic pro-
jection of these reciprocal polyhedrons appears in Maxwell’s reciprocal
figures, where each edge of one diagram is perpendicular to an edge of
the other diagram and each closed polygon with n edges in one diagram
corresponds to a vertex where n edges meet in the other diagram (Fig.
2.2). These reciprocal diagrams, obtained from the orthographic projection
of two reciprocal polyhedrons, are incorporated directly in the traditional
methods of the graphical statics we use today (Culmann, 1864; Cremona,
1890; Wolfe, 1921).

Rankine (1864) was the first to use the 3D equivalent of 2D reciprocal dia-
grams in finding the equilibrium of 3D forces geometrically. He proposed
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the principle of the equilibrium of polyhedral frames in Philosophical Magazine,
February 1864, which was not developed and applied further. In this chap-
ter, we concentrate on Rankine’s proposition for the equilibrium of poly-
hedral frames in order to:

• clarify and illustrate this extremely short, but valuable concept 150
after its publication;

• define the reciprocal relationship between form and force diagrams
in 3D;

• articulate the topological and geometrical relationships of these dia-
grams;

• use them to show the equilibrium of simple determinate and indeter-
minate systems of forces;

• suggest a computational implementation to construct 3D reciprocal
diagrams; and

• highlight the importance of this principle to be the basis of the meth-
ods of 3D graphical statics.

Rankine called his proposition for polyhedral frames an extension of the
2D version, the Principle of Equilibrium of Polygonal Frames in his A Man-
ual of Applied Mechanics (Rankine, 1858). Therefore, the following section
starts with Rankine’s propositions in 2D to build up the knowledge to un-
derstand his intense 3D principle.

2.1.1 Rankine’s principle of the equilibrium of a triangular
frame

Rankine, in Article 148 of his Manual of Applied Mechanics, stated the fol-
lowing theorem for the equilibrium of a triangular frame:

If three forces be represented by three sides of a triangle,
and if three straight lines radiating from one point be drawn to
the three angles of that triangle, then a triangular frame whose
lines of resistance are parallel to the three radiating lines will
be in equilibrio under the three given forces, each force be-
ing applied to the joint where the two lines of resistance meet,
which are parallel to the radiating lines contiguous to that side
of the original triangle which represents the force in question.
Also, the lengths of the three radiating lines will represent the
stresses on the bars to which they are respectively parallel.
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Figure 2.3: Rankine’s principle of the equilibrium of a triangular frame; a) lines
radiating from point P intersecting the vertices of a closed force triangle A′B′C′

and b) the triangular frame ABC and the forces Fi−k applied to its vertices are in
equilibrium. Each edge of the force diagram is perpendicular to its corresponding
edge in the triangular frame, for instance, PA′ is perpendicular to AC.

Figure 2.3 illustrates various elements of this theory. Consider the force
triangle A′B′C ′ consisting of Fi−k. Consider the triangle ABC with each
of its edges parallel (in this drawing perpendicular) to the lines radiating
from the point P and connected to the vertices of the triangle A′B′C ′.

The theory states that the forces forming the triangle A′B′C ′ applied to the
vertices A, B, and C keep the triangle in equilibrium. For instance, the
forces that meet at joint A, including the axial forces in the members AC
and AB and the applied force Fj , are in equilibrium since these edges of
the triangular frame with the force Fj correspond to the closed triangle of
PA′B′.

The magnitudes of the internal forces are equal to the lengths of the lines
radiating from P . In fact, Rankine refers to two key concepts of equilibrium
with this theory:

• global equilibrium, which is guaranteed by a closed force triangleA′B′C ′

and a closed triangular frame ABC and

• nodal equilibrium, representing the equilibrium of each vertex of the
triangular frame, which corresponds to a closed triangle in the force
diagram.
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2.1.2 Rankine’s principle of the equilibrium of polygonal
frames

Rankine, in Article 150 of his manual, generalized the principle of equilib-
rium of a triangular frame to polygonal frames as follows:

If lines radiating from a point be drawn parallel to the lines
of resistance of the bars of a polygonal frame, then the sides of
any polygon whose angles lie in these radiating lines will repre-
sent a system of forces, which, being applied to the joints of the
frame, will balance each other; each such force being applied to
the joint between the bars whose lines of resistance are parallel
to the pair of radiating lines that enclose the side of the polygon
of forces, representing the force in question. Also, the lengths
of the radiating lines will represent the stresses along the bars
to whose lines of resistance they are respectively parallel.

Figure 2.4 illustrates this proposition for two different force polygons and
shows the equilibrium of the corresponding frame. To clarify this princi-
ple, I rewrite each sentence referring to its relevant components in Figure
2.4. Consider the lines l′i−m radiating from point P (Fig. 2.4a ), which are
perpendicular to the edges of a polygonal frame (Fig. 2.4b). There exists
an infinite number of closed polygons whose vertices lie on those radiating
lines (Fig. 2.4c, e). The system of forces Fi−m of the closed polygon applied
to the vertices of the polygonal frame are in equilibrium (Fig. 2.4d, f). For
instance, force Fi and bars ei and ej meeting at a joint in the frame corre-
spond to a closed force triangle formed by Fi, e′i, and e′j . Moreover, the
magnitudes of the internal forces of the polygonal frame equal the lengths
of the radiating segments in the force diagram.

One of the key aspects of this principle is that for any chosen closed force
polygon with its vertices lying on the radiating lines, its forces, applied to
the corresponding joints of the polygonal frame, will be in equilibrium. For
instance, the set of connected polygons in Figure 2.4e with the force poly-
gon collapsed to a line represent the equilibrium of the polygonal frame
under parallel applied loads (Fig. 2.4f).

2.1.3 Rankine’s principle of the equilibrium of polyhedral
frames

Rankine in continuation of his principle for the equilibrium of polygonal
frames proposed the principle of the equilibrium of polyhedral frames. Accord-
ing to Maxwell (1864), the polyhedron of forces, or the proposition that forces
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Figure 2.4: Rankine’s principle of equilibrium of polygonal frames: a) lines radi-
ating from point P ; b) a polygonal frame corresponding and perpendicular to the
radiating lines; c) a closed polygon of forces with vertices lying on the radiating
lines; d) forces of the force polygon applied (perpendicular) to the vertices of the
polygonal frame; e) another force polygon with edges on a single line and vertices
lying on the radiating lines; and f) the polygonal frame for which the parallel, ex-
ternal forces are in equilibrium.

acting on a point, perpendicular and proportional to the areas of the faces
of a polyhedron, are in equilibrium, has been enunciated independently
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at various times, but the application of this principle to the construction
of a diagram of forces for frames in 3D was first proposed by Rankine in
Philosophical Magazine in February 1864. The theory is limited to a short
paragraph, and, to the knowledge of the author, there is no complemen-
tary illustration. Since the text is not very well known and not readily
available, I repeat it here as it appeared inPhilosophical Magazine:

If planes diverging from a point or line be drawn normal to
the lines of resistance of the bars of a polyhedral frame, then the
faces of a polyhedron whose edges lie in those diverging planes
(in such a manner that those faces, together with the diverging
planes which contain their edges, form a set of contiguous di-
verging pyramids or wedges) will represent, and be normal to,
a system of forces which, being applied to the summits of the
polyhedral frame, will balance each other – each such force be-
ing applied to the summit of meeting of the bars whose lines of
resistance are normal to the set of diverging planes that enclose
that face of the polyhedron of forces which represents and is
normal to the force in question. Also the areas of the diverging
planes will represent the stresses along the bars to whose lines
of resistance they are respectively normal. It is obvious that the
polyhedron of forces and the polyhedral frame are reciprocally
related as follows: their numbers of edges are equal, and their
corresponding pairs of edges perpendicular to each other; and
the number of faces in each polyhedron is equal to the number
of summits in the other.

This principle is quite similar to the principle of equilibrium of polygonal
frames, except the lines diverging from a point and connecting the ver-
tices of a force polygon have been replaced by planes diverging from a
point or line and passing through the edges of a force polyhedron. Fig-
ures 2.5a-f and 2.6a-f illustrate various components of this principle, for
planes diverging from a point and a line, respectively. Figures 2.5b and
2.6b represent polyhedral frames with bars perpendicular to the diverging
planes. According to Rankine, we can choose a (closed) force polyhedron
whose edges lie in those diverging planes (Fig. 2.5c and 2.6c); The faces
of the chosen polyhedron with diverging planes form a group of adjacent
pyramids or wedges (Figs. 2.5d and 2.6d). As a result, a system of forces
that are perpendicular to the faces of the chosen polyhedron applied to the
joints of the polyhedral frame will be in equilibrium (Figs. 2.5e, f, and 2.6e,
f). For instance, force Fi with the bars meeting at the joint of the frame that
they are applied to (Figs. 2.5f and 2.6f) are perpendicular to the faces of
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Figure 2.5: Rankine’s principle of equilibrium of polyhedral frames: a) planes
diverging from a point; b) the corresponding polyhedral frame with bars perpen-
dicular to the diverging planes; c) a closed force polyhedron (tetrahedron) whose
edges lie on diverging planes; d) the faces of the force polyhedron composed from a
group of closed tetrahedral force cells with diverging planes; e) normal of the faces
of the force polyhedron; and f) forces orthogonal to the faces of the force polyhe-
dron, applied to the corresponding vertices of the polyhedral frame, keep the frame
in equilibrium.
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Figure 2.6: Rankine’s principle of equilibrium of polyhedral frames; a) planes
diverging from a line; b) the corresponding polyhedral frame with bars perpendic-
ular to diverging planes; c) a closed force polyhedron whose edges lie on diverging
planes; d) the faces of the force polyhedron make a group of closed polyhedral cells
(wedges) with the diverging planes; e) normal of the faces of the force polyhedron;
and f) the forces perpendicular to the faces of the force polyhedron, applied to the
vertices of the polyhedral frame, keep the frame in equilibrium.

the force pyramid/wedge of Figures 2.5d and 2.6d. Moreover, the inter-
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Figure 2.7: The reciprocal relationship between the force polyhedron and the poly-
hedral frame as suggested by Rankine in his proposal: a) the closed force tetrahe-
dron of the external forces of Figure 2.5; b) the reciprocal polyhedral frame with the
same number of edges as that force tetrahedron; c) the closed force polyhedron of
Figure 2.6; and d) the reciprocal polyhedral frame with the same number of edges
as that force polyhedron.

nal forces of the members of the frame are proportional to the areas of the
diverging planes.

Additionally, at the end of the proposition, Rankine referred to the recip-
rocal relationship between the force polyhedron and the polyhedral frame.
The interesting aspect of his conclusion is that he separated the faces re-
lated to the internal forces of the polyhedral frame from the force diagram
and removed the applied forces in the polyhedral frame. As a result, he
compared the reciprocity between the following two diagrams: the force
polyhedron representing the applied forces only and the polyhedral frame
without external forces (Fig. 2.7a-d).

2.1.4 Equilibrium under various loading conditions

The principle stands for the equilibrium of polyhedral frames under vari-
ous loading conditions; Rankine, in his proposition, did not limit the type
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with the diverging planes, which results in f) a funicular loading condition for the
polyhedral frame.
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Figure 2.9: Another case for equilibrium of a polyhedral frame under various
loading conditions: a) a chosen force polyhedron and b) its reciprocal frame with
external loads; c) a polyhedron with zero volume (coplanar faces) and d) its recip-
rocal frame with parallel applied loads; and e) when the faces of the force polyhe-
dron become coplanar with the diverging planes results in f) a funicular loading
condition for the polyhedral frame.
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of force polyhedron. In fact, any closed polyhedron whose edges lie on the
diverging planes keeps the frame in equilibrium. Figures 2.8 and 2.9 repre-
sent multiple force polyhedrons for the equilibrium of a polyhedral frame.
Figure 2.8a, b shows the force tetrahedron A′B′C ′D′ with arbitrary direc-
tions of its faces and the corresponding polyhedral frame with parallel ap-
plied loads in equilibrium. Figure 2.8c, d shows a tetrahedron with copla-
nar faces (volume equals zero). This case represents a polyhedral frame
with parallel applied loads. These two cases can be constructed by sim-
ply moving point B′ on the line l, which is the intersection of three planes
diverging from point P . Moving point B′ to point P causes the faces of
the force tetrahedron to become coplanar with the outer diverging planes
(Fig.2.8e, f). In this case, the direction of the applied forces at the outer
joints of the polyhedral frame will be aligned with the bars of the frame
and therefore will cause the forces in the dashed members to become zero.

This configuration of the applied forces and the form of the polyhedral
frame is, in fact, the funicular form and its corresponding force polyhedron.
In the next chapter, this property of the form and force diagrams is used to
find constrained funicular forms. Figure 2.9 similarly represents the force
polyhedrons and the different equilibria of a polyhedral frame under vari-
ous loading conditions.

2.1.5 Maxwell’s reciprocity in 3D

Reciprocal polyhedral diagrams

Rankine did not provide a method by which a polyhedral frame and its
reciprocal force diagram may be constructed. In the same year, referring
to Rankine’s publication, Maxwell proposed to address this problem in a
purely geometrical manner and stated some of the properties of reciprocal
figures and conditions for their existence (Maxwell, 1864). According to
Maxwell’s (geometric) definition, reciprocal figures both consist solely of
closed polyhedrons such that:

• Each figure is made up of closed polyhedrons with planar faces;

• Every point of intersecting lines in one figure is represented by a
closed polyhedron in the other; and

• Each face in both figures belongs to two and only two polyhedrons.

According to Maxwell, the simplest figure that fits this definition, and for
which, thus, a reciprocal can be found, is the group of tetrahedral cells
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resulting from five points in space (Fig.2.10a). These five points are con-
nected with ten lines, which form ten triangular faces making up five tetra-
hedra. Each face of this figure is shared by only two tetrahedra (Fig.2.10b).
Note that each of the four inner tetrahedra shares a face with the outer
tetrahedron.

The reciprocal of this figure can be found through strictly geometrical op-
erations. Indeed, connecting the centers of the circumscribing spheres of
each tetrahedron results in a figure in which the edges are perpendicular to
the faces of the original figure (Fig.2.10c). On the difficulty of constructing
reciprocal polyhedrons, Maxwell said the following:

It is manifest that the mechanical problem may be solved,
though the reciprocal figure cannot be constructed owing to the
condition of all the sides of a face lying in a plane not being
fulfilled, or owing to a face belonging to more than two cells.
Hence, the mechanical interest of reciprocal figures in space
rapidly diminishes with their complexity.

ej

vi  pi’  

b)a)

d)c)

fj’  

Figure 2.11: Maxwell’s reciprocal figures in 3D: each polyhedral cell c′i in one
figure (a) corresponds to a node vi in the other figure (b) and vice versa, and each
face f ′i in one figure (c) is reciprocal and perpendicular to an edge ej in the other
figure (d) and vice versa.

Maxwell, furthermore, pointed out that these reciprocal figures are the
same as the reciprocal figures of Rankine. He referred to the application
of these figures in statics and stated that the area of a face in one figure
represents the magnitude of force in the edge perpendicular to that face in
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Figure 2.12: a) A form diagram consisting of five vertices and ten edges and b)
its force diagram constructed by five gauche quadrilaterals and a parallelogram
representing the equilibrium of forces in the edges of the form.

the other figure, such that the entire system is in equilibrium. For instance,
in Figure 2.11a, the area of the face f ′j is proportional to the magnitude of
the force in edge ej of the other figure. In addition, a closed tetrahedron c′i
in one figure represents the equilibrium of forces in a node vi in the other
figure (Fig. 2.11a-d).

Reciprocal line-based diagrams (gauche quadrilaterals)

Constructing reciprocal polyhedrons is not always possible due to the pla-
narity constraint of the faces of the form and force diagrams. In fact, the
mechanical problem of the equilibrium can be solved by constructing a di-
agram of forces represented by lines for such cases without constructing
the reciprocal polyhedron.

As an example, consider the form diagram of Figure 2.11, consisting of
five vertices and ten edges (Fig. 2.12a). Each vertex in the form is the
intersection of four edges. The forces in these edges can be represented by
the sides of a gauche quadrilateral (non-planar quadrilateral) (Fig. 2.13a-
e). As long as the edges of the first gauche quadrilateral are chosen, all
other forces in the edges of the form can be represented by five gauche
quadrilaterals that together construct five sides of a gauche hexahedron
(Fig. 2.12b). The sixth side of the hexahedron is a parallelogram whose
edges are the repetition of two pairs of forces (Fig. 2.13f).

In fact, a redundant force diagram is completed for the form diagram that
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Figure 2.13: Five vertices vi−m and their edges correspond to five gauche quadri-
laterals (a), (b), (c), (d), and (e); and the repetition of two pairs of forces results in a
parallelogram (f).
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consists of eight vertices and 12 edges, two pairs of which are repeated.
Therefore, constructing the diagram of forces represented by lines never
becomes geometrically impossible as long as the problem is mechanically
possible, regardless of the complexity of the spatial form.

2.2 Mechanical properties of reciprocal polyhedral diagrams

Rankine’s principle provides a foundation to develop a fully 3D graphi-
cal method for the design and analysis of spatial structural systems under
externally applied loading cases. To develop this method, the following
topics need to be explained carefully:

• a mathematical proof for the principle in which the equilibrium of
forces applied to a node is proportional to the area of the faces of a
closed polyhedron and

• a proper topological and geometrical definition for reciprocal dia-
grams allowing the construction of one diagram from the other.

The equilibrium of the external forces for a single node of an equilibrated
structure can be represented by a closed polyhedron or polyhedral cell. An
ith node or vertex of the structure, vi, with e external forces and/or con-
nected members is reciprocal to a polyhedral cell ci with e faces perpen-
dicular to each member of the node. The areas Aj of these faces are the
magnitudes, respectively, of the corresponding forces in the form diagram,
Fj (Fig. 2.14). The mathematical proof for the polyhedron of forces based
on the divergence theorem is provided in the following section.

2.2.1 Polyhedron of forces: a mathematical proof

Let P be a closed polyhedron in R3 with enclosing faces fi and volume V ,
where ~v is an arbitrary, constant vector field in R3. Each face, furthermore,
has area Ai and normal vector ~ni. According to the divergence theorem,
the total outward flux of ~v through the closed surface of the polyhedron is
equal to the divergence of ~v over the enclosed region, which is zero since ~v
is constant: ‹

A

~v · ~ndA =

˚
V

div~v dV = 0.

For the polyhedron, we can thus write:
‹

A

~v · ~ndA = ~v ·
∑
i

Ai~ni = 0.



