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Abstract

Masonry structures are ubiquitous in our society, serving as housing for mil-
lions worldwide and forming a large part of the world’s built heritage. Their
assessment and preservation are essential to achieving a more sustainable
and resilient built environment.

This dissertation presents a novel computational approach to assess unre-
inforced vaulted masonry structures. A novel limit-analysis-based frame-
work is developed to search for admissible equilibrium states. The equi-
librium solutions considered are represented by compressive thrust net-
works within the structure’s geometry, representing their compressive flow of
forces. A modular multi-objective constrained nonlinear optimisation prob-
lem is formulated and solved using interior point and sequential least-square
quadratic programming techniques to search for admissible networks.

Different objective functions are implemented in the optimisation frame-
work, including the minimum and maximum horizontal thrust states, the
maximum Geometric Safety Factor (GSF), maximum vertical and horizontal
load multipliers, and the complementary energy minimisation for prescribed
foundation displacements. The problem’s constraints are formulated to
translate the limit analysis admissibility criteria to thrust networks. Gradi-
ent vectors and Jacobian matrices are described analytically and computed
modularly based on the objective, variables, and constraints selected.

The present formulation requires minimal input, encouraging its future ap-
plication as a practical numerical tool to assess existing masonry structures.
Only the structural envelope, typically obtained through surveys, and the
topology and planar geometry of the thrust network are needed for the
analysis. The networks’ topology is explored, quantifying different pat-
terns. Pattern modification strategies are developed for problems involving
different objectives. A new algorithm is described to identify the degrees
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of freedom in the networks necessary to analyse general topologies. A con-
vex load-path optimisation is formulated and used as starting point for the
nonlinear problems.

The framework developed provides a single approach which contributes to
three critical open questions in the field:

1. Computing the level of stability of vaulted masonry structures by in-
troducing the stability domain, enabling to compute global safety fac-
tors and evaluating the structural robustness.

2. Estimating a lower bound of horizontal and vertical collapse loads by
directly maximising a scalar load multiplier, contributing to protect-
ing structures against extreme external actions and evaluating newly
imposed loads.

3. Understanding the effects of foundation settlements on crack patterns
by investigating minimum energy solutions arising after differential
displacements, which can inform the identification and evolution of
pathologies in masonry structures.

Throughout the dissertation, several examples are presented to demonstrate
the possibilities of the framework. Finally, the implementation is offered as
an open-source Python package, enabling future collaboration and further
development.

Keywords: masonry structures, limit analysis, thrust network anal-
ysis, structural assessment, optimisation, vaults, safety factor, stability,
collapse loads, settlements.



Résumé

Les structures en maçonnerie sont omniprésentes dans notre société, ser-
vant de logement à des millions de personnes dans le monde et constituant
une grande partie du patrimoine bâti mondial. L’évaluation structurale et
la préservation des structures maçonnées sont essentielles pour achever un
environnement bâti plus durable et résilient.

Cette thèse présente une nouvelle approche informatique pour évaluer
les structures de maçonnerie voûtées non renforcées. Cette approche
est basée sur l’analyse limite des structures qui permet la recherche des
états d’équilibre admissibles. Les états d’équilibre admissibles considérés
sont représentés par des réseaux de poussée compressifs contenus dans la
géométrie de la structure. Ces réseaux de force modélisent un flux de force de
compression dans la structure. Un problème d’optimisation multi-objectif
contrainte modulaire est formulé et résolu à l’aide de techniques de program-
mation non linéaire dont la méthode de point intérieur et la programmation
séquentielle des moindres carrés.

Différentes fonctions objectives sont implémentées dans le cadre de
l’optimisation : les états de poussée horizontale minimal et maximal, le
facteur de sécurité géométrique maximal, les multiplicateurs de charge ver-
ticale et horizontale limite et la minimisation de l’énergie complémentaire
suite à des tassements. Les contraintes du problème sont formulées pour ex-
primer les critères d’admissibilité de l’analyse limite aux réseaux de poussée.
Les vecteurs de gradient et les matrices jacobiennes sont décrits analytique-
ment et calculés de manière modulaire en fonction de l’objectif, des variables
et des contraintes sélectionnés.

