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THREE-DIMENSIONAL EQUILIBRIUM ANALYSIS
OF GOTHIC MASONRY VAULTS
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ABSTRACT

This paper introduces a powerful three-dimensional, computational equilibrium analysis method for
masonry vaults using funicular networks. Applications of this new approach, based on Thrust Network
Analysis and extended with insights from structural matrix analysis, for efficient funicular analysis of
complex vault geometries are provided. This method provides the foundation for a fully three-
dimensional limit analysis method for historic masonry vaults with complex geometries. The main
concept and algorithms are introduced, and trough two exemplary case studies, the potential of this
novel research is demonstrated. These discuss different assumptions on the flow of forces in Gothic
quadripartite vaults, adding to the long historical debate on this topic, and provide a stability analysis
of the intricate nave vaults of Sherborne Abbey, England.

Keywords: Unreinforced masonry, Gothic vaults, Equilibrium analysis, Lower-bound analysis,
Funicular analysis, Thrust Network Analysis

1. INTRODUCTION

1.1. Limit analysis of masonry structures

Unreinforced masonry constructions generally fail not due to lack of compressive strength, but due to
instability [1,2]. Understanding the equilibrium of structures in masonry is thus of primary concern.
The importance of equilibrium methods for the analysis of masonry structure, framed in an extensive
historical overview, is provided and argued very clearly by Huerta [3-5]. In order to determine the
stability, and hence to assess the safety of masonry structures, a powerful structural theory based on
limit analysis has been introduced by Heyman [6]. Within this framework, the safe theorem states that,
under certain assumptions such as “enough” friction at the interfaces, it is sufficient to find a possible
compression-only equilibrium state for the structure under the applied loads. In 2D, such equilibrium
can be found, and visualized, by constructing a thrust line that fits within the geometry of the
structure. Thrust line analysis is very powerful to explain the stability of two-dimensional structures,
but unfortunately limited to them, although it can be used to perform conservative pseudo-3D analyses
[7-10]. Boothby [11] provided a critical overview of the different analysis methods for masonry arches
and vaults, and calls for the development of an automated three-dimensional version of graphical
equilibrium analysis; a call which was echoed by Kurrer [12] and Marti [13].

1.2. Three-dimensional funicular analysis of masonry vaults

In order to extend thrust line analysis to fully 3D problems, O’Dwyer [14] introduced the use of three-
dimensional funicular force networks that are fixed in plan. Using optimization, the nodal heights of
compression-only networks that fit within the geometry of the structure could be generated.
O’Dwyer’s seminal work showed the importance of the topology of networks on the resulting
equilibrium solutions and introduced different objectives. His approach was limited to simple
examples (e.g. with high degrees of symmetry) as his framework did not include a general approach
on how to deal with the static indeterminacies in the horizontal equilibrium of networks.

! PhD, Assistant Professor, Inst. of Technology in Architecture, ETH Zurich, Switzerland, pblock@ethz.ch
* Research Assistant, Inst. of Technology in Architecture, ETH Zurich, Switzerland, lalorenz@ethz.ch

424



Based on O’Dwyer’s approach, Thrust Network Analysis (TNA) addressed this issue by introducing
reciprocal force diagrams [15] that explicitly describe the possible horizontal equilibria of funicular
networks under vertical loading [16-18]. TNA furthermore provided a general framework for
linearizing O’Dwyer’s equations of equilibrium for any type or topology of network. The original
TNA framework still had an important drawback for the analysis of vaulted structures with complex
geometries though: there was no general approach on how to automatically identify and control the
degrees of freedom of the allowed reciprocal force diagrams for given force patterns, which are thus
implicitly also the degrees of static indeterminacy of 3D funicular networks. The primarily “manual”
manipulation of reciprocal diagrams is of course not sufficient to find equilibrium solutions for
intricate, and thus highly dependent and statically indeterminate networks that fit within masonry
vaulted structures with tight and complex geometries.

Other recent computational approaches for three-dimensional limit analysis using funicular networks
can be found in Fraternali [19, 20], which Block [18] showed to be an equivalent framework to TNA,
and Andreu et al. [21, 22].

2. LIMIT ANALYSIS FOR MASONRY

2.1. Introduction

Applying limit analysis using a thrust line or its three-dimensional, discretized extension, a thrust
network, allows to formulate the hard problem of explaining the stability of a complex (vaulted)
masonry structure as (primarily) a geometrical problem [25]. Although it is sufficient, based on
the safe theorem, to find a possible equilibrium state for the vault, or in geometrical terms,
a possible compression-only network that equilibrates the loading and stays within the vault’s
geometry, it is useful to identify specific equilibrium solutions, that allow one to make an
assessment of the safety of the vaulted structure. Possible useful solutions are associated to the
following objectives:

— Geometric safety factor (Fig. 1a), which is defined as the ratio between the thinnest possible
arch/vault geometry enveloping a funicular solution in equilibrium with given loads over the
actual vault geometry [26, 10], giving a measure of the vault’s susceptibility under live loads.