Mechanical properties of reciprocal polyhedral diagrams 39

a)

F

F

pl 1

pl 2

pl 3

pl 4

pl 2pl 1pl 3

b) c)

F 
4

F
1

F
2

F
3

F  
3

F  
1

F
2

4

5

| F  |
4

| F  |
1

| F  |
2

| F  |
3

| F  |
5

| F  |
1

| F  |
4

| F  |
3

| F  |
2

Figure 2.14: Two force configurations and their reciprocal, polyhedral force dia-
grams: a) the intersection of planes perpendicular to the forces diverge from a point
(top) or a line (bottom) form an open polyhedron; b) the plane normal to the direc-
tion of an additional applied force closes the force polyhedron and induces equilib-
rium; and c) the pipe diagram represents the magnitude of force, each calculated
from the area of the corresponding (perpendicular) face in the force polyhedron.
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This means the sum of all area-weighted normals
∑

iAi~ni of the polyhe-
dron must be zero since ~v is arbitrary. Therefore, if the forces ~Fi applied to
a point in space are perpendicular to the faces of a polyhedron and their
magnitudes are proportional to the areas of the faces, the sum of these
forces must be zero, leaving the point in equilibrium:∑

i

~Fi =
∑
i

Ai~ni = 0.

2.2.2 Topological and geometrical properties of reciprocal
polyhedrons

Reciprocal relationships are, in fact, the implicit geometrical and topologi-
cal dependencies between the form and force diagrams that facilitate con-
structing one diagram from the other. To define these properties of the
form and force diagrams in 3D, first, we examine the reciprocal relation-
ship between the form and force diagrams used in 2D graphical statics. The
topological and geometrical properties of the reciprocal diagrams used in
graphical statics have been slightly changed compared to the original def-
inition by Maxwell in 1864.

Maxwell’s reciprocal diagrams mainly represent the equilibrium of a self-
stressed system of forces (i.e., the diagrams do not include the application
of external forces). Therefore, to show the equilibrium of a system includ-
ing externally applied loads, the topological properties of the form and
force diagrams should be modified. For instance, Figure 2.2 illustrates two
reciprocal diagrams representing Maxwell’s definition, each consisting of
closed polygonal cells. The number of edges e′ in one diagram is equal
to the number of edges e of the other, and the number of faces f ′ of one
diagram is equal to the number of faces f of the other.

Additionally, both diagrams have the same number of vertices. In contrast,
Figure 2.15 shows the reciprocal relationship between the form and force
diagrams in graphical statics. In this figure, the number of edges are equal
in both diagrams; the number of faces fi, including open and closed faces,
of the form diagram is equal to the number of vertices v′i of the force di-
agram, and the number of vertices of the form diagram vi is equal to the
number of faces f ′i in the force diagram. Thus, v′i 6= vi and fi 6= f ′i .

Rankine’s reciprocal relationship, as illustrated in Figure 2.7, does not pro-
vide enough information to construct one diagram from the other. In ad-
dition, Maxwell’s recipe for 3D reciprocal diagrams only works for self-
stressed systems of forces, and the topological information does not hold
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Figure 2.15: Topological relationship between the form and force diagrams in 2D
graphical statics: a) equal number of edges in both diagrams including the external
and internal forces in both diagrams; b) the number of faces in the form diagram is
equal to the number of vertices in the force diagram; and c) the number of faces in
the force diagram is equal to the number of vertices of the form diagram.
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for systems of forces externally applied to the polyhedral frame. In fact, to
use the 3D reciprocal diagrams as the basis of the methods of 3D graphi-
cal statics, we need proper topological and geometrical definitions of these
diagrams, similar to what is used in graphical statics.

Therefore, the following topological and geometrical properties for 3D form
and force diagrams are proposed.

2.2.3 Duality

A polyhedral diagram consists of vertices, edges, faces, and cells. The faces
can be bounded or unbounded, and cells can be open or closed, as seen in
Figure 2.16. Two diagrams are reciprocal if certain topological and geomet-
rical requirements are fulfilled. The diagrams must be dual; two diagrams
are dual if the following statements are true:

• Each edge ei of the form diagram corresponds to one and only one
face fi∗ of the force diagram (Fig. 2.16b).

• Each vertex vi in the form diagram corresponds to a closed polyhe-
dral cell ci∗ in the force diagram (Fig. 2.16c).

• Each open or closed polyhedral cell ci of the form diagram corre-
sponds to one and only one vertex vi

∗ of the force diagram (Fig.
2.16d).

• Each bounded/unbounded face fi in the form diagram corresponds
to one and only one edge ei∗ in the force diagram (Fig. 2.16e).

A direct result of these requirements is that the number of edges in one
diagram is equal to the number of faces in the other and that the number
of vertices in one is equal to the number of cells in the other (Fig. 2.16b-e).
Figure 2.17 illustrates these topological relationships. The elements of the
form diagram are labeled with lower case letters, and the elements of the
force diagram tagged with an asterisk (∗).

2.2.4 Planarity and Perpendicularity

If, in addition, all faces are planar and all edges are perpendicular to their
dual faces, the diagrams are reciprocal. The force diagram then represents
the structural equilibrium of the system of forces represented by the form
diagram, with the force in each edge of the form diagram

∣∣∣ ~Fei

∣∣∣ equal to the
area of its dual face Af ′i

. Note that, due to the presence of external loads
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Figure 2.16: Topological relationships between the form diagram Γ and the force
diagram Γ′ in 3D: a) Γ and its reciprocal Γ′; b) edge ei of Γ and its corresponding
face fi

∗ of Γ′; c) closed cell ci∗ of Γ′ representing the equilibrium of a node vi of Γ;
d) open cell ci of Γ and its corresponding vertex vi

∗ of Γ′; and, e) open face fi of Γ
and its corresponding edge ei

∗ of Γ′.
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Figure 2.17: Geometrical relationships between the form diagram Γ and the force
diagram Γ′ in 3D: a) edge ei of Γ and its corresponding face f ′i of Γ′ and b) piped
representation with the magnitudes of the equilibrated forces |Fei |, proportional to
the areas of the corresponding faces Af ′i

of Γ′.

and reaction forces, the form diagram has both bounded and unbounded
faces and open and closed cells. The force diagram, on the other hand, has
only bounded faces and closed cells. The outside faces of the force diagram
correspond to the external forces. All other faces represent the internal
forces of the form. The closed cell formed by the outside faces represents
global equilibrium of all external forces. Each internal cell c′i represents
the equilibrium of its dual node vi. Figure 2.17 illustrates the reciprocal
relationships between form and force diagrams in 3D. The elements of the
reciprocal force diagram are suffixed with an apostrophe (’).

2.2.5 Direction of faces

Figure 2.18a illustrates a node consisting of three bars intersecting at O
where force F is applied. To find the force polyhedron for the given con-
figuration and thus the magnitudes of forces in the bars, put a plane plf
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perpendicular to the applied force (Fig. 2.18b). Projecting the bars OA,
OB, and OC onto plf results in a set of coplanar bars OAp, OBp, and OCP .
The reciprocal force polygon for the projected bars is a triangle with edges
perpendicular to the projected bars on plf . This triangle defines the edges
of the face corresponding to the force F in the force diagram, and the nor-
mal direction of the face follows the direction of the applied force. Putting
planes orthogonal to the bars at the edges of the triangle completes the
force diagram for the bars and the applied force (Fig. 2.18e, f).

Moreover, each face of the resulting force polyhedron is represented by an
oriented mesh (Fig. 2.19) with a normal nj and half-edges hj−k, which are
adjacent to their neighboring faces. The relationship between the direction
of the half-edges and the direction of the normal can be described using the
right-hand rule. If the thumb is pointing in the direction of the normal, the
fingers are curled in the direction of the half-edges. Every pair of adjacent
half-edges is equal in length and opposite in direction (for example in Fig.
2.19, the two half-edges h4−7 and h7−4) (Lee et al., 2016).

Therefore, if the normal and half–edge directions of one face of a force
polyhedron are known, the normal directions of the remaining faces can
be determined using the right-hand rule. In general, the face normals of
a convex force polyhedron are unified (to be referred to as the polyhedral
direction); the normals of all faces point either toward the center of the cell
(positive polyhedral direction), or away from the center of the polyhedron
(negative polyhedral direction).

2.2.6 Direction of forces

A force Fj at node vi is in compression if it is pushing onto the node and
is in tension if it is pulling away from the node. The direction of the force
Fj is the same as the normal nj of their corresponding faces in the force
polyhedron. The interpretation of the force Fj at node vi as either a com-
pression or tension can be made by comparing the orientation of member
j and its corresponding polyhedral face normal nj . For each node vi, the
orientation of the jth member can be represented by vector uj , with the
head of the vector at vi and tail of the vector aligned in the direction of the
member (Lee et al. (2016)). For a positive cell, if vectors nj and uj are in
the same direction, the force in the corresponding member is positive and
thus in compression (uj ·nj > 0); if the vectors are in opposite direction, the
force in the corresponding member is negative (uj ·nj < 0) and thus in ten-
sion. Therefore, a single-force polyhedron can represent the equilibrium of
various combinations of compression and tension forces (Fig. 2.20). For a
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Figure 2.18: a) Three intersecting bars and force F applied to their intersection;
b) plane plF perpendicular to the applied force and the projected bars; c) system
of coplanar intersecting bars on the plane plF ; d) 2D reciprocal polygon for the
projected bars defining the edges of the face reciprocal to force F of the force poly-
hedron; e) and f) putting planes orthogonal to the bars at the edges of the triangle;
g) defining the type of forces (compressive or tensile) in the bars using h) the direc-
tion of the faces of the force cell.
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Figure 2.19: Force polyhedron from Figure 2.18b exploded with directions
of face normals and half-edges of faces f4) and f7) shown.

negative cell, the same principle works for tensile members (i.e., the mem-
bers with the same directions as the normals have tensile forces and those
with opposite directions will have compressive forces).

2.2.7 Complex faces

In some cases, a force polyhedron can include complex faces (Fig. 2.21). A
complex face is self-intersecting and has multiple enclosed regions. The
direction and magnitude of the force Fj corresponding to a complex face
fj can be determined by summing the area-weighted normals, Aj,k · nj,k,
of all k enclosed regions. Consider the convex face of Figure 2.21a. This
face is not complex and has a normal direction that is perpendicular to and
pointing away from the plane of the page (this direction will be referred to
as positive in this example).

The net force vector of this face isAj ·nj. Figure 2.21b shows a complex face
with two enclosed regions, fj,1 and fj,2. Face fj,2 has a negative normal
direction, while face fj,1 has a positive direction, or perpendicular to and
pointing into the plane of the page. The net force vector of this face is
Aj,1 · nj,1 + Aj,2 · nj,2. Because face Aj,2 is smaller than Aj,1, the net force
vector has a positive direction. In contrast, Aj,2 is larger than Aj,1 for a
complex face shown in Figure 2.21c. Therefore, the net force vector of this
face has a negative direction.
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Figure 2.20: Three possible configurations of compression and tension el-
ements for the force polyhedron in Figure 2.19; a) the orientation of the
members shown as vectors uj and b) the direction and type of forces in the
members. Tension forces are highlighted in red and compression force are
represented in black.

2.2.8 Convex and complex polyhedrons

Force diagram consists of convex and complex polyhedral cells. Force poly-
hedrons that have convex faces construct convex polyhedrons; while poly-
hedrons that have complex faces are complex polyhedrons. Consider the
self-intersecting force polyhedron ci for a node vi of an equilibrated struc-
ture (Fig. 2.22). Faces f1 and f3 are complex and divide the cell into two
enclosed spaces, ci,1 and ci,2. In enclosed space ci,1, the face normals are
pointing away from the center of the cell, while, in enclosed space ci,2, the
face normals are pointing toward the center of the cell. The directions and
magnitudes of the forces corresponding to each face of a complex force
polyhedron can be determined using the steps described in Sections 2.2.6
and 2.2.7.
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Figure 2.22: a) A node vi of a spatial structure in equilibrium and b) the
corresponding, complex force polyhedron ci with two enclosed spaces: ci,1
with a positive polyhedral direction and ci,2 with a negative polyhedral
direction.
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2.2.9 Determinate and indeterminate force polyhedrons

Consider the force system of Figure 2.14 (top) and its reciprocal force tetra-
hedron. The top face of the tetrahedron, a triangle, corresponds to the
applied force, and the angles between its edges are defined according to
the configuration of the forces applied to the vertex. By knowing the mag-
nitude of the applied force, the magnitude of all other forces can be found
simply by measuring the areas of the faces adjacent to the top face. Chang-
ing the magnitude of the applied force simply scales the tetrahedron and
therefore the magnitude of all other forces. This system is a determinate sys-
tem of forces since defining the magnitude of the applied force determines
the magnitude of all other forces in the system.

This property can also be concluded from the geometric degrees of free-
dom of the force polyhedron. The tetrahedral force polyhedron of this case
has only one geometric degree of freedom (i.e., the only type of transforma-
tion that preserves the geometric properties of the tetrahedron is scaling).
More specifically, all the faces of the force diagram stay orthogonal to the
edges of the form diagram. By scaling the tetrahedron, the magnitudes
of all forces in the system change with the same ratio, which confirms the
determinacy of the system. The following sections provide a detailed ex-
planation of the construction of the force diagram of a concurrent system
of forces. For an indeterminate system of forces at a node, more than one
known force magnitude is required to determine the distribution of the
remaining forces in the system.

Figure 2.23 illustrates a node vi of a spatial structure with one applied point
load F1 and four members. Changing the magnitude of the force F5 in its
corresponding member results in a different force distribution and there-
fore different geometries of the force polyhedrons. For instance, a negative
value for force F5 results in a convex force polyhedron (Fig. 2.23a, b). Re-
ducing the magnitude of F5 to zero turns the force polyhedron into a deter-
minate force tetrahedron with only three stressed members (Fig. 2.23c, d).
A negative value for F5 results in a complex force polyhedron with a com-
plex face corresponding to the applied load F1 (Fig. 2.23e, f). To discern
the positive and negative values in members corresponding to a complex
cell, first, we need to find the direction of the cell by matching it with the
direction of the applied force to the node. A complex polyhedron includes
a part with a positive direction and a part with a negative direction; conse-
quently, the direction of the forces in the members can be found using the
same principle explained in Section 2.2.7.
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Figure 2.23: The equilibrium of an indeterminate system of forces at a node
vi can be represented by variations of force polyhedrons with different
force distributions; a) an indeterminate system including four members
and one applied point load F1; b) a convex force polyhedron can be con-
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2.2.10 Multiple form configurations

Similar to the determinate force polyhedron, indeterminate complex or
convex polyhedrons can also be used to describe the equilibrium of forces
in various configurations. For instance, the convex force polyhedron of
Figure 2.24 can describe the force distribution of all configurations in Fig-
ure 2.24. Note that the tensile force in the configurations are highlighted
in red, and they have the opposite direction as the normal of their corre-
sponding face in the polyhedral cell. Instead of pushing the force toward
the vertex vi, they pull from the vertex.

2.2.11 Adjacent force cells and their reciprocal forms

Usually the force diagram consists of multiple adjacent force cells. A force
cell can be adjacent to another cell if both have an identical face with the
same area and opposite normal directions. Therefore, multiple scenarios
might be considered; a positive cell vi with inward face normals can be ad-
jacent to another positive cell vj with an identical face but opposite normal
direction (ni,2 and nj,2) (Fig. 2.25a). Each force cell in this configuration
can be reciprocal to a compression-only node; therefore, the adjacent cells
together are reciprocal to a compression-only form (Fig. 2.25b). Since a
positive cell can also represent a node in a form with both compression
and tension forces, two adjacent positive cells can be reciprocal to a form
with mixed internal compression and tension forces (Fig. 2.25c). Simi-
larly, a positive cell can be adjacent to a negative cell if they both have an
identical face with opposite normal directions (Fig. 2.25d). In such cases,
the interior space of each cell has an overlap with the interior space of the
adjacent cell. Since a negative cell can represent a tension-only structure
and the positive cell can be reciprocal to a form with tension and compres-
sion members, the resulting reciprocal form can have both types of internal
forces.

2.3 Summary

This chapter clarified Rankine’s principle of equilibrium of polyhedral frames;
it derived and developed the geometrical and topological properties of 3D
reciprocal diagrams from Rankine’s proposition and explained the equi-
librium of spatial configuration of forces using closed convex and complex
force polyhedral cells.
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Chapter3

Computational Implementation

This chapter will provide a computational implementation to construct 3D
reciprocal diagrams based on topological and geometrical properties of
these figures provided in the previous chapter in a computer-aided design
(CAD) environment.

3.1 Computational construction of reciprocal diagrams

This section explains a straightforward algorithm for constructing a pair of
reciprocal diagrams from a given polyhedron representing either the form
or force diagram of a structural system. For simplicity of the explanation,
we assume the given diagram is the force diagram. As depicted in Figure
3.1, the algorithm consists of three main sections: 1) constructing the force
diagram from a given geometric representation and extracting its topology
(see §3.1.1), 2) generating the topology of the form diagram (see §3.1.2), and
3) imposing perpendicularity (see §3.1.3).

3.1.1 Force diagram topology

The first step is to determine the topology of the force diagram. The topol-
ogy of a polyhedron can be described with a winged-edge data (WED)
structure (Baumgart, 1975). With common CAD modeling software, it is
possible to represent a polyhedron by a wireframe model that consists of
edges and vertices or a boundary representation model that consists of
connected surfaces or mesh elements (Fig. 3.2). A wireframe model is
essentially a set of connected lines. Its connectivity graph can be easily
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Figure 3.2: a) Wireframe model of a force diagram including the connectivity in-
formation of edges and vertices and b) boundary representation model of the force
diagram consisting of connected faces.

determined by identifying all unique vertices among the start and the end-
points of the lines, and assigning a pair of connected vertices to each line
(Fig. 3.2a). The faces of the input geometry are not directly represented by
the wireframe and should be detected from the connectivity of vertices and
edges using an algorithm that can recognize all possible planar faces in the
model. Boundary representation (BREP) models already contain the infor-
mation of the faces (Fig. 3.2b). This input therefore simplifies the construc-
tion of the WED since no face finding is required. Note that the faces of
BREP models are not necessarily planar. A simple algorithm for planariz-
ing its faces can be found in Rippmann and Block (2013a), for example.
From the vertices, edges, and faces of the input model, we construct the
WED and find all internal cells and one external cell, as shown in Figure
3.3.

3.1.2 Form diagram topology

The connectivity of the form diagram follows immediately from the ad-
jacency graph of the polyhedral cells of the force diagram. Therefore, a
topologically correct form diagram can be constructed by connecting the
centroids of adjacent cells, v∗r , v∗i , and v∗j , in the force diagram (Fig. 3.4a).
Each internal cell adjacent to the external cell is furthermore connected to
the centroids of its external faces (Fig. 3.4b).
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Figure 3.3: Visualization of the winged-edge data structure of the force
diagram.
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Figure 3.4: a) The internal vertices and edges of the topological polyhedral frame
are constructed by connecting the interiors of adjacent polyhedral cells and b) con-
necting the internal vertices to the external faces completes the polyhedral frame’s
topology.
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3.1.3 Form diagram perpendicularity

So far, a polyhedral frame is constructed that has the topology of the de-
sired final form diagram. However, the edges of this polyhedral frame are
generally not perpendicular to the faces of the force diagram. The perpen-
dicularity is imposed through an iterative procedure in which all iterations
consist of two steps. A similar algorithm is used as the one for 2D force di-
agrams described by Rippmann et al. (2012).