La formulation développée nécessite un apport des données minimal, encour-
ageant son application future en tant qu’outil numérique pratique pour éval-
uer les structures de maçonnerie. Seules l’enveloppe structurelle, générale-
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ment obtenue par des sondages, ainsi que la topologie et la géométrie plane
du réseau de force sont nécessaires à l’analyse. La topologie des réseaux
est explorée, et stratégies pour adapter les réseaux selon différents objectifs
sont présentés. Un nouvel algorithme est décrit pour identifier les degrés
de liberté dans les réseaux nécessaires à l’analyse des topologies générales.
Une optimisation convexe du chemin de charge optimal en compression est
formulée et utilisée comme point de départ pour les problèmes non linéaires.

Le cadre développé fournit une approche unique qui peut être utilisée pour
étudier trois questions critiques pour l’analyse des structures maçonnées :

1. Le calcul du niveau de stabilité des structures voûtées en maçonnerie
en introduisant le domaine de stabilité, permettant de calculer les
facteurs de sécurité globaux et d’évaluer la robustesse de la structure.

2. L’estimation d’une limite inférieure des charges d’effondrement hor-
izontales et verticales en maximisant un multiplicateur de charge
scalaire, en contribuant à protéger les structures contre les actions
externes extrêmes et en évaluant les charges nouvellement imposées.

3. Les effets des tassements sur les fissures couramment observés en
étudiant les réseaux de minimum énergie soumis à des de déplace-
ments différentiels, qui peuvent éclairer l’identification et l’évolution
de pathologies dans les structures.

Tout au long de la thèse, plusieurs exemples sont présentés pour démontrer
les possibilités du framework. Enfin, l’implémentation est proposée sous
la forme d’un package Python open source, permettant une collaboration
future et un développement ultérieur.

Mots-clefs: structures en maçonnerie, analyse limite, thrust net-
work analysis, évaluation structurelle, optimisation, voûtes, facteurs de
sécurité, stabilité structurelle, charges limites, tassements.
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Notation

Symbol Shape Description

Γ - form diagram
Γ∗ - force diagram
Γd - form diagram centroidal dual
G - thrust network
Λ - masonry envelope
ΛLB,ΛUB,Λm - intrados, extrados and middle surfaces
Λ̃LB, Λ̃UB, Λ̃m - intrados, extrados and middle heightfield
Λmin - masonry minimal envelope

xi, yi, zi - coordinates of vertex i
zLBi , zUB

i - intrados and extrados elev. at vertex i
zmi - middle surface elev. at vertex i
n - number of network vertices
m - number of network edges
ni, nb - number of free and support vertices
nF - number of faces
qi - force density of edge i
li - cartesian length of edge i
fi - axial force of edge i
k - number of independent edges

x, y, z [n× 1] vertex coordinates
xi, yi, zi [n× 1] free vertex coordinates
xb, yb, zb [ni × 1] support vertex coordinates
px, py, pz [n× 1] lumped vertex loads
pext
z [n× 1] external vertical loads

17



pext
h [2n× 1] external horizontal loads

q [m× 1] force density vector
qid [k × 1] independent force density vector
C [m× n] connectivity matrix
Ci [m× ni] connectivity matrix for internal nodes
Cb [m× nb] connectivity matrix for support nodes
E [2ni ×m] horizontal equilibrium matrix
Ed [2ni×m−k] dependent hor. equilibrium matrix
Eid [2ni × k] independent hor. equilibrium matrix
B [m× k] independent edges transformation matrix
Rx, Ry, Rz [nb × 1] reaction forces at supports
Ri [3× 1] reaction forces for support i
In [n× n] identity matrix of size n