— Minimizing/maximizing horizontal thrust (Fig. 1b), which provides the thrust values that bound
the range of thrust that the arch/vault will and can exert onto its neighbouring elements
(supports).

— Collapse load factor (Fig. 1c), which indicates how much live load an arch/vault can take before
a collapse mechanism is formed, i.e. the thrust line no longer fits inside of the arch.

In 2D, there is furthermore a direct relation between the thrust lines in Figures 1b-1c¢ and the collapse
mechanisms: where the line touches the intrados and extrados on alternate sides, hinges will form [1].
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Fig. 1 Different relevant specific funicular solutions for an arch, providing a) the geometric safety factor;
b) the minimum and maximum thrust; and c) the collapse load factor for a given live load location

2.2. Equilibrium of funicular networks

For the static analysis of (historic) masonry, which typically has a heavy, dominant self-weight, it is
sufficient to consider vertical loading only. The vertical equilibrium of a typical node i in a funicular
network (Fig. 2) is given by

by it by + by =h (1)

in which F'y ; are the vertical components of forces in branches ji, and P; is the load applied at node i.
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Fig. 2 a) A typical node 7 in the funicular network with applied load P; and branch forces Fj;, and b) the height
deviation |Z—ZT| of the thrust network from the middle surface of the vault

For gravity loading, the lines of action of the loads are vertical, and it is thus meaningful to keep the
horizontal projection of the laid-out network fixed during the analysis process. This is equivalent in
2D to thrust line analysis done using graphic statics, where indeed the nodes in the funicular form stay
on the verticals through the centroids of single stones, called voussoirs, of a masonry arch [10]. Live
loads are also applied at a specific (x,))-location, and thus want to stay fixed during the analysis.

When rewriting the equilibrium equations in (1) in function of the horizontal force components, i.e.
the thrusts in branches, F j; , one gets:

z =F 2
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in which /;;; are the horizontal lengths of branches ji. This is the problem that O’Dwyer solves in [14],
linearizing the equations by providing values for F'; ; after inspection of the network topology.

These F'j; ; need to be chosen such that they represent a possible horizontal equilibrium. In TNA, this
was guaranteed by constructing allowed compression reciprocal force diagrams, which then also
allowed to linearize equations (2) by measuring the lengths of the corresponding reciprocal branches,

I" i, corresponding to these thrusts F j:

*
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with g;; the well-known force densities [27] or tension coefficients [28].

2.3. Controlling the indeterminacy of funicular networks
For three-dimensional networks, obtaining one of the specific equilibrium solutions in Section 2.1 is
not a straightforward task, because of the high degree of static indeterminacy of such models. Put
simply, rather than having one horizontal thrust to consider, as for planar structures, these networks
have highly dependent combinations of horizontal thrusts in their elements. This was clarified and
visualized in TNA through the use of reciprocal force diagrams, which represent the different possible
horizontal equilibria of these networks [16].
A strategy is needed to
1) identify a set of thrusts, or equivalently branch force densities, that can be chosen freely,
independently from the others, and how the thrust values of the other, dependent branches then
can be computed from these; and
2) control theses independent thrusts, the variables of the problem, in order to obtain one of the
specific equilibrium solutions in Figure 1.

3. COMPUTATIONAL APPROACH

This section will outline the key steps of the new, nonlinear extension of TNA, which uses the matrix
formulation of the Force Density Method [27] and enhances it with insights provided by matrix
analysis of structural frames [28]. For a detailed description of the mathematical formulations and
algorithms involved and implemented, the authors refer to [24, 29].
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3.1. Overview problem

Addressing the first question in Section 2.3, Block and Van Mele [29] introduced a new approach
for identifying the force dependencies between branches in equilibrium networks with parallel loads
and fixed projection, based on matrix analysis of structural frames [28,30]. The main concept is that,
because only vertical loads are considered, each in-plane equilibrium of the (unloaded) 2D bar-node
structure, which coincides with the projection on the plane of the funicular network, represents
a possible horizontal equilibrium of a funicular network for the given loads. These equilibria
correspond to the states of self-stress of that planar structure, and identifying these, then give the
independent branches of the network, i.e. the branches whose thrusts, or equivalently force
densities Qindep, can be chosen freely without violating the equilibrium of the fixed planar network
topology.