At the start, the normal vectors of the faces of each polyhedron of the force
diagram is obtained in §3.1.1. Then, in the first step of each iteration, the
edges of the polyhedral frame is rotated around their mid-point, found in
§3.1.2, such that they become parallel to the normal vectors of the faces
of the force diagram. This requires the edges of the polyhedral frame to
become disconnected. Therefore, in the second step of each iteration, the
edges are reconnected, which then results in a polyhedral frame that is
‘slightly more perpendicular’ to the faces of the force diagram. The proce-
dure is repeated until all edges are perpendicular to their reciprocal faces
up to a chosen tolerance (Fig. 3.5).

Figures 3.5a-c show the different steps of the first iteration for edges e∗ij ,
and e∗ir. Note the use of an asterisk (∗) as a suffix at this point, indicating
that the diagrams are not yet reciprocal but are merely topologically dual.
Figure 3.5d shows the edges at the end of the iterative procedure, at which
point they are perpendicular to corresponding faces f ′j and f ′i of the force
diagram, up to a given tolerance.

Finally, the distribution of forces is visualized by adding thickness to the
edges of the form diagram, proportional to the area of the reciprocal faces
in the force diagram. Figure 3.6 shows the four stages of the form diagram
perpendicularity algorithm. Although a proof of convergence is not pro-
vided in this study, convergence was not a concern in any of the presented
examples. Table 3.1 gives an overview of the required number of iterations
and computing times for various cases with different numbers of elements.

3.1.4 Manipulating the force diagram

Once the reciprocal form and force diagrams are found, the designer can
manipulate the geometry of the force diagram and consequently the form
diagram in the two possible ways: manipulations that preserve the geom-
etry of the form and only redistribute the force magnitudes in the form
diagram and manipulations that change both the geometry and distribu-
tion of the forces in the form diagram.
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Figure 3.5: a) Computing normals of the faces; b) aligning edges with their corre-
sponding normals of the faces of the force diagram; c) reconnecting geometry; and
d) progression and the end of the iterative process.
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Case 
No. 

Force Diagram  Form Diagram  Number of 
Iterations

Computing 
Time (s)

 v’ e’ f ’ p’ p f e v 
1  13 36 38 13 13 36 38 13 271 0.218 
2  25 55 43 12 25 55 43 12 265 0.298 
3  39 98 84 24 39 98 84 24 212 1.043 
4  24 40 54 24 24 40 54 24 265 0.281 
5  16 42 40 13 16 42 40 13 130 1.54 
6  97 219 162 43 97 219 162 43 299 5.327 
7 44 147 176 72 44 147 176 72 300 6.56 

Table 3.1: The number of iterations and the computing time of the form finding
process for various cases with different numbers of vertices, edges, faces, and cells
and their corresponding form diagram.
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Figure 3.6: a) Polyhedral frame with a topology of the form diagram that is not
perpendicular to the force diagram; b) imposing perpendicularity; c) reciprocal
polyhedral frame as form diagram; and d) visualization of the force distribution
in the form diagram.

Force diagram manipulations that preserve the geometry of the form di-
agram

For statically indeterminate systems of forces, the designer can modify the
areas of the faces of the force diagram without changing the direction of
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their normal vector. Such a modification changes the magnitude of the
internal and external forces without changing the geometry of the form
diagram. One possible method to change the area is to move faces along
the direction of their normals. This transformation preserves the reciprocal
relationship to a form diagram with fixed geometry. Each cell of the force
diagram is adjacent to at least one other cell and therefore shares a face
with that adjacent cell. There are only two types of topologically different
faces in the force diagram that a user can select: a local face, and a global
face. A local face is a face that shares edges only with the faces of a single
cell. The change of the area of the local face alters the geometry of a single
cell in the force diagram and therefore changes the force distribution in a
single node in the reciprocal form diagram. Figure 3.7a shows the process
of changing the area of a local face. The user can move the selected face
along its normal direction to change its area. This change alters the area
of the adjacent faces only for that single polyhedral force cell. The force
magnitudes are adapted accordingly in the form diagram and visualized
by the thickness of the pipes.

A global face is a face that shares at least an edge with a face of an adjacent
cell. Any change in area of the selected face, therefore, affects the area of
the adjacent faces in multiple polyhedral cells of the force diagram. This
changes the force magnitudes in several nodes of the form diagram. Fig-
ure 3.7b shows the process of selecting and changing the area of a global
face. As illustrated, the user moves the face along its normal vector, which
causes the motion of its adjacent faces in the neighboring cell. As a result,
the change in the area of the global face not only affects the area of the faces
of a single cell but also alters the area of the faces of its adjacent cells.

Another possible manipulation that preserves the geometry of the form di-
agram is to globally scale the force diagram. This increases or decreases the
overall magnitude of the forces in the form diagram proportionally. Figure
3.7c illustrates the process of selecting a vertex and changing the area of the
faces in the force diagram. If the vertex moves (in any direction), the faces
of the polyhedron will no longer stay planar. Therefore, the only possible
transformation that changes the area of the faces in the force diagram and
preserves the geometry of the form diagram is scaling. As illustrated in
Figure 3.7c, the magnitudes of the forces are decreased or increased glob-
ally.
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a) b)

c) d)

Figure 3.7: Manipulations of the force diagram: a) moving a local face along its
normal; b) moving a global face along its normal; c) global scaling of the diagram
with respect to a vertex; and d) free movement of a vertex.
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Figure 3.8: a) Selecting a vertex of a force diagram; b) moving the vertex in the
3D space; c) curvature analysis of the force diagram with non-planar faces; and d)
curvature analysis of the force diagram after planarization.
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Manipulating the force and changing the geometry of the form diagram

Moving a vertex of the force diagram results in a polyhedron with non-
planar faces (Fig. 3.8). If such a manipulation is induced by the user, the
faces of the force diagram must be planarized prior to finding a reciprocal
form diagram. An iterative approach can be used to planarize the faces
similar to the algorithm presented by Rippmann and Block (2013a). Since
this manipulation changes the directions of the normal vectors of the faces
connected to the selected vertex, the geometry of the form diagram will
no longer be the same. Figure 3.7d represents the force distribution and
geometry change of the form and force diagrams before and after moving
a vertex of the force diagram.

3.2 Summary

This chapter provided a computational framework to construct 3D recipro-
cal diagrams in a CAD environment. It used a WED structure to recognize
and store the topological and geometric information of convex polyhedral
cells from an input spatial networks of connected edges. It derived the
topological dual of the input polyhedrons and then imposed the perpen-
dicularity constraints in an iterative procedure to find the reciprocal poly-
hedrons. It also developed additional geometric planarization algorithms
to preserve the planarity of the faces of the polyhedrons for design manip-
ulation purposes.
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Part III

3D graphical statics
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The methods of 2D graphical statics are based on the 2D reciprocal relation-
ships of form and force diagrams (Maxwell, 1864). As explained in Chapter
2, 2D reciprocal diagrams are basically a projection of 3D reciprocal dia-
grams on a 2D plane. Therefore, the conventional methods of 2D graphical
statics are a special/simplified case of 3D graphical statics that will be ex-
plained in the following chapters.

What makes 2D graphic statics a convenient method of structural design is
its simple construction procedures: geometric operations that only rely on
drawing parallel/perpendicular lines. Therefore, the computational pro-
cedures proposed in Chapter 3 cannot be an intuitive foundation for the
forthcoming methods of 3D graphic statics.

In addition, 2D graphical methods allow addressing certain boundary con-
ditions including support locations. The computational method presented
in Chapter 3 does not result in 3D solutions constrained to a given bound-
ary condition. Therefore, a valuable 3D graphic statics should include pro-
cedures that:

• involve step-by-step geometric procedures to construct form and force
diagrams in 3D and

• address boundary conditions similar to the existing methods in 2D.

Since, the methods of 2D graphic statics have been a great source of under-
standing the equilibrium principles graphically or geometrically since the
nineteenth century, the main approach of the following chapters will be to
revisit and analyze the existing methods of 2D graphic statics and provide
equivalent procedures in 3D:

• Chapter 4 will explain the methods to find global equilibrium for
systems of forces and to construct constrained funicular solutions in
3D and

• Chapter 5 will discuss the general properties of the polyhedral frames
and their corresponding force polyhedron as well as the procedures
to find equilibrium of forces in the members and nodes of a given
polyhedral frame.
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Chapter4

Global equilibrium and funicular form finding

This chapter will revisit the geometric procedures to establish global equi-
librium for 2D systems of forces and explain equivalent procedures to find
global equilibrium for various systems of forces in 3D. In order to provide
a coherent flow for the chapter, only global equilibrium for concurrent sys-
tems of forces will be provided in this chapter and similar explanations for
parallel and non-concurrent system of forces will be given in Appendices
A.1 and A.2. Moreover, this chapter will provide the necessary geometric
steps to construct spatial funicular forms constrained to given boundary
conditions, similar to the steps in finding constrained 2D funicular solu-
tions, and therefore will establish the methods of 3D graphical statics based
on 3D reciprocal diagrams (Fig. 4.1).

4.1 Closing string and closing plane in 2D and 3D

Using a basic example, this section will discuss and introduce various im-
portant topics of 2D and 3D graphical statics and therefore provide a basis
for these topics to be explained in further details through this chapter.

Figure 4.2a illustrates a simple 2D example where force F is applied in
between supports A and B. To equilibrate F , reaction forces RA and RB

should be applied at A and B with lines of action intersecting in a point
on the line of action of F . The magnitudes of the forces RA and RB can
be found by constructing a closed force polygon, as shown in Figure 4.2b.
Figure 4.2c depicts the 3D equivalent of this example where force F is ap-
plied to the space bounded by A, B, and C. Similarly, to equilibrate F , the
lines of action of the reaction forces RA, RB , and RC should intersect in
a point with the line of action of F . A reciprocal force polyhedron can be
constructed to find the magnitude of the equilibrating forces. The first step

71
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Figure 4.1: 2D vs. 3D funicular solutions and their corresponding force diagrams:
a) a 2D funicular solution constrained to the given boundary conditions, the result
of using 2D graphic statics; b) a force diagram representing the equilibrium and
magnitude of the forces in the 2D funicular form; c) 3D funicular form resulting
from the methods of 3D graphic statics proposed in this paper; and d) the force
polyhedron representing the equilibrium and magnitude of the forces in its corre-
sponding form.

in constructing the force polyhedron is to determine the face correspond-
ing to the applied force F ; to find the face, forces RA, RB , and RC should
be projected onto a plane perpendicular to the applied force F (Fig. 4.3).
The reciprocal polygon for the projected components RP

A, RP
B , and RP

C is
the face corresponding to the force F . Putting planes perpendicular to the
directions of RA, RB , and RC at the edges of this face completes and closes
the force polyhedron (Fig. 4.2d). The closeness of the force polygon in 2D
and force polyhedron in 3D shows that the sum of the force magnitudes in
the system is zero; therefore, the system is in translational equilibrium. Let
us assume a 2D frame whose members are aligned with the lines of action
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Figure 4.2: a) Force F equilibrated by RA and RB at A and B; b) closed force
polygon representing the magnitudes of RA and RB ; c) force F equilibrated by
RA, RB , and RC in 3D; and d) the corresponding force polyhedron representing
the magnitude of forces at A, B, and C.

ofRA andRB of Figure 4.4a. As a result, the force magnitudes in the mem-
bers of the frame are equal to the reaction forces RA and RB . Moving the
point of intersection of RA and RB on the line of action of F changes the
geometry of the force diagrams as well as the magnitudes and directions
of the forces in the members and at the supports. However, the pole of
the force polygon moves along a line l, which is perpendicular to the edge
connecting A to B (Fig. 4.4b).

Similarly, in 3D, consider a 3D frame whose members are aligned with the
reaction forces RA , RB , and RC . Obviously, the force magnitudes in the
members of the frame are also equal to the forces at the supports. Moving
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Figure 4.3: Projecting the forces RA, RB , and RC to a plane nP perpendicular to
F ; the reciprocal polygon of the projected forces defines the face corresponding to
F in the force polyhedron.

the intersection of the reaction forces on the line of action of F changes the
geometry of the force polyhedron (Fig. 4.4c, d). Similar to 2D, the pole of
the force polyhedron also changes along a line l, which is perpendicular to
the plane passing through A, B, and C.

The edge connectingA andB in the 2D example closes the polygonal frame
and is called the closing string (Fig. 4.4a, b). Similarly, the plane connecting
A, B, and C can be called closing plane because it closes the polyhedral
frame constructed on the lines of action of RA, RB , and RC (Fig. 4.4d, c).

The lines l in both examples have some useful implications. In the 2D
example, the line l intersects F in point x in the force polygon dividing
F into two components RF

A and RF
B parallel to F . These parallel forces

can also equilibrate F , if applied at A and B (Fig. 4.5a, b). Similarly, in
3D, the line l intersects face F in the force polyhedron at point x, which
divides the face into three smaller faces. The area of each face represents
the magnitude of the forces RV

A , RF
B , and RF

C , parallel to F , that equilibrate
F , if applied at the supports (Fig. 4.5c, d). Note that the forces in the bars
at the supports are equilibrated with forces RAB that are parallel to the
closing string in 2D and RAB , RAC , and RBC, coplanar with the closing
plane in the 3D example (see Chapter 5).
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Figure 4.4: a) Changing the point of intersection of the reaction forces along the
line of action of F ; b) the corresponding change in the force diagram happening
along the line l; c) the change in the direction of the reaction forces on the line of
action of F in 3D; and d) the corresponding change in the force polyhedron along
the line l.

This example briefly showed the global equilibrium of forces and a funicu-
lar frame constrained to given boundary conditions as well as its reciprocal
force polyhedron. The following sections will thoroughly explain the pro-
cedural steps to find global equilibrium and constrained funicular forms
for given sets of applied loads and support locations in 3D.



76 Global equilibrium and funicular form finding

xF

A

B

x

A

F

C

B

d)

b)

RA
F

RB
F

RC
F

RB
F

RA
F

a)

c)

RB
FRA

F

RC
F

RA
F

RB
F

RAC

RAB

RBC

RAC

RAB

RAB

RAB

Figure 4.5: a) Forces RF
B and RF

A equilibrating F ; b) x, the intersection l and F , di-
vides F into RF

B and RF
A; c) forces RF

B , RF
A, and RF

C equilibrating F in 3D; and d) x,
the intersection of l and F , divides F into three faces representing the magnitudes
of RF

C .

4.2 Global equilibrium of forces using geometric construc-
tion

Simply put, a system of forces is in global equilibrium if:

• There is translational equilibrium (i.e., the sums of the magnitudes of
all forces in a system in all directions are zero (ΣFx = ΣFy = ΣFz =
0)) and

• There is rotational equilibrium (i.e., the sums of all moments/couples
in the system are zero (ΣMx = ΣMy = ΣMz = 0)).
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Figure 4.6: Finding the anti-resultant of forces Fi−k using a funicular construction:
a) the force system including the funicular polygon and the line of action of the
anti-resultant and b) the corresponding force polygon, closed by the anti-resultant
edge.

In this section, I will review the geometric interpretation of (rotational and
translational) equilibrium for a system of forces in 2D and provide their
equivalent definitions in 3D.

4.2.1 Global equilibrium of 2D systems of forces

To find the global equilibrium of a 2D system of forces, we need to find the
magnitude, direction, and line of action of their resultant. Adding a force
to the system that is equal in magnitude and opposite in direction with the
resultant, globally equilibrates the system. This added force is sometimes
called the anti-resultant since it has the same magnitude as the resultant
but opposite direction. The global equilibrium of a 2D set of forces can be
translated geometrically into the following conditions as thoroughly ex-
plained by Wolfe (1921) in his Graphical Analysis monograph:

• The force polygon of the system must be closed, and the sense going
around it must be continuous (translational equilibrium) and

• The funicular polygon constructed on the lines of action of the forces
must be closed (rotational equilibrium).

The following paragraphs explain the process of finding global equilib-
rium for the given set of forces of Figure 4.6a.
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Constructing a closed force polygon

In the 2D systems of forces of Figure 4.6a, drawing the force vectors with
their lengths corresponding to their magnitudes and perpendicular to their
line of action successively at the end of each other constructs an open force
polygon (Fig. 4.6b). This open polygon can be closed by connecting its
start and endpoints. The closing vector of the force polygon (blue) gives
the magnitude and direction of the anti-resultant that keeps the system in
global equilibrium if applied at the right location.

Constructing a closed funicular polygon

The force polygon can be decomposed to an arbitrary point Ptrial. Conse-
quently, the funicular polygon for Fk−i and R′ can be constructed using trial
construction (Wolfe, 1921) (Fig. 4.6b). The vertices of the funicular poly-
gon (dashed) lie on the lines of action of the forces in the system, and each
edge of the funicular polygon is perpendicular to its corresponding edge
of a triangle in the decomposed force polygon (Fig. 4.6a, b). The construc-
tion of the funicular polygon defines the location of the line of action of
(anti-)resultant; for instance, edges (4) and (3) of the funicular polygon in-
tersect at the point where the line of action of the (anti-)resultant goes (Fig.
4.6a). Therefore, using geometric constructions only, it is possible to find
the magnitude, direction, and location of the line of action of a force that
globally equilibrates the system.

4.2.2 Global equilibrium of 3D systems of forces

The funicular polygon and polygon of forces have their equivalent in 3D
graphic statics as the funicular polyhedron and polyhedron of forces. Therefore,
the conditions of equilibrium for a given configuration of forces in 3D can
be summarized as:

• The reciprocal polyhedron of forces must be closed, and the direction
of its faces must be consistent and

• The funicular polyhedron constructed on the lines of action of the
forces must be closed.

Equivalent to the 2D case, to find the equilibrium of a 3D system of forces,
it suffices to show that the system has a closed polyhedron of forces and a
closed funicular polyhedron. Therefore, the following steps are necessary:

• constructing a closed polyhedron of forces for the applied loads;
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Figure 4.7: a) Single; b) coplanar; c) parallel; d) concurrent; and e) non-concurrent
systems of applied loads in 3D.

• decomposing the polyhedron of forces to a group of force tetrahe-
drons;

• constructing a funicular polyhedron using the decomposed force poly-
hedron; and

• finding the location of the line of action of the (anti-)resultant to equi-
librate the system.