Xproj [n× 3] projected coordinates onto middle surface
V0,V1 [g × n] mapping matrices for tributary weight
V2 [g × nF] mapping matrix for face centroids
Vc [nF × n] matrix to compute mesh face centroids
a [g × 1] elementary triangles area
g - number of elementary triangles
ρ - masonry specific weight
t [n× 1] variable local structural thickness
t - constant structural thickness

t0 - thickness at start of optimisation
tmin - minimum structural thickness
d - orthogonal offset distance
δp - vertical offset distance
n̂UB
i , n̂LB

i , n̂m
i [3× 1] normal unit vectors

z̄LBi , z̄UB
i , z̄mi - starting elevations for offset

bx,i, by,i - bounds for reaction vector at support i
Fx,i, Fy,i - bounding reaction function for support i
Fx,Fy [nb × 1] vector of bounding reaction functions
qmax, qmin - bounds on force densities
zmin - minimum elevation (if no intrados)
ncon, neq, nvar - n. of constraints, equalities and variables

λv - vertical load multiplier
λh - horizontal load multiplier
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ϕ, ϕext - internal and external load-path
Pmax - maximum applied load
W - structure’s total self-weight
T - horizontal thrust
V - vertical support reaction
Wc, W̃c - cont. and discrete complementary energy
ū [nb × 3] prescribed foundation displacement
ϵ - overall stiffness parameter
E - Young modulus
As - cross-section bar area

fobj - objective function
fmin - minimise thrust function
fmax - maximise thrust function
ft - minimise thickness function
fv - maximise vertical load mult. function
fh - maximise horizontal load mult. function
fc - minimise complementary energy function

Xc [3× 1] center of diagram or masonry shape
sm, sLB, sUB - middle, intra- and extrados functions
R,Rc, Ro - radius, central and oculus radius
nM, nP - number of meridians and parallels
ns, nx, ny - discretisation parameters
qbound - force density value on boundary edges
qinner - force density value on inner edges
β - dome and vault springing angle
l0 - vault base length
s - vault span
α - support rotation
lx, ly - planar dimensions
h - structure’s height
ai’ - axis of symmetry i
∆ - sliding diagram magnitude
λ - inclination mixed diagram parameter
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Chapter 1

Background

This chapter introduces the present dissertation. First, a brief introduc-
tion to masonry structures is given, followed by the main motivation and
challenges in analysing masonry buildings. Next, the thesis statement is
presented, and the structure of the dissertation is listed.

1.1 Introduction

The assessment of unreinforced masonry structures (URM) is relevant to
society since a large part of the world’s built heritage was constructed with
this technique, and millions of people live in masonry buildings worldwide.
Masonry construction techniques are among the most ancient adopted by
humankind. They have evolved with our society from simple and heavy
arches to complex and efficient building structures still standing after cen-
turies (Huerta, 2020), such as the examples depicted in Figure 1.1. Preserv-
ing this cultural heritage and ensuring the safety of masonry buildings are
tasks of first concern to the engineering community.

Masonry structures are composed of discrete, individual elements carefully
placed to shape the structure. Often, the simplicity of its forming elements
– blocks – contrasts with the complexity of its final geometry. At the level
of the joints, either a thin layer of mortar or dry joints is used, and the
structures stand primarily by virtue of their geometry rather than material
strength (Huerta, 2001). Masonry buildings are well suited to construction
even in a low technological context and can be erected using simple or
natural materials, such as stones and fired clay bricks (Ramage et al., 2010).
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(a) (b)

Figure 1.1: Examples of masonry vaults: (a) King’s College Chapel in Cam-
bridge, UK, and (b) Sainte Chapelle in Paris, France. (Photos: Author)

However, despite the historical importance of masonry structures, fewer spe-
cific analysis tools have been developed to assess masonry structures com-
pared with modern engineering materials, such as reinforced concrete and
steel (Tralli et al., 2014). Modelling the structural response of masonry con-
structions is challenging, especially in vaulted systems, given their complex
geometry, anisotropic material behaviour, and the difficulty in acquiring
precise mechanical data from the existing buildings and their surroundings
(Angelillo et al., 2014).

This dissertation focuses on developing a novel limit-analysis-based ap-
proach to assess vaulted masonry structures adapted to the commonly avail-
able data from surveys and designed to output relevant information about
their level of stability, safety factors, and closeness to the collapse.

The primary motivation for this research is summarised in the following
section, and the main challenges for modelling masonry structures are sub-
sequently listed.
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1.2 Motivation
This chapter lists the primary motivation for this dissertation.