Concerning the second question in Section 2.3, this paper will focus on one of the objectives: finding the
geometric safety factor (Fig. 1.a), which can be equivalently formulated as a function of the solution
which minimizes the least-squared “closest-fit” solution to the mid surface of the vault (Fig. 2a):

f(qindep) = “z —M Hz 4

with 2 = (z' + 2)/2, 7' and z" being the intrados and extrados heights of the vault. Additionally, one
needs to enforce that all q are positive to guarantee a compression-only solution.

3.2. Solving procedure

Finding the closest-fit solution for a funicular network with fixed projection can, as mentioned above,
be reduced to finding the set of qinqep that minimizes the global objective (4). As these variables do not
explicitly appear in the objective function, this problem is solved using a black-box function which
allows to describe the convoluted objection function f{z(q(qindep))) implicitly in several steps:

qindep > q > Z —> f(Z) %)

where the first two are linear transformations, and the last step involves taking the least-squares. These
steps that need to be computed at each iteration, can be solved fast.

Even though the closest-fit constrained optimization problem is non-linear and non-convex, it can be
solved efficiently with the computationally inexpensive implicit black-box function (5), by using
a quasi-Newton search method, and by providing the gradient vector of the objective function f, which
can be computed using the chain rule [27,23]. It is important to use good starting points for the search
because of the non-convexity of the problem. These want to be informed by the network topology and
target surface [24].

Lastly, it is important to note that finding this closest-fit solution forms the basis for finding the two
other objectives discussed in Section 2.1, as it provides a good, feasible starting point for these two
other objectives.

4. APPLICATIONS

4.1. Flow of forces in a quadripartite vault

Viollet-le-Duc’s assumptions [31] on how forces run in masonry vaults were corrected by Abraham
[32], explaining that the “real” direction of the forces were as the trajectories of a cannon ball dropped
on the extrados vault when rolling to the supports. Ungewitter and Mohrmann [8] and Rave [33]
defined the force paths in masonry vaults by cutting them up according to lines of steepest descent;
Heyman [34, 35] explained that gothic vaults acted as thin shells with stress concentrations along
creases; Mark et al. [36] found the “exact” flow of forces in gothic vaults based on the results of
photo-elastic analysis on plexi-glass scale models; Barthel [37] studied gothic vaults using non-linear
FEM analysis, but also provided a clear discussion of this topic looking at several vault geometries
and relating it to typically observed crack patterns; and O’Dwyer [14] proposed that a good
discretization should combine, or at least reflect, all possible ways the forces in the vault could act.

It is clear that there has been a long-lasting discussion on how gothic vaults exactly work. This section
shows that with the approach presented in this paper a systematic comparison between these different
assumptions is now possible. Thanks to the new algorithms, the different assumptions on the force
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paths can be evaluated and discussed using quantifiable measures, by e.g. comparing for each one of
them the obtained geometric safety factor.

Figure 3 shows the generic quadripartite vault geometry which we used as example, constructed
following Fitchen’s geometrical diagrams [38].

H,
/\\H"
Fig. 3 Generic quadripartite vault geometry with dimensions 13 m x 7 m x 4.5 m, and horizontal thrust
at the corners in both x- and y-direction

As discussed before, each assumption on the force flow can be abstracted to a discrete network,
constructed in plan. Figures 4-6 show the results of four different layouts of force networks. The first
pattern (a) assumes parallel arches carried to the supports by rib arches; the second (b) assumes arches,
arranged in a fan-like form, going directly to the supports; the third (c) is a superposition of the first
two patterns; and the last pattern (d) combines a regular quadrilateral grid with arches in plan going to
the supports, a free interpretation of Mark’s assumptions. The patterns are laid out such that they only
have a thrust components at the corners. For each network topology, the least-squares closest-fit
solution to the centre surface of the vault geometry is compared for this generic quadripartite vault,
considering the self-weight of the vault only, without fill.