Similar to 2D, an open polyhedron of forces can be closed by adding an
additional force with a face perpendicular to the direction of the (anti-
)resultant. The magnitude and the line of action of the anti-resultant can be
found through funicular, polyhedral construction. Constructing the funic-
ular polyhedron and polyhedron of forces in 3D requires further explana-
tion of the possible combinations of the forces in 3D, funicular, polyhedral
constructions.

Loading conditions in 3D reciprocal polyhedrons

The polyhedral constructions that will be explained in this chapter fol-
low Rankine’s principle of equilibrium of polyhedral frames, explained in
Chapter 2. According to this principle, both form and force polyhedrons
consist of planar faces. Therefore, a 3D system of forces described by this
principle includes a group of planes whose intersections represent the lines
of action of the applied loads. Figure 4.7 illustrates various allowed 3D
configurations of forces including parallel, concurrent, and non-concurrent
set of forces.

Figure 4.8 illustrates different loading conditions in 3D including parallel,
concurrent, and non-concurrent forces Fi−k and their equilibrating forces.
Parallel and concurrent forces can be equilibrated by a single-forceR′whose
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Figure 4.8: a) Parallel; b) concurrent; and c) non-concurrent system of forces in 3D
and their resultant forces.

direction can be found by constructing a closed spatial force polygon (Fig.
4.8b). Non-concurrent systems of forces, however, cannot be equilibrated
with a single-forceR′. The component of the forces on the plane perpendic-
ular to R′ cause a moment; therefore, to balance the non-concurrent forces
in 3D, a force R′ and a couple M are needed.

In this section, the geometric procedures will be provided to find the mag-
nitude and direction of the anti-resultant equilibrating a concurrent system
of forces in 3D. Similar detailed procedures explaining the process of find-
ing global equilibrium for parallel and non-concurrent system of forces (in-
cluding closed polyhedron of forces and closed funicular polyhedron) are
provided in Appendices A.1 and A.2.

Global equilibrium of concurrent forces

Figures 4.9, 4.10, and 4.11 summarize the necessary steps to construct the
equilibrium conditions for a concurrent system of forces in 3D using a fu-
nicular, polyhedral construction. They describe the procedures to find the
magnitude, direction, and line of action of the anti-resultant, which keeps
the system in equilibrium.

Constructing a closed force polyhedron Figure 4.9a illustrates a system
of concurrent forces Fi, Fj , and Fk. To construct the force polyhedron, start
from an arbitrary point v′i in 3D and draw lines perpendicular to the faces
shared by the forces in the concurrent system (with the directions nm, nn,
and np). This creates an open tetrahedron consisting of three open faces
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Figure 4.9: a) Concurrent set of forces; b) the construction of the open force polyhe-
dron; c) the direction of the resultant and the resultant plane; and d) the intersection
of the resultant plane and the faces of the open force polyhedron.

diverging from point v′i. Each face of this open tetrahedron is perpendic-
ular to an applied force in the system (Fig. 4.9b). The direction of the
anti-resultant can be found geometrically by constructing a closed force
polygon in 3D that is non-planar (Fig. 4.9c). To close the open force tetra-
hedron, add a face perpendicular to the direction of the anti-resultant R′

by simply intersecting the faces with a plane nR′ , which can be called the
(anti-)resultant plane (Fig. 4.9d). The added face closes the force polyhedron
and defines the scale and the edges of the triangular faces whose areas cor-
respond to the magnitude of the loads Fi−k. Consequently, the faces of the
closed force polyhedron are perpendicular to the applied loads and their
anti-resultant, and the area of each face represents the magnitude of the
corresponding force in the system (Fig. 4.10d).

Decomposing the force polyhedron In 2D, a force polygon can be de-
composed into a group of force triangles by connecting its vertices to an
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Figure 4.10: a) A decomposed force polygon; b) force triangles resulted from the
force polygon decomposition; c) a decomposed force polyhedron; and f) the force
tetrahedron resulted from force polyhedron decomposition

arbitrary point P (Fig. 4.10a); the decomposed force polygon of Fig. 4.10a
includes small force triangles with an edge corresponding to an applied
load and a force triangle that includes the anti-resultant (Fig. 4.10b). Sim-
ilarly, a force polyhedron can be decomposed into a group of force tetra-
hedrons by connecting its vertices to an arbitrary point P (Fig. 4.11c); the
decomposed force polyhedron, therefore, includes small tetrahedral cells
with faces corresponding to the applied loads and a bigger tetrahedron
with a face corresponding to the anti-resultant (Fig. 4.10d).

Constructing a funicular polyhedron Figures 4.11a, b illustrate the closed
force polyhedron for the concurrent forces decomposed into tetrahedral
cells by picking an arbitrary point P in 3D space. A funicular polyhedron
can then be constructed according to the following procedure (Fig. 4.11c,
d):
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Figure 4.11: a) The closed force polyhedron reciprocal to a concurrent system of
forces including the anti-resultant face; b) decomposing the force polyhedron; c)
funicular polyhedron; and d) the faces of the force polyhedron correspond to the
edges of the funicular polyhedron; for instance, face (4) with nP corresponds to the
edge (4).

• Pick an arbitrary point on the line of action of the applied load Fk;

• From the chosen point, draw a line that is perpendicular to face (1)
and intersects the line of action of Fj ;

• From the just found intersection point, draw a line that is perpendic-
ular to the face (2) of the force polyhedron, intersecting the line of
action of the force Fi;

• Drawing a line from the latest intersection on the line of action of Fi

perpendicular to face (3) intersects the line of action of Fk exactly at
the starting point;

• The lines drawn from the intersection points perpendicular to faces
(4), (5), and (6) intersect each other and complete the funicular poly-
hedron with planar faces constructed on the lines of action of the
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forces. The point of intersection of these lines also defines the loca-
tion of the line of action of the anti-resultant R′ (Fig. 4.11c, d).

Global equilibrium of parallel and non-concurrent forces

The closed polyhedron of forces and its reciprocal funicular polyhedron
for parallel and non-concurrent forces can be constructed using the same
procedure explained for concurrent forces. Figure 4.12 represents a closed
force polyhedron decomposed to an arbitrary point in space and its recip-
rocal funicular polyhedron constructed on the lines of action of parallel
and non-concurrent forces (Appendices A.1 and A.2).
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| Fi |
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| Fi |

| Fi |

| Fj |

| Fk |
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| R’ |

b)a)

R’

Figure 4.12: a) A closed funicular polyhedron constructed on the lines of action
of a parallel system of forces; b) its corresponding closed polyhedron of forces de-
composed to an arbitrary point P ; d) a closed funicular polyhedron constructed
on the lines of action of non-concurrent system of forces; and d) its corresponding
polyhedron of forces decomposed to an arbitrary point P .
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Certain characteristics are notable in the global equilibrium for parallel and
non-concurrent system of forces; that is, the force polyhedron for paral-
lel forces consists of faces that are coplanar with the anti-resultant face
(Fig. 4.12b). Therefore, the volume of the force polyhedron for this case
is zero. Additionally, the force polyhedron for non-concurrent forces of
Figure 4.12d includes two anti-resultant face (i.e., two anti-resultants are
needed to equilibrate the system of forces of Figure 4.12c).

4.3 Funicular form finding for given boundary conditions

Frequently, in structural design cases, the objective is to find a funicular
solution constrained to specific support locations under a given loading
condition. The existing methods of 2D graphic statics provide us the nec-
essary procedures to find such constrained funicular forms. In this section,
using a simple example, the 2D geometric steps to find a constrained funic-
ular form and its reciprocal force diagram for a given boundary condition
will be reviewed and subsequently provide the equivalent procedures to
find constrained funicular forms in 3D.

4.3.1 2D funicular form finding

Suppose, we are looking for a funicular form that is constrained to points
A and B under the loads given in Figure 4.13. To find the funicular form,
the first step is to establish global equilibrium for the forces in the system.
In fact, we should find the direction and magnitude of the reaction forces
at the supports A and B to equilibrate the applied loads. We can find the
direction of the anti-resultantR′ by closing the force polygon of the applied
loads (Fig. 4.13), and we can substitute the anti-resultant by two reaction
forces RA

V and RB
V , parallel to R′, at the supports with unknown mag-

nitudes. The magnitudes of RA
V and RB

V are fractions of the magnitude
of R′ in the force polygon. Similar to the example of Figure 4.5a, b, the
location of x on R′ determines the magnitudes of RA

V and RB
V . To find

the location of x, we can use a technique called trial funicular construction.

Trial funicular construction

To find the global equilibrium for the system of forces of Figure 4.13, de-
compose its force polygon to an arbitrary/trial point Pt (Fig. 4.14b). Pick
an arbitrary/trial point At on the line of action of RA

V and construct a fu-
nicular polygon with edges perpendicular to the edges of the decomposed
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?

?

Figure 4.13: Substituting the anti-resultant R′ for the system of applied loads with
two forces RA

V and RB
V , parallel to R′, at A and B.

force polygon (Fig. 4.14b). The last edge of the funicular polygon intersects
the line of action ofRB

V inBt. Drawing a line perpendicular to the closing
string connecting At to Bt from point Pt in the decomposed force polygon
intersects R′ in x.

Note that the change in the location of Pt does not affect the location of x.
Instead, it results in various funicular polygons on the lines of action of the
forces (Fig. 4.14a). From all possible funicular polygons, we are looking for
a funicular solution constrained to A and B. From the example of Figure
4.4a, b, we know that the force polygon of a constrained funicular polygon
is also constrained to a line l, which is perpendicular to the closing string
and passes through point x. Therefore, drawing a line l perpendicular to
ei through point x in Figure 4.14d and decomposing the force polygon to a
point P on l results in a force polygon that is reciprocal to a funicular frame
constrained to A and B. This force polygon determines the magnitude of
the reaction forces RA and RB in the system.

Moving the vertex P on the line l results in force diagrams with different
magnitude of forces and, therefore, funicular forms with various heights,
but all constrained to the given support locations (Fig. 4.15).

Therefore, finding constrained form and force diagrams for given bound-
ary conditions includes the following geometric procedures in 2D graphi-
cal statics (Wolfe, 1921):

• finding the direction of the anti-resultant R′ for the given loading
condition by closing the force polygon of the applied loads;

• determining the magnitudes of two forces parallel to R′ at the sup-
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Figure 4.14: a) Multiple trial funicular polygons constructed on the lines of action
of the applied forces, RA

V , and RB
V ; b) the force polygon decomposed to different

trial points results in the same location of x on R′; c) a funicular form constrained
to A and B; and d) a force polygon constructed by decomposing the applied forces
to a point P on the line l drawn from point x perpendicular to the edge ei.
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l

e

b)a)

Fi | Fi |

P

B

A

Figure 4.15: a) 2D funicular form constrained to the line of action of the
applied loads and the support locations and b) the corresponding force
polygon constrained to the line l perpendicular to the edge e connecting
the support locations A to B.

ports using trial funicular construction (locating point x in the force
polygon);

• drawing the line l from point x in the force polygon, perpendicular
to the edge connecting two supports;

• decomposing the force polygon to a point on the line l; and

• constructing the funicular form using the direction of the edges of the
force polygon.

4.3.2 3D funicular form finding

The geometric steps to find a 3D funicular polyhedron constrained to given
boundary conditions is entirely equivalent to the procedures for 2D de-
scribed in §4.3.1. The following example describes the geometric process
of finding funicular form for a determinate boundary condition consisting
of three support locations and therefore highlights the 3D equivalent of the
existing methods of 2D graphic statics.

Support location assumptions

In 3D graphic statics using form and force polyhedrons, the relationship
between the location of the supports, applied loads, and anti-resultant re-
quires further investigation to arrive at a general rule for the method. The
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main assumption in the following example is that each support is located
on a plane passing through an applied load and the anti-resultant.
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| Fk |
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Fj

Fk
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A

C
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c) d)

?
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Figure 4.16: a) The boundary conditions including the concurrent set of applied
loads Fi−k, anti-resultant R′ and supports located on the planes passing through
the applied loads and R′; b) closed polyhedron of applied forces; c) substituting R′

with forces parallel to R′ at the supports; and d) decomposing the polyhedron of
forces to an arbitrary point Pt in 3D space.

Consider the concurrent system of forces Fi−k of the Figure 4.16a. The
closed force polyhedron, including the direction and magnitude of the anti-
resultant R′ for the system, can be found using the funicular construction
procedure explained in §4.2.2 (Fig. 4.16b). Let us choose three support
locations A, B, and C on the planes passing through the applied loads and
intersecting at the line of action of R′. The objective of this exercise is to
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find a funicular solution for the given applied loads that is constrained to
the support locations.
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Figure 4.17: a) Constructing trail funicular polyhedron on the lines of action of the
forces; b) the faces of the decomposed force polyhedron; c) the closing plane with
normal nm; and d) line lt drawn parallel to nm from point Pt intersecting R′ at x.

Trial funicular construction

Similar to 2D graphic statics, the first step is to establish global equilibrium
for the system by finding the direction and magnitude of the reaction forces
at A, B, and C. We can substitute the anti-resultant by applying forces at
the supports parallel to R′ (Fig. 4.16c). The magnitude of these forces can
be found using trial funicular construction similar to 2D. First, decompose
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the force polyhedron to an arbitrary point Pt in 3D space (Fig. 4.16c); then,
pick an arbitrary point At on the line of action parallel to R′ from support
A and construct the trial funicular polyhedron on the lines of action of the
forces (Fig. 4.17a).
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Figure 4.18: a) Constructing the closing plane passing through the supports with
normal np; b) drawing line l parallel to np from point x; c) the direction of the
reaction forces at the supports; and d) the decomposed force polyhedron on the
line l.

The directions of the edges of the trial funicular polyhedron are deter-
mined by the decomposed force polyhedron of Figure 4.17b. To find the
location of x on the anti-resultant face, we use the closing plane that passes
through the trial points At, Bt, and Ct (Fig. 4.17c). The line lt, drawn par-
allel to normal nm of the closing plane from point Pt, intersects the face R′
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at point x (Fig. 4.17d).

RA

RC

RB Fk

Fj

Fi

RA

RC

RB

Rk

Ri

Fk

Fj

Fi

6

2

6

4
3

2

1

5

b)a)

p

p

p

d)c)

Figure 4.19: a) Funicular form constrained to the given boundary condition; b) ex-
ploded axon of the force polyhedron revealing the internal faces of the decomposed
force polyhedron; c) multiple funicular solutions; and d) multiple force distribution
as a result of decomposing force polyhedron to various points on the line l.

To find the funicular polyhedron constrained to the supports, we can use
the normal np of the closing plane passing throughA,B, andC (Fig. 4.18a).
Drawing a line parallel to normal np of the closing plane from point x pro-
vides the line l (Fig. 4.18b). The direction of the reaction forces at the
supports can be found by decomposing the force polyhedron to point P
on the line l (Fig. 4.18c, d).

We can use the faces of the decomposed force polyhedron to construct
a funicular solution constrained to the supports (Fig. 4.19a, b). Decom-
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Figure 4.20: a) Tension-only funicular solution for the given boundary conditions;
b) decomposing the force polyhedron to points on line l above the faces of the
applied forces.

posing the force polyhedron on different points along l results in various
compression-only (Fig. 4.19c, d) or tension-only (Fig. 4.20a, b) funicular
solutions for the given boundary conditions.

Skipping the trial funicular construction in 3D

In 2D graphic statics, the trial funicular construction is necessary to lo-
cate the line l, and thus point x, for a force polygon of a given boundary
conditions. In 3D, it is possible to find the location of the line l directly,
without needing a trial funicular construction. Consider the planes plm,
pln, and plp, perpendicular to the edges of the closing plane. If drawn
from the vertices of the force polyhedron, the planes intersect exactly at
the line l (Fig. 4.21a, b). In 3D, the line l is the intersection of three non-
coplanar planes, whereas, in 2D, the geometric constructions collapse on
the 2D plane, which make the use of this technique impossible in 2D.

4.4 Summary

This chapter established the methods of 3D graphical statics equivalent to
the existing methods of graphical statics in 2D. It provided the geomet-
ric procedures to find global equilibrium for spatial systems of forces and
presented geometric steps to construct constrained funicular forms in 3D.
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Figure 4.21: a) Planes drawn perpendicular to the edges of the closing
plane and b) the same planes drawn from the vertices of the force poly-
hedron intersect at the line l.



Chapter5

Equilibrium of general polyhedral frames

The previous chapter explained the use of funicular polyhedral construc-
tions to find the global equilibrium for systems of forces and finding fu-
nicular solutions constrained to boundary conditions in 3D. Instead, this
chapter will concentrate on nodal equilibrium and highlight the properties
of nodal force polyhedrons and their relationship with global force polyhe-
drons in polyhedral frames and their reciprocal force diagrams. Moreover,
it will explain the characteristics of determinate and indeterminate polyhe-
dral frames with respect to their force diagrams and describe the relation-
ship between the form and force diagrams in compression-only polyhe-
dral frames as well as in general polyhedral frames with combined internal
forces.

5.1 Global vs. nodal equilibrium

For a given polyhedral frame constrained to predefined support locations
and loading conditions, the global equilibrium is the equilibrium of forces
externally applied to the nodes of the frame, including the reaction forces
at the supports. In contrast, the nodal equilibrium shows the equilibrium of
the internal forces of the members at each node of a polyhedron loaded by
the external forces. Consider the same polyhedral frame of Figure 2.5 and
its reciprocal force polyhedron, which is in equilibrium under the given
loading conditions (Fig. 5.1a, b). The highlighted face f ′i is reciprocal to
the edge ei and shows its internal force magnitude. The force polyhedron
of Figure 5.1b includes all information related to the magnitude and direc-
tion of the forces in all members of the frame. The closed tetrahedron of
Figure 5.1d of the force polyhedron represents the global equilibrium of
the external forces FA−D applied to the frame. The direction of the faces of

95
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Figure 5.1: a) Polyhedral frame subjected to the external forces at its vertices;
b) force diagram reciprocal to the polyhedral frame representing the equilibrium
of the forces in the frame; c) the externally applied loads to the system; and d)
the global force polyhedron representing the equilibrium of the externally applied
loads.

this force polyhedron are toward the interior space of the polyhedron. Ac-
cording to Rankine’s proposition explained in §2.1.3, each face of the global
force polyhedron with the faces perpendicular to the members of the poly-
hedral frame constructs a closed, nodal force polyhedron (Fig. 5.2a, b).
Since the global force polyhedron of this example has four faces, there will
be four nodal force polyhedrons representing the equilibrium of the forces
in the member connected to each node of the frame.