1.2.1 Lack of practical masonry analysis tools
Assessing masonry structures demands specific analysis tools and meth-
ods. Recently, the scientific community has developed a series of modelling
strategies to predict and assess the mechanical behaviour of masonry struc-
tures (D’Altri et al., 2019). However, most of these methods rely on the
material properties of masonry, which are highly anisotropic and hard to de-
termine (Page, 1981). As pointed out in D’Altri et al. (2022); Cattari et al.
(2021), assuming conventional mechanical properties provided in national
code provisions without proper calibration techniques can lead to inaccurate
results. Furthermore, as discussed in Gilbert et al. (2022), detailed mod-
elling strategies broadly adopted in academia are often impractical since
cumbersome complex models must be constructed against typical project
constraints on time and budget. Consequently, difficulties in modelling
masonry mechanical systems increase the risk of proceeding with wrong in-
terventions when assessing masonry structures, with consequences on their
structural behaviour post-intervention (Angelillo, 2019).

1.2.2 Lack of knowledge on masonry mechanics
Moved by the population growth and the expansion of the urban centres,
new construction methods have been developed, such as reinforced concrete
and steel structures. Elastic structural analysis is the predominant tool to
analyse these structures, especially with the introduction of Finite Element
Analysis (Hughes, 2012). As a reflex, the education of architects and civil
engineers shifted towards providing economical design and construction so-
lutions for these new materials. Consequently, masonry mechanics, assess-
ment, and rehabilitation disciplines declined and need to be reintroduced,
especially in the context of cultural building heritage (ICOMOS, 1993).

1.2.3 Increasing need for repurposing of infrastructure
Given the climate emergency, the Architectural Engineering and Construc-
tion (AEC) industry emissions are being revisited, showing that the indus-
try is responsible for up to 40% of the global resource consumption (OECD,
2019). In this context, the rehabilitation and maintenance of existing infras-
tructure and housing, partly constructed with masonry techniques, becomes
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pressing. Rehabilitation projects require the consideration of new loading
cases, interaction with new adjacent elements, and adapting existing struc-
tures to modern building codes. These analyses should result in estimates of
the structural safety levels, collapse loads, and residual capacity considering
existing crack patterns and deformations, pointing to the need (or not) for
strengthening interventions (e.g., De Lorenzis, 2008). These tasks require
appropriate analysis tools and methods to accurately model the mechanics
of masonry structures and enable repurposing and maintenance.

1.2.4 Opportunity to design with low-carbon materials
Recent research has demonstrated how adopting masonry-inspired solutions
can be an alternative to reduce embodied emissions of building elements,
with applications to floor systems (Liew et al., 2017; Hawkins et al., 2019;
Oval et al., 2023; Ranaudo et al., 2021; De Wolf et al., 2017; Ramage et al.,
2022), as illustrated in Figure 1.2.

Figure 1.2: Examples of funicular floor systems: (a) discrete 3D-printed
ribbed concrete floor (Rippmann et al., 2018), (b) thin shell concrete shell
floor (Hawkins et al., 2019), (c) discrete thin shell floor (Oval et al., 2023),
(d) unreinforced funicular floor at HiLo, Dubendorf (Ranaudo et al., 2021).

Nevertheless, the mismatch in the knowledge, acceptance, and analysis
tools available to masonry hinders innovations in masonry-inspired funicular
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structural design that could have a highly scalable effect on the construction
industry (Block et al., 2020).

1.3 Challenges

This section lists the main challenges related to the mechanical behaviour
of masonry structures and highlights the difficulties in acquiring their geo-
metrical and mechanical data.

1.3.1 Mechanical behaviour

The mechanics of masonry structures are challenging because of the follow-
ing specific aspects:

• Masonry structures are heterogeneous, formed by the arrangement of
blocks.

• The material presents an anisotropic strength behaviour, with high
compressive capacity and low (usually negligible) tensile strength.

• Under the action of even small foundation settlements, cracks might
form, creating hinges affecting the structures’ stiffness and load-
carrying capacity.