(d)

Fig. 4 Resulting closest-fit solutions to the target surface, chosen as the mid surface of the vault geometry
in Figure 3; the pipes around the branches of the funicular network visualize the magnitude of force in them

[
\

(@) (b) (©) (d)
Fig. 5 Four different force patterns: a) parallel arches and rib arches; b) a fan-like arrangement of arches directly

going to the corner supports; ¢) a superposition of the first two patterns; and d) a pattern which combines
aregular quadrilateral grid with arches in plan going to the supports

Table 1 shows the summary of the results obtained with the closest-fit solving algorithm for the
different force patterns in Fig. 4-6, with m, the number of branches; #;, the number of free nodes; the
number of iterations; the objective function f{z) = |jz-z"||,, divided by the number of free nodes; the
maximum and average vertical deviation |z-z"'| (absolute value) of the compression solution z and the
target surface z'; and, ¢, the solving time in seconds (using a MacBook Pro with an Intel DuoCore
processor, 2.8 GHz).
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Fig. 6 The reciprocal force diagrams, corresponding to the respective closest-fit solutions for the four patterns in

Figure 5 and drawn to the same scale, show the distribution of thrusts. Although the horizontal thrust in x- and y

direction at the corner supports differ less than 5%, the thrusts are redistributed very differently inside
of the vault for each solution

Table 1 Results of the closest-fit solving for the different force patterns in Figs. 4-6: m, the number of branches;

n;, the number of free nodes; the number of iterations; the least-squares objective function f(z) = ||z-z™|, divided

by the number of free nodes; the maximum and average vertical deviation |z-z"| (absolute value) of the com-
pression solution z and the target surface zV; and, 7, the solving time in seconds.

Pattern | m n; k iter | f/m;[mm7] | |22 |max [Mm] | |22 Javer [mm] t [sec]
a 148 121 10 55 1778 142 29 0.839
b 252 213 18 95 242 54 12 1.976
C 380 261 34 249 187 62 13 7.027
d 480 225 36 526 337 84 10 17.423

It is not surprising that pattern (a) performs worst, as the simple arches running across the web of the
vault will have approximately catenary shapes and will thus never fit a pointed vault well.
A remarkable improvement is observed for pattern (b). Indeed, this fan-like arrangement is connected
at the vault’s ridges allowing for a “kink” in the funicular arches which are going across the web. The
best solution is achieved with the superposed pattern (c). Notice though that the improvement over (b)
is not that significant, which can be explained/seen by comparing their reciprocal diagrams: indeed the
reciprocal diagram of pattern (c) globally has similar thrust distributions as the one for pattern (b).
Pattern (d) does not perform better as the topology of the network is pretty constraining along the non-
supported boundaries, due to the deterministic three-valent nodes (cf. Section 2.3).

These findings add a new contribution to the historic discussion, and provide new arguments and
insights to come closer to a full understanding of the structural behaviour of masonry vaults. A more
extensive comparative study using this approach might provide a possible synthesis of the different
assumptions on the force paths. Such an exploration would only have value though for specific, built
vaults. It is important though to remember that all of these solutions are just lower-bound solutions,
which do not represent the “real” state of the vault; this one, we will never know.

4.2. Complex Gothic vault geometry

2 P v »
Fig. 7 Nave Vault of the Sherborne Abbey, Dorset, UK (Photo by Lawrence Lew,
lawrence.lew@english.op.org/); and target surface and piped closest-fit solution
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This section looks at the equilibrium of the nave vaults of Sherborne Abbey in Dorset, England,
finished around 1490 (Fig. 7). These intricate vaults are a cross between lierne and fan vaults. From
plans and section, complemented with photographs, a simplified 3D model was made of the vaults.
The main features of the vault then served as guide to draw a force pattern (Fig. 8a).

The pattern in Figure 8.a has 949 branches and 462 nodes. The problem is reduces to 183 variables,
showing that this is a highly statically indeterminate problem. The closest-fit funicular network was
solved in less than 8 min, showing that intricate network topologies, and complex vault geometries,
can be solved efficiently, and that the solving algorithm is robust, even for large problems.

(@) (b)
Fig. 8 (a) Form diagram, directly using the rib layout of the vaults, and (b) the resulting closest-fit reciprocal
force diagram

5. CONCLUSION

This paper showed through examples a robust and efficient solving algorithm for finding closest-fit
funicular network for masonry vaults with complex geometries. These solutions correspond to the
geometric safety factor for these structures. The presented framework, which extended Thrust
Network Analysis using matrix analysis, can be seen as a strong foundation for fully three-
dimensional equilibrium analysis of vaulted masonry.

Future work will include new optimization formulations that use this closest-fit solution to e.g. obtain
the minimum and maximum thrust solutions of vaults or compute the collapse load factor for critical
live loading cases. It is important to fully control all the degrees of indeterminacy in order to obtain
such an absolute minimum or maximum thrust solution. The hope is that, as in two-dimensional arch
analysis, these thrust networks can provide information about possible collapse mechanisms for fully
three-dimensional problems. These results can then be compared with other approaches for stability
assessment of masonry structures such as presented in [39].
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