5.1.1 Face directions of nodal force polyhedrons

The direction of all the faces of each force polyhedron is consistent; that
is, they all face either toward the inside or outside of the polyhedron. For
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Figure 5.2: a) The faces of the global force polyhedron and their corresponding
directions and b) each face with the faces corresponding to the members of the
polyhedral frame constructs a nodal force polyhedron.

each nodal force polyhedron, the direction of the faces follows the direction
of the face belonging to the global force polyhedron. For instance, the di-
rection of the faces of the nodal force polyhedron, which includes the face
corresponding to FD, are toward the inside of the polyhedron, whereas the
direction of the faces of the force polyhedron involving the face reciprocal
to FB are toward the outside (Fig. 5.2b).

5.1.2 Force direction of the members at each node

Once the direction of the faces of each nodal force polyhedron is defined,
the direction of the forces in the members of its reciprocal node can be
determined. Figure 5.3a-d illustrates the nodal equilibrium including the
nodal force polyhedrons, the magnitude, and the direction of forces at each
node of the frame of Figure 5.1.

Compression and tension convention

Based on existing conventions, if a force moves toward a node in a poly-
hedral frame, the force is considered compressive, and it moves from the
node, it is considered a tensile force. Respectively, the compressive forces
are represented with blue spectrum, while the tensile forces are represented
by red.



98 Equilibrium of general polyhedral frames

nF
ACnF

AB

nF
DA

nF
A

nF
BA

nF
BD

nF
BC

nF
B

nF
AD

nF
CDnF

BD

nF
D

A

FA

B

FB

FD

FBA

FBD

FBC

FAC

FAB

FDA

D

FBD

FCD
FAD

a)

b)

c)

d)

nF
C

FC
FCD

nF
CD

FAC
nF

AC

FBC nF
BC

C

Figure 5.3: a) The nodal equilibrium of node D including its nodal force polyhe-
dron and the magnitude and direction of forces at the members connected to D; b)
force directions in the members and the nodal force polyhedron of node B; c) the
nodal equilibrium of node A and its reciprocal force polyhedron; d) the nodal force
polyhedron corresponding to node C and the force directions in its members.
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Figure 5.4: a) The magnitude and direction of the internal forces in the
members of the polyhedral frame and b) the force polyhedron and its faces
corresponding to the external (green) and internal forces (blue and red).

Directional consistency of form and force

To find the direction of the forces in the members of each node, a simple
consistent rule should be applied; for each node (in a determinate system),
at least a force is known in the form diagram. In this case, the magnitude
and direction of the applied forces at each node are known. If the direction
of the faces of a force polyhedron, reciprocal to a node, is toward the inside,
the applied force should also move toward the node. For instance, Figure
5.3a represents the nodal force polyhedron corresponding to the node D;
the direction of the polyhedron is toward the inside. The force FD is also
applied toward node D. This consistency results in finding the direction of
the forces in the other members connected to the node D using the direc-
tion of the faces of the nodal force polyhedron.

In contrast, if the direction of the faces of a force polyhedron is toward
the outside, the applied force should also move from the node. Figure
5.3b represents the nodal equilibrium of node B, where the direction of
the nodal force polyhedron is toward outside. To have the consistency
between the direction of the nodal force polyhedron and its corresponding
node, force FB is moved along its line of action and applied from node
B. Accordingly, the direction of forces in the other members connected to
node B is defined by the direction of their corresponding faces.

Using similar technique, the direction of the internal forces in other mem-
bers meeting at nodes A and C can also be found (Fig. 5.3c-d). Therefore,
the magnitude and type of internal forces (tensile or compressive) in the
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members of the polyhedral frame of Figure 5.1 are determined (Fig. 5.4a,
b).

5.2 Determinate vs. indeterminate systems

For some structural systems under predefined loading conditions and sup-
port locations, the distribution of the forces in the internal members and
the reaction forces at the supports is unique (i.e., for a given applied load
in such systems, there is only a single-force magnitude for each members
and for the reaction forces). These systems and their force distributions
are called determinate. In such systems, any change in the magnitude of
an applied load, without changing the direction of the external loads, will
change the distribution of forces with the same proportion internally and
externally. Figure 5.5a, b shows a determinate polyhedral frame and its re-
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Figure 5.5: a) A determinate polyhedral frame and its force distributions as
a result of scaling its force diagram and b) a determinate force polyhedron
and its single geometric degree of freedom.

ciprocal force diagram. A change in the magnitude of the applied load FD

without changing the direction of the forces and the geometry of the frame
is only possible through scaling the force polyhedron. Changing the area of
the face corresponding FD, fromA0

FD
toA1

FD
, changes the magnitude of the

reaction forces and the internal forces with the same proportion (Fig. 5.5b).
In fact, the global force polyhedron for a determinate polyhedral frame is a
tetrahedron with only one geometric degree of freedom (i.e., the only pos-
sible transformation in the geometry of the force diagram) preserving the
direction of the faces, is scaling with the same ratio in all directions (Fig.
5.5b). Consequently, the geometry of the force polyhedron can reveal the



Determinate vs. indeterminate systems 101

characteristics of the polyhedral frame; the geometric degrees of freedom
for a tetrahedron is one. Therefore, the force diagram, which only consists
of tetrahedral cells corresponds to a determinate polyhedral frame. In con-
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Figure 5.6: a) An indeterminate polyhedral frame resting on four supports; b) the
indeterminate force diagram with its highlighted global force polyhedron; c) the
magnitude and direction of the forces in the internal members of the frame; and d)
the faces of the global force polyhedron (green) and the faces corresponding to the
internal forces of the frame.

trast, in some other structural systems, for a given direction of the applied
loads, the distribution of forces among the internal members and the reac-
tion forces is not unique; these systems are indeterminate systems. Figure
5.6a-d illustrates an indeterminate polyhedral frame and its correspond-
ing force diagram revealing its global and nodal force polyhedrons as well
as the direction and magnitude of forces in its members. As illustrated in
Figure 5.7a, b, the face corresponding to the applied force FE in the force
polyhedron can transform along its two edges. In fact, it has three geomet-
ric degrees of freedom (including scaling). Changing the area of the face
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Figure 5.7: An indeterminate polyhedral frame and its multiple external and in-
ternal force distribution; a) the 1D scaling of the face corresponding to the applied
force results in a new force distribution in the frame; b) the same polyhedral frame
with different force distribution resulted from scaling the face of the applied load
in two directions.

reciprocal to the applied force FE from A0
FE

to A1
FE

results in the change
of the areas of other faces. For instance the area of the face corresponding
to the member FDB changes from A0

FDB
to A1

FDB
. However, this change

in the scale of the faces does not happen with the same proportion in all
faces; that is the ratio of the change in the applied force is not equal to the
ratio of the change in other faces (Fig. 5.7a, b). Therefore, there are various
states of equilibrium with different force distributions for a given direction
of external forces and the geometry of an indeterminate polyhedral frame.
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5.3 Compression-only frames vs. general polyhedral frames

Two polyhedral frames with the same geometry can be compared with
respect to structural efficiency based on the magnitude of their internal
forces and their number of elements. As mentioned in §2.1.3, for a prede-
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Figure 5.8: a) A funicular polygon including tensile and compressive internal
forces for given boundary conditions; b) the force diagram representing the global
and nodal equilibrium; c) a compression-only funicular polygon with the same
geometry, but less load-bearing elements; and d) the force diagram representing
equilibrium of the compression-only system.

fined geometry of a polyhedral frame, there are various external loading
conditions (including applied loads and reaction forces) that can keep the
frame in equilibrium. However, only one of these loading conditions min-
imizes the required number of elements in the frame for the equilibrium
of the system (Fig. 2.8c). Figure 5.8a-d illustrates two funicular polygons
and their reciprocal force diagram. It is possible to change the magnitude
of the internal forces in the frame without changing its geometry. Moving
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the vertices of the global force polygon on the lines diverging from P0 re-
distributes the internal forces in the frame without changing its geometry.
For instance, consider edge ei of the funicular polygon of Figure 5.8a with
an internal tensile force. The magnitude of the internal force in this edge
can be changed by moving vertex P of the global force polygon (green)
along the line PP0 reciprocal to the edge ei in the force diagram. In fact,
moving point P to point P0 of the global force polygon can decrease the
force in the edge ei to zero (Fig. 5.8b). Therefore, it reduces the number
of load-bearing elements in the frame. This new global equilibrium results
in a compression-only funicular solution for the given geometry and applied
loads. The following properties can be extracted from a compression-only
funicular form in comparison with a funicular form with compressive and
tensile forces:

• the number of load-bearing elements in the compression-only frame
are less than the number of elements in a similar general frame with
the same magnitude of the internal forces and

• the reaction forces at the supports are aligned with members con-
necting the frame to the supports; therefore, the magnitude of the
internal forces in the members connected to the support are as same
as the magnitude of the reaction forces at those supports.

Similar property exists in 3D funicular form and force diagrams; Figure
5.9a illustrates a funicular polyhedral frame and its highlighted global force
polyhedron in the reciprocal force diagram. Moving vertices and their con-
nected faces of the global force polyhedron from v′i and v′j to v′k and v′m
results in an external loading condition for a compression-only funicular
polyhedron (Fig. 5.9b). In this case, the area of the face corresponding to
the internal force in the member connecting B to C becomes zero by mov-
ing the vertices of the global force polyhedron. Note that the magnitude
of the reaction forces in this example becomes equal to the magnitude of
the internal forces in the members connected to the supports. Moreover,
the force in the members connecting the support locations becomes zero
since the areas of the corresponding faces in the force diagram become
zero (Fig. 5.9b). Therefore, for a given geometry of a polyhedral frame, the
geometry of the global force polyhedron can be adjusted to minimize the
number of load-bearing elements in the frame. However, in most struc-
tural design cases, the magnitude and direction of the external forces and
boundary conditions cannot be changed. Instead, the form of the polyhe-
dral frame should be designed to efficiently withstand the externally ap-
plied loads. This emphasizes the importance of the methods explained in
previous chapter, since those methods result in compression-only (tension-
only) funicular forms for given boundary conditions.
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Figure 5.9: a) a general polyhedral frame and its force diagram represent-
ing the global and nodal equilibrium of the system; b) a compression-only
funicular frame its force diagram.

5.4 Summary

This chapter investigated the relationship between nodal and global equi-
librium in the force diagram of general polyhedral frames. It explained
how to find the direction of the forces in the members of a polyhedral frame
using the information of the corresponding nodal force polyhedron. More-
over, it described the properties of determinate and indeterminate polyhe-
dral frames using their force diagrams. It also showed how changing the
direction of the applied forces with respect to the members of a polyhedral
frame can result in funicular forms and their corresponding compression-
only force diagrams.
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Chapter6

Design Techniques and Optimizations

Graphical methods allow the structural design of expressively elegant and
structurally efficient forms. For given boundary conditions (such as the
magnitude, number, and location of applied forces and support), 2D/3D
graphic statics can either be used to analyze an existing form or to de-
sign an efficient structural form. For the former, the force diagram is con-
structed from the given geometry, the form diagram, while for the latter,
the force diagram is used to derive the geometry of the form.

The force diagram includes information about the magnitude of internal
and external forces, which can be creatively used in the design of efficient
structures. For instance, the Michell truss and the constant-force truss are
renowned examples in which the magnitudes of forces are geometrically
constrained in the force diagram from which the structure’s geometry then
follows (Michell, 1904; Zalewski and Allen, 1998).

Additionally, manipulating the force diagram can result in unique design
features in the derived form. For instance, Block (2009) and Rippmann
et al. (2012) showed that attracting a group of forces in the force diagram
can result in generating creases in the geometry of free-form shell struc-
tures.

Using the force polygon in form finding is a common technique among
architects and engineers using 2D graphical methods. This chapter aims
to emphasize the properties of the force diagram and explain how those
properties can be used in developing a design approach for deriving non-
conventional structural forms.

109
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Figure 6.1: a) An aggregation of tetrahedral cells, with matching faces between
neighboring cells, to construct a force diagram; b) the force diagram resulted from
the aggregation; and c) the reciprocal spatial structural form in pure compression.

6.1 Structural form finding by aggregating force polyhe-
drons

As explained in Chapter 2, a convex polyhedral cell represents the equilib-
rium of a concurrent system of forces in pure compression or tension in 3D
space. Similarly, a group of convex polyhedral cells represents the equi-
librium and distribution of compressive or tensile forces in a spatial con-
figuration. Figure 6.1 illustrates a spatial structural form of compressive
forces constructed from an aggregation of tetrahedral force cells. There-
fore, building up the force diagram of these closed polyhedrons guarantees
the equilibrium of forces in compression only in the derived form.

A wide range of structural forms can be explored by systematically aggre-
gating (convex) polyhedral force cells. Figure 6.2 depicts multiple exam-
ples of cell aggregations and their reciprocal form diagrams. Each example
in Figure 6.2 consists of three drawings in two columns. The left column
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represents the aggregation of multiple polyhedral cells and the resulting
force diagram. The right column represents the reciprocal structural form
in which the forces in the members are visualized by the thickness of the
pipes. A blue color gradient has been used to clarify the reciprocal re-
lationship between the compression-only structural forms and their force
diagram. The bigger areas are represented by darker blue in the force dia-
gram and thicker tubes in the form diagrams.

Figure 6.2a illustrates a force diagram resulting from the aggregation of
tetrahedral cells converging to a point. This force diagram is structurally
reciprocal to a form diagram that is a compression-only ’surface’ network
of forces, a thrust network, subjected to non-parallel applied forces. In Fig-
ure 6.2b, an aggregation of five-sided polyhedrons that converge to a line
results in a force diagram that is reciprocal to another type of thrust net-
work that is curved more in one direction and less in the other direction.
Scaling tetrahedra while aggregating them in Figure 6.2c can describe a
force diagram that is structurally reciprocal to a 3D branching, structural
form. Figure 6.2d shows a radial aggregation of tetrahedra stacked in mul-
tiple layers. This force diagram is reciprocal to a tubular system of forces in
compression. Figure 6.2e represents an example of an aggregation of five-
sided and six-sided polyhedrons in two layers. The resulting force diagram
is reciprocal to a spatial system of forces in a double-layered compression
structure. More spatially complex structural forms can also emerge by ag-
gregating space-packing polyhedrons, such as the cells of Figure 6.2f. This
force diagram is structurally reciprocal to a form diagram consisting of
tetrahedral cells. These examples clearly demonstrate the potential of us-
ing the aggregation of force polyhedrons to explore a wide range of com-
pression or tension-only forms for a variety of loading conditions in 3D.

As a final example, Figure 6.3 depicts a complex branching structure with
72 nodes and 176 branches. Consequently, the force diagram has 72 convex
cells with a total of 176 faces. The top faces of the force diagram are hori-
zontal, and therefore represent a set of vertical applied loads. These loads
could, for example, correspond to the weight of a floor slab supported by
the tree. The four large vertical faces on the sides of the force diagram rep-
resent the horizontal reaction forces at the top of the tree, and the bottom
faces of the force diagram represent the magnitude of the tilted reaction
forces on the bottom of the structural form.

6.1.1 Optimizing the edge lengths of the form diagram

In Chapter 3, a computational procedure has been provided to find spa-
tial forms reciprocal to a given set of force polyhedrons. Although that
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Figure 6.2: Six examples of the design of spatial systems of forces by aggregation
of polyhedral force diagram cells. Aggregation of a) tetrahedral cells converging
to a point; b) five-sided polyhedrons converging to a curved line; c) tetrahedra
in a fractal-like pattern; d) tetrahedra stacked radially in multiple layers; e) five-
sided and six-sided polyhedrons in two layers; f) aggregation of a space-packing
polyhedron and its reciprocal structural form.

algorithm is quite robust for finding reciprocal forms, it does not provide
a means to control the lengths of the members of the output. As shown in
Figure 6.4a, it often happens that the resulting form includes undesirably
short and long members. A possible method to change the length distribu-
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Figure 6.3: A complex 3D branching structure designed using 3D form
and force diagrams: a) the force diagram consisting of 72 closed, convex
cells and b) the reciprocal form diagram; and c) exploded axon of the force
polyhedrons representing various groups of polyhedral cells of the force
diagram.

tion in the members is to scale the members to the arithmetic mean value
of all lengths and rotate them to the original direction using the algorithm
1 in an iterative approach. Algorithm 1 initially finds the direction of the
edges wij of the input graph, which is also parallel to the normal of the
corresponding faces in the reciprocal force diagram (Line 2 to 4). It sub-
sequently calculates the arithmetic mean value dmean for the edges of the
form diagram and assigns it as the starting scale factor for the edges at the
first step of the iteration (Line 5). The difference between the longest and
shortest member δ is the controlling parameter to stop the iteration (Line
5). The iterative process of the algorithm includes a step in which each
edge is scaled individually to the mean value of all the lengths (Line 8 to
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Figure 6.4: Two form diagrams: a) constructed using the algorithm presented in
Chapter 3; b) imposing even distribution of lengths of the form edges by running
the optimization process provided in §6.1.1.

9). The scaling process disconnects the topology, which will be reconnected
by collecting and averaging all the new coordinates for each vertex (Line 10
to 11). Obviously, reconnecting the topology does not preserve the original
direction of the members. Therefore, the members should be rotated indi-
vidually in another iterative process to align with the original directions.
This process also includes disconnecting and reconnecting the topology
(Line 12 to 17). Once the form is scaled and rotated, the new edge lengths
should be measured, and the new length distribution should be calculated
(Line 18 to 20). If the new distribution is not satisfactory, the whole process
of scaling and rotating should be repeated until convergence occurs (Line
7 to 20). The result of the process is a form diagram of Figure 6.4b. This
algorithm certainly can be improved and combined with other structural
design criteria, for instance, the length of the members can become propor-
tional to their force magnitude, the criterion toward buckling of members,
which is a valuable optimization.

6.1.2 Optimizing the force magnitude for a specific design

Sometimes, it is necessary to change the distribution of the internal and
external forces in a structural form without changing its geometry. In such
cases, the area of the faces of the corresponding force diagram should be
changed without changing the direction of the face normals. Algorithm 2
involves an iterative procedure to scale the faces of the force diagram with-
out changing the direction of its faces (Fig. 6.5). For this purpose, it stores
the direction of the given faces at the first step (Line 2) and subsequently
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Algorithm 1: Even Length Graph
Data: G = (V,E) graph of the form diagram where vi ∈ V and

eij = (vi, vj) ∈ E.
Result: Gt = (V,E) graph with even length distribution in the graph.