• The structure can accommodate large deformations through the de-
velopment of hinges until it finds a new equilibrium position.

• Masonry structures are highly indeterminate, so finding the exact in-
ternal stress state is effectively impossible.

This particular mechanical behaviour precludes the use of general analy-
sis tools without properly considering either material properties or specific
modelling the internal joints (Roca et al., 2010). Therefore, given the partic-
ular mechanical behaviour of masonry, the application of plastic, instead of
elastic, modelling strategies surge as an alternative (Heyman, 1966). More-
over, as argued in Como (2015), the collapse in masonry structures can occur
even if the material does not reach its maximum strength. Consequently,
the collapse in masonry structures relates to a lack of stability instead of ma-
terial strength, encouraging the use of equilibrium-based methods to assess
their stability (Ochsendorf, 2002; Huerta, 2001).
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1.3.2 Data acquisition

Besides the mechanical particularities inherent to masonry modelling, ac-
quiring mechanic and geometric data through surveying is challenging. The
main reasons for being so are listed:

• Accurately determining the mechanical properties of masonry struc-
tures is complex. Even invasive tests result only in local informa-
tion that does not necessarily extend throughout the building as these
might have been built over long periods and with different materials
(Roca et al., 2013). Similarly, the stiffness of the foundations is hard
to estimate.

• Masonry structures are usually old and might have undergone a series
of interventions. Information about the construction, loading history,
and the evolution of deflections and deformations can hardly be re-
trieved (Wilding et al., 2017).

• Even when detailed surveying is conducted, obtaining the blocks’ di-
mensions and arrangement is nearly impossible, especially since mul-
tilayers of masonry are often used, e.g., three-leaf walls. The survey
is also susceptible to blind spots and limited access to portions of the
structure.

• Transferring the acquired geometry to structural models is challeng-
ing and, in many cases, overly simplified to two-dimensional sections
(Castellazzi et al., 2015).

The uncertainty in determining the mechanical parameters is a crucial chal-
lenge to building accurate models for masonry systems (Angelillo et al.,
2018). The difficulties in determining these mechanical parameters favour
the adoption of geometry-based methods for the analysis, i.e., methods that
do not rely on material properties or foundation stiffness.

There are also critical limits to the geometry detail that can be acquired
from existing structures. After geometric surveys, e.g., laser scans or pho-
togrammetry, the output derived corresponds to point clouds of the visi-
ble structural geometry. This information enables, at most, the construc-
tion of surfaces of intrados and extrados and the main dimensions of load-
bearing elements and lateral systems. Consequently, obtaining the actual
stereotomy of the building is often irrealistic. Recent approaches assume
either a certain level of imperfection (Dell’Endice et al., 2021) or work with
representative surfaces of the building (Block and Lachauer, 2014).
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1.4 Thesis statement

As shown in Huerta (2001), equilibrium methods provide an inexpensive
and straightforward way to analyse the stability in masonry structures sup-
ported by the limit analysis theory (Heyman, 1966). The extension of this
approach to three-dimensional structures resulted in the development of
Thrust Network Analysis (Block, 2009), or TNA, enabling the exploration
of three-dimensional equilibrium.

The applications of TNA to the context of assessment present a series of ad-
vantages. For example, it allows for direct control over the possible internal
force equilibria of the structure, is well-aligned with the assessment needs
and the typical geometrical and material data available, can be directly ap-
plied to three-dimensional problems, and can be developed and distributed
under an open-source license and a collaborative environment.

Therefore, this dissertation builds on the latest developments of TNA to
provide a complete framework for masonry assessment. It couples TNA with
robust optimisation methods to explore the domain of admissible states in
the structure. The framework will then be used to estimate safety levels
and collapse loads accurately and model the effect of settlements.

Besides contributing to the intellectual development of lower-bound limit
analysis methods, the results of this thesis are implemented in open-source
numerical applications that can serve as a practical analysis tool and allow
for future collaborative research.

1.5 Thesis structure

This dissertation is divided into four parts and ten chapters. A summary
of each part and chapter is presented here.

PART I: Introduction

Part I presents the introduction for the work, including background, litera-
ture review, and defining the scope of the work.