1 begin
2 for eij ∈ E do
3 W ←� −→wij ←− 〈xj − xi, yj − yi, zj − zi〉 # direction vector for eij
4 D ←� deij ←− d(vi, vj) # the length of each edge

5 dmean ←−
∑n

i6=j d(vi,vj)

n # arithmetic mean of the edge lengths
6 δ ←− |Dmax −Dmin| # deviation from the mean value
7 while δ > δmax do
8 for eij ∈ E do
9 scale eij with scale factor dmean

10 vpi ←−
∑eik

eij
vi

n # reconnect the topology
11 vi ←− vpi # update coordinates of vi ∈ V
12 while γ > γmax do
13 for eij ∈ E do
14 rotate eij to align with −→wij

15 vti ←−
∑n

i vi
n # reconnect the topology

16 ∆(vi)←− d(vt−1i , vti) # measure the deviation of vi
17 γ ←− ∆max # store the maximum deviation

18 vi ←− vti # update coordinates of vi ∈ V
19 dmean ←−

∑n
i6=j d(vi,vj)

n # arithmetic mean of the edge lengths
20 δ ←− |Dmax −Dmin| # deviation from the mean value

calculates the maximum deviation from the target area for all the faces of
the force diagram. It therefore iteratively minimizes the maximum devia-
tion for all the faces (Line 6 to 20). The iterative process of this procedure
includes two major steps; the step in which all the faces are scaled to the
target area and includes disconnection and reconnection of the topology of
the force diagram (Line 7 to 12); and the step in which all the faces of the re-
connected force diagram are then planarized (Line 13 to 18). Note that the
scale factor for each face is the square root of the fraction of the current area
of the face Af ′i

over the target area for the same face Af ′i
t. Changing the

area of a face while preserving its normal direction is a highly constrained
problem that does not converge for geometrically determinate force poly-
hedrons. In fact, the convergence of the algorithm is highly dependent on
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Figure 6.5: a) A given polyhedral frame and its reciprocal force diagram with dif-
ferent areas of the faces corresponding to the applied loads and b) the same polyhe-
dral frame with optimized force diagram with equal areas per face corresponding
to the applied loads.

the geometric degrees of freedom of the force diagram as explained in §5.2.

6.2 Compression-only form finding by subdividing the force
diagram

In this section, the (inter)dependencies between the nodal and global equi-
librium in the force diagram of compression-only structures will be ex-
amined. This section will propose a design strategy based on reconfigur-
ing the internal force polygons or polyhedrons through subdivision of the
space bounded by the external force polygon or polyhedron. In fact, the
methods of graphic statics can be combined with subdivision schemes to
generate exciting compressive solutions for given loading and boundary
conditions in two and 3D. The resulting structural forms demonstrate the
strength of graphical methods for the discovery of novel structural forms.
This approach considers the force diagram to be a design apparatus and
introduces an inventive additional step to the conventional procedures of
graphic statics. To emphasize the applicability and reproducibility of the
approach introduced in this section, all 2D examples have been constructed
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Algorithm 2: Assigned Face Area
Data: G′ = (V ′, F ′) group of polyhedrons as the force diagram where

v′i ∈ V ′, and f ′k = (v′i, v
′
j , ...) ∈ F ′.

Result: G′t = (V ′, F ′) group of polyhedrons with preassigned area per
face.

1 begin
2 for f ′ij ∈ F ′ do
3 N(f ′)←� ni # store normal for each face f ′i
4 At(f ′)←� Af ′i

t # store target area for each face

5 δ ←− max(|Afi
t −Afi |) # maximum deviation from the target areas

6 while δ > δmax do
7 for f ′i ∈ F ′ do
8 Af ′i

←− A(v′i, v
′
j , v
′
k, ...) # find the area of each face

9 sf ′i ←−
√

Af′
i

Af′
i

t # find the scale factor

10 scale f ′i by scale factor sf ′i

11 v′i
p ←−

∑f′k
f′
i
v′i

n # reconnect the topology
12 v′i ←− v′i

p # update coordinates of v′i ∈ V ′
13 while γ > γmax do
14 for f ′i ∈ F ′ do
15 project v′i ∈ f ′k onto the plane with normal nk

16 v′i
t ←−

∑f′k
f′
i
v′i

n # reconnect the topology
17 ∆(v′i)←− d(v′i

t−1
, v′i

t
) # measure the deviation of v′i

18 γ ←− ∆max # store the maximum deviation

19 v′i ←− v′i
t # update coordinates of v′i ∈ V ′

20 δ ←− max(|Afi
t −Afi |) # maximum deviation from the target

areas

using common drafting techniques in the parametric environment of Ge-
oGebra 4.4 (Hohenwarter et al., 2013), and all 3D examples has been con-
structed in the parametric environment of Grasshopper (algorithmic mod-
eling for Rhino) (McNeel, 2014).
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Figure 6.6: a) The equilibrium of the external forces in a funicular form repre-
sented by its corresponding global force polygon and b) the equilibrium of the
forces applied to a node represented by its nodal force polygon.

6.2.1 2D form finding through subdivision

In this section, the characteristics of a 2D force diagram and its external and
internal elements will be briefly described, and the idea of subdividing the
force polygon as a method of design for generating compression/tension-
only structural forms will be introduced. In addition, the design appli-
cations of the discussed method will be presented for various boundary
conditions.
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Global and nodal force polygons

The force diagram contains the externally applied loads and reaction forces
at supports as well as the internal forces in each member of the form dia-
gram. It is possible to distinguish the force polygons corresponding to the
internal forces from the force polygon corresponding to the external. As an
example, Figure 6.6 shows the form (left) and the force (right) diagrams of
a funicular arch for a given loading condition. The highlighted (external)
polygon in the force diagram (Fig. 6.6a) includes all the peripheral edges,
and therefore, represents the equilibrium of the applied loads and reaction
forces at the supports. This external polygon is the global force polygon.
In addition, Figure 6.6b shows a highlighted node and its corresponding
force polygon, which is the nodal force polygon.

Subdividing the interior space of the global force polygon

For given boundary conditions, the global equilibrium or the equilibrium
of the external forces is independent from the form of the structure (i.e.,
there are infinite structural forms that can be in equilibrium for the given
boundary conditions). Consider the form and force diagrams of Figure
6.7a-c for the same boundary conditions. Although the form diagrams of
all these examples are different, they have the same global force polygon.
Therefore, the internal configuration of the force diagram corresponds to
the form of the structure, and designing the internal configuration might
be a promising approach in deriving various structural forms in each com-
pression-only example. Moreover, the global and nodal polygons are all
convex in compression-only examples.

Subdivision rules

The force diagram of compression/tension-only structural forms consists
of convex polygons (Williams, 1986; Ash et al., 1988; Block, 2009; Van Mele
et al., 2012; Whiteley et al., 2013). Note that the form diagram must consist
of convex and unbounded polygons. In order to find a compression-only
form for given boundary conditions, the internal space of the global force
polygon should therefore be designed such that it only consists of closed
convex polygons. In the force diagram, any subdivision of the internal
space bounded by the peripheral edges represents an internal equilibrium
and determines the form of the structure. Although many subdivision al-
gorithms exist in mathematics that could be used to subdivide the internal
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space of a polygon, only internal subdivisions that generate convex poly-
gons are permitted. Moreover, to preserve the given boundary condition,
the edges of the external force polygon should not be divided; dividing
these edges would change the number and magnitude of the external loads
and or reaction forces and therefore would not preserve the given bound-
ary conditions. In the next section, some simple subdivision algorithms are
used to divide the global force polygon and generate design examples for
compression/tension-only structural forms.
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Figure 6.7: a) Form and force diagrams
of a funicular arch under applied ver-
tical loads; b) the form and force di-
agram after barycentric subdivision of
the force polygon in (a); c) the diagrams
resulting from barycentric subdivision
of the force polygon in (b).

Figure 6.8: a) The diagrams resulting
from connecting the midpoints of the
internal edges to the endpoints of the
external edges; b) dividing the inter-
nal edges and connecting the division
points to the endpoints of the external
edges; and c) adding closed polygons
around the division points generated in
(b).
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Design applications

Subdividing the internal space of the external force polygon provides an
opportunity to explore a variety of structural forms without changing the
boundary conditions for a given problem.

Arching structures Figures 6.7 and 6.8 show form and force diagrams re-
sulting from different types of subdivision techniques applied to the force
diagram of the simple funicular arch in Figure 6.7a. For instance, Figure
6.7b represents the form and force diagrams resulting from barycentric
subdivision of the force diagram of Figure 6.7a. Similarly, Figure 6.7c is
the result of performing the second level of barycentric subdivision for the
force diagram of Figure 6.7b. In Figure 6.8a, the form diagram results from
connecting the midpoints of the internal edges to the endpoints of the ex-
ternal edges of the force polygon. Connecting points to each other and the
endpoints of the external force diagram generates the compression-only
form of Figure 6.8b, and adding closed polygons to the subdivision rule in
Figure 6.8b produces the form diagram of Figure 6.8c.
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Figure 6.9: a) The form and force
diagrams of a branching structure
with two additional pre-stressing forces
(blue) at the top chord and b) the
form and force diagrams resulting from
a barycentric subdivision of the force
polygon of (a).

Figure 6.10: c) the form and force di-
agrams resulting from connecting cen-
troids, midpoints, and apexes of each
internal polygon; and d) the form and
force diagrams resulting from barycen-
tric subdivision of the force polygons
generated in (a).
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Branching structures The same technique can be used to generate so-
phisticated, compression-only branching structural forms (Figs. 6.9, 6.10,
and 6.11). Usually, in these types of structures, the top chord is in tension,
and the branching body is in compression. To apply the same subdivi-
sion logic (i.e., the convexity requirement for all internal cells), it is possi-
ble to pre-stress by adding a (blue) force, making the whole structure act
in compression. The magnitude of this pre-stressing force can be chosen
as a degree of freedom in design. Barycentric subdivision of the internal
force polygons of Figure 6.9a generates a branching system, as illustrated
in Figure 6.9b. Subdividing the internal force polygons by connecting the
barycenter to the midpoints and vertices of the same polygon results in the
form and force diagram of Figure 6.10a. Combining the subdivision rules
from Figures 6.9b and 6.10a in an additive and recursive manner generates
more complex branching systems of Figure 6.10b.
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Figure 6.11: a) The form and force di-
agrams resulting from connecting the
midpoints of the edges of each internal
triangle and b) the form and force di-
agrams of recursively subdividing the
polygons generated in (a).

Figure 6.12: a) The form and force
diagrams for fan-shaped compression
forms and b) the form and force dia-
grams resulting from recursively subdi-
viding the force polygons generated in
(a).

Fan-like structures For the same boundary conditions, fan-like structural
forms can also be generated. Note that the reciprocity between the form
and force diagrams allows constructing a force diagram that contains an
arch and corresponds to a fan-like structural form (Fig. 6.12). This is very
similar to the railway bridge designed by I. K. Brunel (Zalewski and Allen,
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1998). Further subdivision of the force diagram by constructing shallower
funicular arches results in the form diagram of Figure 6.12b. Using various
techniques to subdivide the force diagram of Figure 6.12a, b can result in
more surprising structural forms Figure 6.13a-c.
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Figure 6.13: a) The form and force di-
agrams resulting from barycentric sub-
division of the force polygon in Fig-
ure 6.12c; b) different subdivision tech-
niques applied to the same figure;
and c) combining the subdivision tech-
niques used in (a) and (b).

Figure 6.14: d) The form and force dia-
grams for combined arched and branch-
ing systems; e) and f) various subdivi-
sion algorithms applied to the force di-
agram of (a).

Combined arching and branching structures It is possible to design struc-
tural forms that can be visually considered the combination of all previous
examples. Figure 6.14 represents the form and force diagrams for the fol-
lowing conditions: three reaction forces (green), two pre-stressing forces
on the top chord (blue), and vertical applied forces (green). The mag-
nitude of the horizontal reaction force on the top corner of the structure
can be considered an extra degree of freedom (indeterminacy) in the force
polygon. Further subdivision of the force polygon can result in various
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structural forms that combine the idea of branching systems with funic-
ular arches. This research showed that subdivision of the interior space
of the external force polygon can be used as a strategy for the design of
compression/tension-only structural forms. It emphasizes the process of
reconfiguring the internal force polygons. As a result, it provides a range
of various novel structural forms for the three different cases of bound-
ary conditions. It provides a design strategy that not only can be used
in the common manual process of graphic statics but also can be imple-
mented computationally for more sophisticated designs. Moreover, these
structural forms can be optimized further by minimizing the load path of
the structure, as suggested by Beghini et al. (2013) (e.g., by writing the de-
pendencies between the form and force diagrams algebraically) (Van Mele
et al., 2012).

6.2.2 3D form finding through subdivision

Similar to 2D, the 3D force diagram consists of external and internal poly-
hedrons, which represent the global and local equilibrium of the spatial
system of forces, respectively. This section summarizes the concept of
global and nodal equilibrium in compression-only reciprocal form and force
diagrams in 3D and introduces multiple strategies for subdividing the global
force polyhedron, which result in various novel typologies of compression-
only, spatial structural forms for given boundary conditions.

Global and nodal force polyhedrons

In 3D reciprocal form and force diagrams, the global force polyhedron in-
cludes the faces corresponding to the applied forces and the reaction forces
at the supports, and its closeness represents the equilibrium of all the exter-
nal forces in the system (Fig. 6.15a). Nodal equilibrium is represented by a
single polyhedron within the global force polyhedron and the equilibrium
of internal and external forces at a single node of the form diagram (Fig.
6.15b).

In this regard, subdividing the global force polyhedron to derive various
funicular forms might include the following scenarios:

• subdividing the face corresponding to the resultant of the applied
forces;
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Figure 6.15: a) Equilibrium of the applied loads and the reaction forces repre-
sented by the global force polyhedron and b) equilibrium of the internal and exter-
nal forces in a node of the form diagram represented by a nodal force polyhedron
within the global force polyhedron.

• subdividing the space bounded by the global force polyhedron with-
out subdividing the external faces; and

• subdividing the internal space and the external faces of the global
force polyhedron.

All mentioned scenarios can be explained using a basic example; Figure
6.16 illustrates a simple spatial form constrained to three support locations
and subjected to an applied force R. The global force polyhedron for this
configuration is a tetrahedron whose faces correspond to the applied load
R and the reaction forces at the supports, Ri, Rj , and Rk. The following
sections explain how this simple example can be turned into intricate spa-



126 Design Techniques and Optimizations

Rj

Rk

Ri 

R

A = | R |

a) b)

Figure 6.16: The form (left) and the tetrahedral force (right) diagram for a deter-
minate system of forces in 3D.

tial forms using the above-mentioned subdivision techniques.

Subdividing the resultant face of a global force polyhedron

The resultant face of the global force tetrahedron is the face that corre-
sponds to the resultant of the applied loads. Any 2D subdivision of the
resultant face preserves the magnitude and direction of the reaction forces
at the supports. This property can be used as a design strategy to gener-
ate, through defined support points, interesting compression-only support
structures that carry a stiff, heavy plate (Lachauer and Block, 2012).

Various 2D methods of subdivision can be used to subdivide the polygon
of the resultant face (Warren and Weimer, 2001). Note that, in this tech-
nique, the edges of the face need to stay intact since subdividing the edges
would not preserve the boundary conditions of the supports. As an ex-
ample, consider the three-bar, statically determinate system in Figure 6.16
and its global force tetrahedron. The face corresponding to the resultant
force can be subdivided into smaller polygons using different subdivision
rules. Connecting the vertices of the newly created polygons to the apex of
the tetrahedron results in an internal subdivision of the force tetrahedron.
Doing this using different subdivision schemes and rules, various spatial
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Figure 6.17: Subdividing the resultant face of the global force tetrahedron of Fig-
ure 6.16 using different schemes.

funicular forms can be generated (Fig. 6.17). For the different design ex-
amples, the magnitude of the resultant force and the reaction forces stay
constant, but the location of the applied loads on the form can be changed.
Subdividing the resultant face of the global force polyhedron is not only
valid for determinate force polyhedrons. Figure 6.18a shows an indetermi-
nate system of forces, supported at four locations, and its corresponding
global force polyhedron. Subdividing the resultant face of the global force
polyhedron results in an indeterminate arch resting on the same supports
(Fig. 6.18b, c).

Subdividing the internal cell of the global force polyhedron

Subdividing the global force polyhedron without changing the external
faces merely changes the internal distribution of the forces and not the lo-
cation, magnitude, or direction of the applied loads. The result is a new
compression-only funicular form with the same boundary conditions, but
with a redistributed internal force flow. Various polyhedral subdivision
schemes can be used to subdivide the internal space of the force polyhe-
drons. In general, any cellular decomposition of the global force polyhe-
dron that is closed and has planar faces, can represent the equilibrium
of a spatial funicular form. Consider the funicular form and its global
force tetrahedron of Figure 6.16. Recursive barycentric subdivision of the
global force tetrahedron results in various structural forms preserving the
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Figure 6.18: a) Form and force diagram of an indeterminate system of
forces; b) subdividing the resultant face of the force polyhedron and its
corresponding form; and c) further subdivision of the resultant face and its
corresponding arch spanning the supports.
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Figure 6.19: Three steps of barycentric subdivision of the internal cell of the global
force tetrahedron.

same boundary conditions (Fig. 6.19a-c). More complex, spatial funicular
forms can be derived by subdividing the internal cells of the force diagram.
Consider the form and force diagrams of the compression-only branching
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Figure 6.20: The exploded force diagram and corresponding branching form dia-
gram, a) before and b) after subdividing the internal cell of the global force polyhe-
dron. The areas of highlighted faces in the polyhedral force diagram represent the
magnitude of forces in the labeled edges of the form diagram.

structure in Figure 6.20. Subdividing the internal cells of the force polyhe-
dron results in a spatial form in Figure 6.20b that is topologically different
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Figure 6.21: Changing the form configuration from a simplest compression-only
form to a shell with planar faces using subdivision techniques.

from the original branching structure. However, it preserves the boundary
conditions of the initial form.

Figure 6.20a shows the exploded axonometric view of the force diagram
and its reciprocal branching structural form. The exploded force diagram
shows multiple layers of polyhedral cells and the external force polyhe-
dron. The area of the highlighted faces in the force diagram represents
the magnitude of force in the highlighted, corresponding members of the
form. Figure 6.20b shows a subdivided instance of the force polyhedron
of Figure 6.20a and its corresponding form diagram. Note that the num-
ber of internal faces in the force diagram has been increased as well as the
number of elements in the form diagram. However, the force magnitude is
significantly reduced in the newly created members. Comparing the force
magnitudes in edges in the original form diagram and its subdivided ver-
sion shows that the magnitude of forces has been approximately reduced
by a third as a result of the subdivision process.

Polyhedral subdivision of the force diagram not only provides a variety of
design possibilities for given boundary conditions, but also increases the
number of members in the structural form, often reducing the magnitude
of forces carried by each member. Therefore, this approach can be used as a
strategy to deal with buckling due to excessive axial forces in the members
of a structure.



Summary 131

Subdividing the reaction faces of the global force polyhedron

In all previous scenarios, subdivision schemes did not change the given
boundary conditions including the number of supports and the directions
of the applied loads. In some cases, changing the number of supports is
also allowed to reduce the magnitude of the applied forces transferred to
the supports.

Dividing the faces of the global force polyhedron corresponding to the re-
action forces changes the number of support locations in the form configu-
ration. Figure 6.21a illustrates a simple frame and its force polyhedron.
Subdividing the resultant face or the face corresponding to the applied
force changes the number of applied forces as well as the configuration of
the form (Fig. 6.21b, c). By subdividing the side faces of the force polyhe-
dron reciprocal to the reaction forces, the topology of the frame transforms
into a shell with multiple support locations. Accordingly, as it is illustrated
in Figure 6.21a-d the magnitude of the forces decreases in the members
connected to the supports.

Such an approach allows roughly laying out a design with a few design pa-
rameters to then be refined through subdivision. Moreover, the planarity
constraint of the reciprocal diagrams simplifies the rationalization process
of such structural system for architectural and construction purposes. For
instance, all the faces of the shell of Figure 6.21d are planar. Therefore, 3D
graphical methods using form and force polyhedrons not only allows con-
strained form finding of spatial structures by geometric constructions but
also simplifies the fabrication process.

6.3 Summary

This chapter provided two important techniques in design of spatial funic-
ular forms: aggregating convex polyhedral cells as a bottom up approach
in design, which always guarantees the compression-only results, and sub-
dividing the internal space of the global force (polygon) polyhedron that
generates various topologically different funicular solutions for a prede-
fined boundary conditions. The former results in various spatial forms
with various support locations, whereas the latter results in different spa-
tial forms for singular boundary conditions.
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Chapter7

Complementary examples

This chapter provides additional examples to highlight and clarify the con-
tents of the previous chapters. Therefore, the examples of this chapter will:

• review the geometric construction of constrained funicular form and
force diagrams in 3D;

• clarify the geometric properties of the form and force diagrams in-
volving compressive and tensile forces;

• construct funicular forms with an extra geometric constraint in addi-
tion to the boundary conditions and support locations;

• use the subdivision techniques to generate intricate systems from
simple structural concepts;

• control the magnitude of forces in a relevant structural design exam-
ple; and

• emphasize the potential of using 3D graphical statics to analyze 3D
truss systems, similar to the use of graphical statics in 2D.

7.1 Designing a funicular branching structure

The following example explains the process of designing a funicular struc-
ture to support the loads of the plate Pla of Figure 6.9a. The assumption is
that the weight of the plate will be transferred to three support locationsA,
B, and C; the support A is located below the plate, whereas the supports
B and C are located on the plate, and their reactions are constrained to the
same plane (i.e., the structure will be laterally supported at B and C).

133
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Figure 7.1: a) Boundary conditions for a potential branching structure supported
at A, B, and C carrying the loads of the plate Pla and b) the global force polyhedron
representing the equilibrium, magnitude, and the direction of the reaction forces
and the applied loads.

7.1.1 Global equilibrium

Similar to the examples of §4.3.2, the first step in constructing constrained
funicular forms is to find the global equilibrium for the given boundary
conditions. This includes finding the location of the anti-resultant of the
applied loads R′ and the direction and magnitude of the reaction forces at
the supports (§4.2.2). The reaction forces substitute the anti-resultant force
R′ by intersecting at a point on the line of action of R′. Since the reaction
forces at B and C are constrained to the horizontal plane, their intersection
with the reaction force of A coincides the intersection of R′ and Pla. As a
result, the direction of the reaction forces are defined and the global force
polyhedron can be constructed accordingly (Fig. 7.1b). Picking a point on
the line of action of the support A and connecting it to the points B, C, and
D completes the form of the branching structure (Fig. 6.10a).

7.1.2 Nodal equilibrium

Once the form of the structure is defined and its global force polyhedron
is completed, the nodal force polyhedrons can be constructed to find the
magnitude and direction of the internal forces in the members of the form.
The nodal force polyhedrons can be constructed from the faces of the global
force polyhedron. Consider nodeE and its connected members in the form
diagram (Fig. 6.10a); the bottom face of the global force polyhedronA′B′C ′
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Figure 7.2: a) Constructing the nodal force polyhedron for node E and the cor-
responding direction and magnitude of the members meeting at E and b) nodal
force polyhedron for node B and its corresponding directions and magnitude in
the member.

represents the magnitude and direction of the force in the member con-
necting E to the support A. Planes perpendicular to the members coming
together in E intersecting with the edges of face A′B′C ′ of the global force
polyhedron completes the closed, nodal force polyhedron for node E (Fig.
7.2a). The directions of the forces in the members ofE are derived from the
directions of the faces of the nodal force polyhedron (Fig. 7.2a).

7.1.3 Complex faces of a force polyhedron

As explained in §2.2.7, in some cases, the force polyhedron includes com-
plex faces. A complex face is a self-intersecting polygon, which is neither
convex nor concave. For instance, the nodal force polyhedron of node B
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Figure 7.3: a) A convex face and its chosen positive direction; b) complex face
with two convex regions and the positive total sum of the areas; and c) complex
face with negative total sum of the areas (the color of the faces corresponds to the
total sum of the areas on the face).

includes a complex face B′E′F ′D′ corresponding to the force of the edge
connecting B to C in the form diagram. In this case, the self-intersecting
polygon B′E′F ′D′ includes two convex polygons with different areas and
opposite face directions (Fig. 7.2b).

Generally, the direction and magnitude of the force in an edge of a form di-
agram corresponding to a complex face in the force diagram can be found
by adding the areas of the convex regions signed with their directions.
Consider the convex face of Figure 7.3a with the positive direction toward
the front side of the face. The sign of the area of each face is also defined
by the direction of the face. This face can become a complex polygon by
moving the bottom edge along the vertical side edges (Fig. 7.3b, c).

The complex face of Figure 6.11b consists of two convex regions Ai with
positive and Aj with negative face directions. In this case, Ai is bigger
than Aj , and therefore the total sum of the areas is positive. Respectively,
the magnitude and direction of the axial force in the corresponding mem-
ber in the form diagram is positive. In contrast, Figure 7.3c represents a
complex face where the area of Ai is smaller than the area of Aj , and there-
fore the total sum of the areas is negative. As a result, the force direction
in a corresponding member is the opposite of the direction of the force in
Figure 7.3b.

Applying the same rule in finding the direction and magnitude of the com-
plex faces of Figure 7.3b results in the diagrams of Figure 7.4b. Figure 7.4a
illustrates a similar branching structure constructed using 2D methods to
highlight the similarities between the 2D and 3D versions of a funicular
system using graphical methods of form finding.
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Figure 7.4: a) Form and force diagram of a 2D branching system and b) form and
force diagrams of an equivalent 3D branching system.
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Figure 7.5: a) Starting from the simple tree structure in Figure 6.11, adding a pre-
stressing force P to the top chord of the structure results in compression-only force
diagram with a convex polygonal cells in 2D and b) convex force polyhedrons and
its reciprocal form diagram in 3D.
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Figure 7.6: a) Compression-only branching system resulting from b) subdividing
the faces of the applied forces of the force polyhedron of Figure 7.5.
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Figure 7.7: a) Three-hinged funicular passing through points A, C, and B and b)
its corresponding force diagram.

7.1.4 Subdividing the force polyhedron

More intricate branching forms can be constructed using the subdivision
techniques introduced in Chapter 6. Accordingly, subdividing the force
polyhedron of a compression-only system of forces results in topologically
different compression-only structural forms for the given boundary condi-
tions. The force polyhedron of Figure 7.4b includes complex force polyhe-
drons and requires additional steps before subdivision.

Consider the 2D form and force diagrams of Figure 7.4a; applying a pre-
stressing force P to the top chord of the 2D branching system results in
convex force polygons in the force diagram (Fig. 7.5a). Similarly, apply-
ing a pre-stressing force P at node D in the 3D version results in a com-
pression-only force diagram with convex polyhedral cells only (Fig. 7.5b).
Subdividing the faces related to the applied loads and their correspond-
ing cells results in a topologically different branching form supporting the
same weight of the plate pla, now in nine points, but constrained to the
same support locations (Fig. 7.6a, b).

7.1.5 Hinged funicular form in 3D

Constraining funicular form to go through three points in 2D represents
a statically determinate condition (i.e., only one specific funicular solution
equilibrates the applied loads and is restrained to go both through support
points and one additional geometrical point constraint). Figure 7.7 shows
a three-hinged funicular form and its corresponding force diagram. The
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geometric process of construction of a three-hinged funicular solution has
been methodically explained in various literature, for instance by Wolfe
(1921). This section will highlight the key points in the construction process
of the 2D example to provide a foundation for constructing an equivalent
funicular solution in 3D.

The funicular solution of Figure 7.7 can be considered two separate funic-
ular solutions spanning fromA to C and from C toB, which are connected
to each other at node C. Node C in this funicular form has the following
characteristics:

• it can freely rotate and therefore is in moment equilibrium and

• the forces at the right and left side of the node are equal and oppo-
site to each other, which keeps the node in horizontal and vertical
equilibrium.

To construct the three-hinged funicular of Figure 7.7, we can separately
find a family of funicular solutions for span AC as well as a family of fu-
nicular solutions for span CB. From these two families of solutions, we
are looking for two solutions that have the same magnitude of force in the
members in both sides of the node C to keep the node in equilibrium. As
explained in §4.3.1, the pole of the force diagram for the funicular solution
of span AC is constrained to the line l1, which is perpendicular to an edge
connecting A to C. Similarly, the pole of the force diagram of the funicular
solution for span CB is constrained to the line l2 perpendicular to the clos-
ing string connecting C to B. Decomposing the applied forces to the point
x, which is the intersection of l1 and l2, results in a force diagram that cor-
responds to a funicular form passing throughA, B, and C (Fig. 7.7b). Note
that the edges at the right and left sides of node C in the form diagram are
aligned and that the force magnitude in both edges are equal.

The 3D equivalent of a three-hinged funicular form can be a funicular form
constrained to three support locations and three points in space (Fig. 7.8).
Figure 7.8a illustrates the boundary conditions including support locations
A, B, and C and three points D, E, and G in the space bounded by the
supports. The construction procedure in 3D is quite similar to the one in
2D. Accordingly, one can pursue the following steps to find the funicular
form:

• divide the span bounded by the supports into three sub-spans ADE,
CDG, and BGE and their corresponding applied loads (Fig. 7.8a);

• for each span and its applied load, here for simplicity a single force,
construct a reciprocal face of the corresponding force polyhedron;
note that each face for each span shares an edge with a face of the
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Figure 7.8: a) The boundary conditions to find a funicular solution constrained
to support locations A, B, and C and passing through points D, E, and G; b)
the faces of the corresponding force polyhedron for each span forming a set of
constrained triangles and the constraint lines li−k intersecting at x; c) the funicular
form constrained to the given points in 3D; and d) the completed force polyhedron.
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Figure 7.9: a) Funicular form passing through four points in space resulting from
subdividing the force polyhedron of Figure 7.8d and b) the force polyhedron as a
result of subdividing the face corresponding to the applied force in each span.

adjacent span forming three connected or constrained triangles of
Figure 7.8b;

• find the line li in the force diagram for each span using the method
explained in §4.3.2 and §4.3.2, which is perpendicular to the plane of
the corresponding span ni in the form diagram;

• decompose the faces to point P , which is the intersection of the lines
li−k in the force diagram (Fig. 7.8d); and

• construct the funicular form passing through pointsA,B, andC, and
D, E, and G using the faces of the constructed force polyhedron (Fig.
7.8c).

Note that the applied force in each sub-span is coplanar with the reaction
force at a support and the anti-resultant. Moreover, the location of the
points in space cannot be arbitrarily chosen; consider point E and its con-
nected members of Figure 7.9c. The force in the members passing through
E is equal. Therefore, the directions of the members coming from sub-
spans BEG and AED and meeting at E are the same. As a result, the
point E should lie on the line passing through the applied forces in the ad-
jacent sub-spans BEG and AED. The same argument is valid for points G
and D.
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Once the form and force polyhedron for the given boundary conditions are
constructed, the subdivision technique can be used to produce a more intri-
cate funicular solution (Fig 7.9). Figure 7.9a represents a funicular solution
resulting from the barycentric subdivision of the faces corresponding to the
applied loads for each span (Fig. 7.9b). Note that the sum of the applied
forces Fi

1 for the span AED is equal and opposite to the anti-resultant R′1

for the same span. The sum of all anti-resultants for all three sub-spans
equals R′ for span ABC.

7.2 Combining compressive and tensile forces

Three-dimensional graphical statics using 3D reciprocal polyhedrons can
be used to design structural systems with combined compressive and ten-
sile elements. Figure 7.10 shows a 2D truss system and its force diagram as
well as the 3D equivalent of the same system. As illustrated in Figure 7.10,
the top chord and the vertical elements in the systems are in compression,
whereas the bottom and side chords of the systems are in tension.

Figure 7.11 illustrates multiple steps for constructing the force diagram in-
cluding global and nodal force polyhedrons for the form of Figure 7.10b.
Similar to previous examples, the first step to construct a force diagram is
to find the faces of the global force polyhedron. The global force polyhe-
dron in this example is constructed using the methods explained in §4.2.2
and includes four coplanar faces corresponding to the applied load and the
reaction forces at the supports. The top face with normal nF represents the
magnitude and direction of the applied load F , and the three bottom faces
correspond to the direction and magnitude of the reaction forces RA−C
(Fig. 7.11a).

The next step to complete the force diagram is to construct nodal force
polyhedrons for the nodes of the form. Consider node A, its connected
members, and its reaction force RA; to construct the nodal force polyhe-
dron for the node, start from its corresponding face with normal nRA

in the
global force polyhedron and put planes perpendicular to the membersAD,
AE, AB, and AC at the edges of the face A′E′B′. This results in construc-
tion of faces D′C ′B′E′, A′D′C ′, A′D′E′, and A′B′C ′ in the force diagram
(Fig. 7.11b).

Similarly, the nodal force polyhedron for node D of the form can be con-
structed using the face corresponding to the applied force with normal nF

(Fig. 7.11c). Putting planes perpendicular to DE, DA, DC, and DB results
in the nodal force polyhedron of Figure 7.11c. Note that it is possible to re-
place the side chords in the form with three pre-stressing forces along with
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Figure 7.10: a) 2D form and force diagrams of a structural system with combined
tensile and compressive members and b) 3D form and force diagrams of the equiv-
alent structural system designed using 3D reciprocal diagrams.

the PA−C at the supports (Fig. 7.12).

Barycentric subdivision of the face corresponding to the applied force re-
sults in a new set of form and force diagrams. Figure 7.13a shows the
global force polyhedron with a subdivided face corresponding to the ap-
plied force and a nodal force polyhedron representing the magnitude and
direction of the forces in nodeD of the form. Completed 3D form and force
diagrams representing the tensile and compressive forces are illustrated in
Figure 7.14b. The 2D equivalents of such form and force diagrams are also
shown in Figure 7.14a, which visually compares the form and force dia-
grams in 2D and 3D.
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Figure 7.11: a) Constructing the faces of the global force polyhedron; b) nodal
force polyhedron and the direction of forces in the members of node A; and c)
nodal force polyhedron for node D and force directions in its members.
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Figure 7.14: a) A subdivided force diagram of Figure 7.10a and its resulting form
representing the tensile and compressive forces and b) 3D form and force diagrams
after barycentric subdivision of the global force polyhedron.

7.2.1 Constant-force members

The significance of using graphical methods of structural design over other
methods is to have simultaneous control over the geometry of the form and
magnitude of the forces. This property can be efficiently used in optimizing
the forces in the members of the form, as suggested by Bow (1873); Beghini
et al. (2013); Van Mele et al. (2012).

Figure 7.15a illustrates 2D form and force diagrams as a result of further
subdividing the applied force of Figure 7.10a. Consider the vertical mem-
bers and their force magnitude Fd in the force diagram of Figure 7.15a;
the magnitude of force in all vertical members are equal, and they can be
called constant-force members. Constant-force members in structural sys-
tems are quite beneficial from the construction point of view since a single
cross section can be used to construct all the constant-force members, if the
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Figure 7.15: a) Selecting a vertex of a force diagram; b) moving the vertex in the
3D space; c) curvature analysis of the force diagram with non-planar faces; and d)
curvature analysis of the force diagram after planarization.

buckling criteria are not dominant. Figure 7.15b displays the 3D equivalent
of the form and force diagrams of Figure 7.15a. Since the barycentric sub-
division of the global force polyhedron was used to generate the form and
force polyhedron of Figure 7.15b, the magnitude of the forces in all vertical
members of the form is constant.

In the force diagram of Figure 7.16a, the tensile forces are the radii of a
circle with a length of |Ft|, which ensures equal magnitudes for all tensile
forces. Thus, the corresponding form contains a constant force in its tensile
members. Note that the vertical members no longer stay vertical in the
new form (Fig. 7.16a). Finding the 3D equivalent of the form and force
diagrams with constant force in tensile members is not a trivial problem.
In 3D, the areas of the faces corresponding to the tensile force Ft must
be equal. To achieve this goal, the algorithm provided in §6.1.2 can be
used to equalize the areas of the faces (Fig. 7.16b). However, note that the
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Figure 7.16: a) 2D form diagram with constant tensile forces Ft and the corre-
sponding force diagram with tensile edges constrained to the edge of a circle and
b) 3D form diagram resulting from a trial optimization algorithm to equalize the
areas of the tensile faces.
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optimization result might not always converge and is highly dependent on
the geometric properties of the faces.

7.3 Analyzing a 3D truss using reciprocal polyhedrons

Three-dimensional graphical statics based on 3D reciprocal diagrams can
also be used to analyze 3D truss systems. Figure 7.17a illustrates a 2D truss
system and its force diagram. The force diagram of this truss includes com-
plex polygons corresponding to the compressive and tensile forces in the
members of the truss. Figure 7.17b represents an equivalent 3D truss sys-
tem and its corresponding force diagram. Similar to the 2D case, the force
diagram of this truss includes complex polyhedral cells that are neither
convex nor concave.

To understand the properties of the complex polyhedral cells, consider the
equilibrium of the node A and its corresponding nodal force polyhedron
in Figure 7.17c; The faceA′B′C ′ corresponds to the reaction forceRA in the
node. FaceB′D′C ′ and faceA′C ′F ′ correspond to the forces FAD and FAB ,
respectively.

The complex polygon A′O′F ′E′D′O′B′ corresponds to the force FHA in
the form diagram. This polygon consists of a convex region A′O′B′ and a
concave region O′F ′E′D′. The direction and magnitude of the force FAH

is found by summing the areas of the regions of the complex polygon with
their relevant sign defined by the normal direction of each region as ex-
plained in §7.1.3. In a similar manner, the forces FAE and FAG are recip-
rocal to the faces C ′D′E′ and C ′E′F ′ of the nodal force polyhedron. By
constructing nodal force polyhedrons for the rest of the nodes of the truss,
we can find the forces in all the members of the truss as illustrated in Figure
7.17b.