Chapter 1: Background

This chapter presents the background and motivation for this dissertation.
It highlights the relevance of masonry structures to society and the lack of
tools and methods to perform their structural assessment.
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Chapter 2: Literature Review

This chapter presents the literature review associated with the structural
analysis of historic masonry constructions. A brief overview of historical
analysis tools is presented, followed by a list of modern tools currently
applied to masonry structures. The chapter focuses on the applications of
limit analysis to masonry structures, highlighting its advantages and listing
the hypothesis necessary for its application. An overview of equilibrium
methods for masonry is presented, listing significant gaps that limit the
adoption of such techniques in current engineering practice.

Chapter 3: Scope of the Work

Given the significant gaps that hinder the adoption of equilibrium and limit
analysis techniques for masonry structures, this chapter defines the scope of
the present dissertation and highlights the research questions that will be
addressed.

PART II: Methodology and Implementation

Part II presents the methodology and implementation developed to model
and assess masonry structures.

Chapter 4: Equilibrium Force Network

In this chapter, the main elements of Thrust Network Analysis (TNA) are
defined, and a numerical description of the equilibrium in force networks
is given in terms of force densities. The particular case of networks with
fixed horizontal projection is discussed, requiring determining the degrees of
freedom. A novel algorithm to automatically find these degrees of freedom
is presented. It is used to illustrate the potential to describe the infinite
space of equilibrium force networks with fixed horizontal projection.

Chapter 5: Constrained Equilibrium

This chapter describes the search for admissible stress states as a constrained
nonlinear optimisation problem (NLP). The constraints from limit analysis
are introduced and translated into the context of TNA. Different objective
functions relevant to masonry structures are presented, and a numerical
description to compute these objectives is derived in terms of the equilibrium
variables. The sensitivities and Jacobian matrix for the problem are also
derived for a proper description of the NLP. Furthermore, a convex starting
point for the NLP is presented.

Chapter 6: Implementation
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This chapter presents the implementation of a numerical package to perform
the constrained nonlinear optimisation problem mathematically defined in
the previous chapter. The features and capabilities of this package are
listed, including the strategy adopted to solve the nonlinearly constrained
problems.

PART III: Results

Part III lists the main results of this work with three practical applications
of the framework developed, computing the level of stability in masonry
structures, collapse loads, and studying the effect of foundation displace-
ments.

Chapter 7: Stability of masonry structures

This chapter shows the application of the framework developed to compute
the stability of vaulted masonry structures. It proposes a methodology for
computing the Geometric Safety Factor (GSF) and computing its stability
domain. These metrics enable quantifying stability on vaulted structures.
This chapter also discussed the effects of analysing the problem with differ-
ent form diagrams and how to evaluate these diagrams based on the metrics
introduced.

Chapter 8: Collapse loads on vaulted masonry structures

This chapter shows the application of the framework developed to estimate
collapse loads in vaulted masonry structures. This well-known problem is
relevant for structures undergoing repurposing and for the static simulation
of earthquakes. For this problem, the modification of the form diagram
is necessary, and practical strategies to adapt the diagram to the applied
load are presented. Examples include domes and vaults undergoing non-
symmetric loading cases and horizontal actions.

Chapter 9: Understanding the effects of foundation settlements

This chapter shows the application of the framework developed to compute
internal stress states compatible with prescribed foundation displacements.
Support displacements are common in masonry structures and can lead
these structures to collapse. These displacements influence the structure’s
mechanical behaviour, resulting in frequently observed cracks or fractures.
The crack pattern arising at the onset of these displacements is suggested by
computing the compatible stress states with given foundation displacements.

PART IV: Conclusions
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Part IV closes this dissertation by summarising the main findings and pre-
senting an outlook for future work.

Chapter 10: Conclusions

This chapter summarises the findings of the present dissertation and lists the
main contributions of this dissertation. The limitations and opportunities
arising from the framework developed are also presented.
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Literature Review

This chapter presents the literature review for the present dissertation.
First, the evolution of historical approaches to analysing masonry structures
and concepts of graphic statics are presented. Limit analysis is introduced,
and modern numerical tools developed according to its principles are listed.
Novel lower-bound equilibrium approaches are discussed, which are the the-
oretical base of this work. Finally, a discussion of current methods available
in engineering offices is presented. This section lays the foundation for this
dissertation’s research objectives.