7.4 Summary

This chapter provided complementary examples to cover some important
topics using 3D graphical statics in design. It showed the geometric steps
to construct a spatial branching system, pointing to the properties of com-
plex faces representing internal forces in the members of a polyhedral frame.
It also explained the process to construct a hinged spatial form, a 3D equiv-
alent of a three-hinged funicular form in 2D. Additionally, it presented
multiple examples of polyhedral frames with compressive and tensile mem-
bers and their corresponding force polyhedrons.
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Chapter8

Concluding remarks

This chapter will review the major contributions of this thesis and highlight
the advantages of using this method in earlier stages of design. In addition,
it will point out possible directions for extending this work in the future.

8.1 Summary of the results

The research presented in this thesis specifically contributed to the field of
geometric methods of structural design, as it:

• clarified and extended the historical concept of 3D reciprocal dia-
grams;

• established the geometric procedures of 3D graphical statics; and

• provided additional design techniques to explore a new horizon in
spatial structural form finding.

The following sections will expand on the mentioned contributions and
provide further details related to the topics of this thesis.

8.1.1 Contribution to 3D reciprocal diagrams

This research clarified and developed the concept of geometric representa-
tion of equilibrium of forces in 3D based on a short proposition by Rankine
in 1864. To achieve this, Rankine’s previous propositions on the geomet-
ric equilibrium of forces in triangular and polygonal frames were analyzed
and used to clarify his proposition in 3D (§2.1.1 and §2.1.2). This research
visualized and explained the relationship between the diagram of forces
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and form of a structure by describing the global and nodal equilibrium of
polyhedral frames subjected to multiple external loads 150 years after it
was suggested by Rankine (§2.1.3).

In addition to providing a mathematical proof of the geometric properties
of reciprocal diagrams (§2.2.1), this research redefined the topological rela-
tionship between the form and force diagram to include the external forces
in the form diagram. The original topological relationship between 3D
reciprocal diagrams, as suggested by Rankine (1864), only includes only
the polyhedral frames and external force polyhedron and suggests that the
number of vertices, faces, and cells of one diagram equals the number of
the same components in the other diagram. The inclusion of the external
loads in the topological definition of 3D reciprocal diagrams of this the-
sis allowed these diagrams to be used as the basis for the methods of 3D
graphical statics, where the applied loads are among the important initial
design parameters.

Additionally, this research investigated the properties of the force diagram
for systems of concurrent forces and showed that the force polyhedrons
might be convex or complex based on the configuration of the applied
forces in the system (§2.2.8 and §2.2.9). Moreover, this research provided
a computational framework including data structure and an iterative pro-
cedure to construct 3D reciprocal diagrams from convex polyhedral cells
(§3.1).

8.1.2 Establishing the methods of 3D graphical statics

This research not only developed the geometric basis for representing the
equilibrium of forces in 3D but also established step-by-step procedures
to construct spatial funicular forms that are constrained to given boundary
conditions, 150 years after the establishment of 2D graphical statics by Cul-
mann (1864) in the architectural curriculum of ETH Zurich. Any configu-
ration of forces in 3D reciprocal diagrams includes open faces shared by
the forces (§4.2.2). Accordingly, geometric procedures to determine global
equilibrium for concurrent, parallel, and non-concurrent systems of forces
are provided in §4.2.2. The global equilibrium is followed by spatial funic-
ular form finding, including trial funicular construction in 3D, that is, the
3D equivalent of 2D funicular form finding (§4.3.2).

The methods of graphical statics presented in this research are capable of
showing the equilibrium of internal and external forces in the members of
general polyhedral frames or spatial truss systems. Using a simple exam-
ple, this research described the properties of nodal force polyhedrons re-
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lated to tensile and compressive forces in a polyhedral frame and explained
the procedure to find the direction of forces in the members connected to
each node of the frame (§5.1.2).

It also explained that aligning the direction of the external forces with the
members of the polyhedral frame or vice versa results in funicular form
and force diagrams in 3D (§5.3). Therefore, this research provided a deeper
understating of the relationship between constrained elements in the form
and force diagrams of 3D graphical statics.

8.1.3 Design methods

In addition to developing the basis for the methods of 3D graphical stat-
ics, this research provided valuable design and optimization techniques
for form finding of complex spatial structural systems. Aggregating con-
vex force polyhedrons to find compression-only spatial forms is a bottom
up approach in structural design suggested in this thesis (§6.1), and the
computational framework introduced in §3.1 is used for this purpose.

The output of the suggested computational procedure does not have mem-
bers with evenly distributed lengths. This thesis in §6.1.1 suggests an itera-
tive method to improve and therefore optimize the edge lengths of polyhe-
dral frames without changing the direction of their members. Additionally,
it provided a constrained optimization procedure to control the face areas
of the force diagram to control the magnitudes of the external and internal
forces in polyhedral frames and used it to design constant-force members
(§6.1.2).

Moreover, this research introduced the subdivision technique to subdivide
the internal space of the global force polygon and polyhedron to produce a
range of topologically different compression-only structural solutions for
given boundary conditions (§6.2). Therefore, it suggested a novel design
approach for designers to explore a variety of structural solutions address-
ing the design constraints.

8.2 Discussion

The research presented in this thesis explicitly pointed out the intrinsic
relationship between 2D and 3D graphical methods of structural design.
In fact, the link between 2D and 3D graphical methods was lost in the
early nineteenth century when the projection of reciprocal polyhedrons
on a 2D plane became the geometric basis for conventional methods of
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graphical statics. Therefore, the existing methods of 2D graphical statics,
used for over a century, are fundamentally a special case of the 3D meth-
ods explained in this thesis, and this research revived the 3D quality of the
geometric methods of equilibrium using the reciprocal polyhedrons and
marked a milestone in the development of 3D graphical statics.

Similar to all other structural design methods, 3D graphical statics has its
own advantages and limitations that can be briefly listed in the following
paragraphs.

8.2.1 On the advantages

The main language of 3D graphical statics is geometry, which is the language
of design. Furthermore, 3D graphical statics is an intuitive and valuable
tool to understand and explore basic and complex structural concepts for
the following important reasons:

• It includes step-by-step geometric procedures to design spatial funic-
ular forms without the need to use computationally based tools and
to have substantial structural engineering knowledge at the initial
stages of design;

• Graphical methods of structural design allow designing the force di-
agrams in addition to the form diagrams; in fact, many surprising
structural forms can result from using this property of the graphical
methods;

• Using 3D graphical methods in a parametric design environment al-
lows controlling the magnitude of forces in the members of a funicu-
lar form as well as exploring various structural solutions with differ-
ent geometric properties for given boundary conditions;

• The geometric procedures to construct funicular forms and force dia-
grams, in fact, combines the form finding and fabrication rationaliza-
tion process in a single step; the planarity constraint of 3D recipro-
cal diagrams inherently results in form diagrams with planar faces,
which obviates the need to rationalize their geometry for fabrication.

Therefore, 3D graphical methods introduced in this research are a valuable
tool from the design exploration and construction points of view.
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8.2.2 On the limitations

To fully realize the limitations of this method, more investigation is re-
quired to analyze various aspects of using 3D graphical methods. How-
ever, the most noticeable limitation of this method is the planarity con-
straint for the polyhedral frame and its external forces (i.e., all the adjacent
external forces should share an unbounded plane) (§4.2.2). Therefore, an-
alyzing a general system of forces that does not share immediate planes
with each other is not directly possible with the presented methods of this
research.

Moreover, changing the magnitude of the applied forces by changing the
area of its corresponding face in a force diagram affects the magnitudes of
the adjacent faces and therefore the adjacent forces (§A.3). This limitation
does not exist in the mechanical interpretation of the problem. Controlling
the exact magnitudes by controlling the areas in the force diagrams with
multiple geometric degrees of freedom is quite challenging and requires
further investigation. In addition, the complicated geometry of complex
force polyhedrons representing tensile and compressive forces in the mem-
bers of spatial trusses might slightly overshadow the intuitive aspects of
3D graphical statics (§A.3).

8.3 Future work

Since 2D graphical methods of structural design have been used, devel-
oped, and practiced for more than 150 years, the 3D equivalent of these
methods based on the work of this thesis promises years of development
and progress in the field of structural and architectural design. In this re-
gard, the computational implementation of the results of this thesis can be
quite beneficial for designers. Moreover, the materialization of the spatial
structural concepts resulting from this method can be an interesting area
of research in the future.

8.3.1 Computational framework

The efficiency of the computational framework provided in §3.1 can be im-
proved in the future to be used as a conceptual form-finding tool for de-
signers. Additional features, allowing constrained form finding of spatial
systems, should also be added to the framework to improve its perfor-
mance to deal with design constraints.
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8.3.2 Materialization

The design of 3D spatial structures can never be realized without material
considerations, fabrication techniques, and their constraints. The result-
ing forms of 3D graphical statics only provide a valid structural concept,
which requires further material and fabrication investigation. Building
prototypes in small and large scales is the only way to test the structural
behavior of these concepts in the real world (Löpez Löpez et al., 2014).

Therefore, translating spatial and structural concepts into physical mani-
fests using innovative/conventional construction materials and develop-
ing fabrication and assembly techniques are among the research directions
that should be pursued in the future. During the development of this re-
search, simple structural models were also built to test the stability and
assembly process of spatial systems of forces. However, rigorous setups to
test the structural capacity and material limits should be developed in the
future (Fig. 8.1).
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Figure 8.1: Assembly and stability test for a discrete structural model of a 3D
branching structure designed using 3D graphical statics.
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AppendixA

Notes on the construction of global equilibrium

The following sections will expand on the procedures to find the global
equilibrium for parallel and non-concurrent systems of forces.

A.1 Global equilibrium of parallel systems of forces

The system of parallel forces in 3D can be considered a special case of con-
current forces where the forces intersect at infinity. Figure A.1a-f describes
the geometric steps to construct a closed polyhedron of forces for a given
system of parallel loads. Note that the faces of the force polyhedron are
perpendicular to the direction of the forces in the system. Therefore, the
faces of the force polyhedron corresponding to the parallel system of forces
of Figure A.1a will be coplanar (Fig. A.1b).

Constructing a closed polyhedron of forces

Drawing lines from an arbitrary point v]i in the direction of the normals of
the planes nm−p adjacent to the parallel forces results in an open force poly-
hedron of forces of Figure A.1b. The main difference between the process
of constructing global equilibrium for systems of parallel and concurrent
forces is that the location of the anti-resultant force should be determined
prior to the construction of the funicular polyhedron in a parallel system.
This is because the force polyhedron collapses to the anti-resultant plane
and loses its information in 3D. Finding the location of the anti-resultant
is necessary to define the edges of the force polyhedron in this case. The
location of the anti-resultant can be found geometrically using the crossing
method or through two funicular constructions on a plane perpendicular
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Figure A.1: a) Parallel set of applied loads; b) open force polyhedron with copla-
nar faces; c) finding the location of the anti-resultant using crossing method, d)
connecting the applied loads and the anti-resultant by picking an arbitrary point
on the line of action of anti-resultant.

to the applied forces (Wolfe, 1921). It can also be calculated as the weighted
barycenter of the applied loads. The parallel forces intersect at infinity with
the line of action of the anti-resultant. Therefore, the projection of this in-
tersection on the anti-resultant plane includes lines passing through the
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applied forces intersecting with the line of action of the anti-resultant at
point x. These lines are named with their directions as n’r−q (Fig. A.1d).
Planes drawn at the edges of the open force polyhedron of Figure A.1b,
with directions n’r−q , intersect with the anti-resultant plane and define the
edges of the force polyhedron. Note that the volume of the force polyhe-
dron in this case is zero since the anti-resultant face is coplanar with the
faces of the applied loads (Fig. A.1e, f).

Constructing a funicular polyhedron

Once the force polyhedron is closed, it should be decomposed into tetrahe-
dral cells similar to the example of the concurrent case of Section 4.2.2 (Fig.
A.2a, b). The funicular polyhedron can then be constructed using the in-
formation of the faces of the decomposed polyhedron of forces (Fig. A.2c,
d). Note that the edges of the funicular polyhedron intersect at the line of
action of the anti-resultant.

A.2 Global equilibrium of non-concurrent system of forces

The mentioned procedures for parallel and concurrent forces can be used
to construct a closed force polyhedron for a non-concurrent system of forces
of Figure A.3a. The force configuration includes open faces with normal
directions nm−p (Fig. A.3a). Drawing lines parallel to the directions nm−p
from an arbitrary point v′i defines the edges of the faces of a corresponding
open force polyhedron for the system (Fig. A.3b).

The direction of the anti-resultant forceR′ can be determined by construct-
ing a non-planar force polygon (Fig. A.3c). The anti-resultant plane with
normal nR′ can intersect and therefore close the open faces of the force
polyhedron (Fig. A.3d).

Fig. A.4a, b shows a closed force polyhedron constructed for a non-concurrent
system of forces of FigureA.3 with faces corresponding to the applied loads
Fi−l and the anti-resultant force R′. Similar to concurrent forces, to equili-
brate the non-concurrent system of forces, a closed, funicular polyhedron
must be constructed on the lines of action of the applied forces (Fig. A.4a-
d). A closed, funicular polyhedron therefore defines the location of the
anti-resultant force to equilibrate the system.

Surprisingly, the funicular polyhedron constructed on the lines of action of
the forces lacks an edge (highlighted in red) to close its faces, and therefore
the system will not be in rotational equilibrium (Fig. A.4c).
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Decomposing the non-concurrent forces of Figure A.3a into the compo-
nents perpendicular and parallel to the anti-resultant plane shows that the
component of forces on the anti-resultant plane Fhi−l

are not in rotational
equilibrium (i.e., the force polygon corresponding to Fhi−l

is closed, but
the funicular polygon stays open) (Figs.A.5 and A.6).

A force couple Fc (equal in magnitude and opposite in direction to each
other) can be added to the system to equilibrate Fhi−l

on the anti-resultant
plane (Fig. A.7a, b). The force couple Fc may represent the necessary mo-
ment M to equilibrate a non-concurrent system of forces in 3D in addition
to the anti-resultant force R′ as described in §4.2.2 (Fig. A.8a, b).

To close the funicular polyhedron for non-concurrent forces, let us refer
to Rankine’s topological propositions for force polyhedrons and funicular
polyhedrons explained in Chapter 2; according to Rankine’s proposition,
the number of edges of the funicular polyhedron and the force polyhe-
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Figure A.3: a) Non-concurrent set of applied loads; b) construction of the
open force polyhedron; c) finding the direction of the anti-resultant; and d)
the intersection of the anti-resultant plane and the planes of the open force
polyhedron.

dron should be equal (Fig. A.9). The funicular polyhedron constructed for
the non-concurrent forces of Figure A.4c need an extra edge to be closed.
Adding an edge to close the funicular polyhedron requires a reciprocal
edge on the anti-resultant face of the force polyhedron (Fig. A.10a, b).

Dividing the anti-resultant face in the force polyhedron provides the nec-
essary topological properties for the force polyhedron to be reciprocal to
a closed funicular polyhedron on the lines of action of a non-concurrent
system of forces (Fig. A.11a, b). Moreover, this division suggests that the
system of non-concurrent forces in 3D can be equilibrated by two forcesR′1
and R′2 parallel to R′ and a force couple Fc on the anti-resultant plane (Fig.
A.8b).

Adding an edge to the anti-resultant face is not arbitrary; each edge of
the force polyhedron should be perpendicular to an open face that connect
the forces in 3D space. Figure A.12a, b shows that the added edge in the
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force polyhedron is reciprocal and perpendicular to the open face shared
between two equilibrating forces R′1 and R′2.

A.3 Geometric degrees of freedom of the force polyhedron

The previously explained procedures to construct a closed force polyhe-
dron and a closed polyhedral frame can be similarly applied to equilibrate
various configurations of applied loads in 3D. However, in some examples,
the force polyhedron that is reciprocal to the configuration of the given
forces is not unique. In this section, I will highlight some of the properties
of the force polyhedrons and their corresponding polyhedral frame.
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A.3.1 Multiple force polyhedrons

Figure A.13a illustrates multiple concurrent applied loads and their ad-
jacent (open) faces. Figure A.13b shows the reciprocal force polyhedron
constructed using the methods explained in previous sections. Put sim-
ply, for the given direction of the applied forces, we can construct various
force polyhedrons with different areas per face. Changing the length of
an edge in the constructed force polyhedron while preserving its direction
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results in a new force polyhedron with faces perpendicular to the applied
forces and the edges perpendicular to the open faces of the force configu-
ration (Fig. A.14a, b). In fact, the force polyhedron of this example is ge-
ometrically indeterminate (i.e., it consists of polygonal faces with multiple
geometric degrees of freedom that allow transformation of the polygons
without changing the direction of their edges). In contrast, the force poly-
hedrons explained in previous sections are determinate since they merely
consist of triangular faces with a single geometric degree of freedom.

In fact, if the magnitudes of the applied forces are given as vector lengths,
controlling the areas of the faces of a geometrically indeterminate recipro-
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Figure A.10: a) The force polyhedron constructed by intersecting the anti-
resultant plane with the faces corresponding to the applied forces and b) dividing
the anti-resultant plane to induce an extra edge corresponding to a force couple on
the same plan.

cal force polyhedron to precisely correspond to these preassigned values is
quite challenging because a change in the length of an edge alters the area
of its corresponding face. Moreover, the change in the area of each face
also affects the areas of the adjacent faces (Fig. A.14a, b). Therefore, each
change results in a new distribution of forces in the faces of the force poly-
hedron. Figure A.14a represents a force polyhedron/force distribution for
the given force configuration of Figure A.13, and Figure A.14b represents
another force distribution for the same force configuration.

Nevertheless, the direction of the anti-resultant face of various force poly-
hedrons for this example is found by adding the given vector lengths in the
force configuration (Fig. 4.9c). Therefore, any change in the edge lengths
and areas of faces of the force polyhedron does not change the direction of
the anti-resultant face (Fig. A.14a, b). Obviously, change in the area of the
faces affects the magnitude of the equilibrating/anti-resultant face.
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A.3.2 Multiple polyhedral frames

In the previous section, I showed that that a force polyhedron correspond-
ing to a given force configuration might not be unique. Each of these force
polyhedrons is reciprocal to a closed polyhedral frame whose construction
indicates the location of application of the anti-resultant force to keep the
given forces in equilibrium. Interestingly, constructing a polyhedral frame
on the line of action of the forces by decomposing the force polyhedrons
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hedral frame for the given configuration of forces and b) another polyhedral frame
constructed from the force polyhedron with different edge lengths.
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results in the same location for the line of action of the anti-resultant force
(Fig. A.15a, b). Therefore, as long as the direction of the anti-resultant face
of the force polyhedron follows the linear lengths of the given force vec-
tors, the reciprocal polyhedral frames lie on the same line of action for the
anti-resultant force R′ in the system.
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