2.1 Historical approaches

This section discusses the historical evolution of methods to analyse ma-
sonry structures introducing graphic statics and thrust line analysis and
highlighting the rise and decline of these methods.

2.1.1 Scientific understanding of internal forces

According to Huerta (2006), the construction of masonry structures dates
back to at least 2000 BC in Mesopotamia. The first discovered arches
would span only around 2 m. With the advances in masonry construction
techniques, these spans rose significantly, reaching, e.g., 43 m as in the
Roman Pantheon. It is agreed that the development of masonry systems
throughout history has been heavily based on experiments and proportion
rules transmitted among masons, as in the rules noted in Derand (1643) to
estimate the required buttress width for vaulted structures.
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The initial scientific understanding of the internal forces in masonry struc-
tures appears in Hooke (1676). Hooke writes that: “As hangs the flexible
line, so, but inverted stands the rigid arch”. Hence, the natural shape ob-
tained from the gravity of a flexible line with distributed weight will, when
inverted, represent the ideal shape to equilibrate these weights against grav-
ity in compression. This flexible line is known today as the catenary or
funicular. Figure 2.1a shows Hooke’s flexible and rigid lines.

Hooke’s work has influenced the work of engineers in the following cen-
turies. Poleni (1748) applied the catenary concept to the dome of St. Pe-
ter’s Basilica in Rome. As reported in Mainstone (1999); Block, DeJong and
Ochsendorf (2006), Poleni’s analysis divided the dome into lunettes subdi-
vided into 32 portions. Weights proportional to the dome were attached to
a rope which took the shape of a modified catenary. Poleni shows that, since
the inverted catenary is within the dome’s section, a compressive, internal
force path is possible in the structure (Figure 2.1b). Therefore, its overall
geometry is stable and safe.

Figure 2.1: (a) Hooke’s inverted catenary, and (b) application of this concept
to the dome in St. Peter’s Basilica in Rome. Image after Poleni (1748).

Hooke’s ideas propelled the search for internal forces in arched structures,
which advanced the development of graphic statics, as shown in the next
section.
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2.1.2 Graphic statics

The graphical representation of the equilibrium of forces has its origins in
Stevin (1586). In Varignon’s Nouvelle Mechanique ou Statique (Varignon,
1725), the application of graphical principles to systems of ropes and weights
is demonstrated, as depicted in Figure 2.2.

Figure 2.2: Reciprocal figures by Varignon (1725) presenting the equilibrium
of flexible hope structures in tension.

Varignon’s drawing n.92 is represented in Figure 2.3 to formalise concepts
of graphic statics used in this dissertation. The rope system is represented
by a primal or form diagram (Γ) in which every edge represents a rope
segment, composing the structure (Figure 2.3a). The structure has ten
nodes numbered from 1 to 10. Spaces are defined among the edges in the
structure noted from A to F. The equilibrium of Γ is then verified by the
reciprocal or force diagram Γ∗. These two diagrams have the same number of
edges, and each edge eij in Γ has a corresponding edge e∗ij in Γ∗. Similarly,
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each node in the primal maps to a face in the dual and vice-versa. The
primal and reciprocal diagrams respect the following rules, which will verify
the equilibrium in the structure:

• All corresponding edges in the form eij and force e∗ij diagrams are
parallel (eij ∥ e∗ij).

• The length of an edge l∗ij in the force diagram is proportional to the
axial force fij , carried by its corresponding edge in the form diagram.

• Each node i in the form diagram is represented by a closed polygon
P ∗
i in the force diagram, which will represent its nodal equilibrium
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Figure 2.3: (a) Form diagram (Γ) representing Varignon’s drawing n.92
(Varignon, 1725), marking the nodes 1 to 10 and spaces A to F. (b) Force
diagram (Γ∗) presenting the equilibrium of the structure. The force magni-
tude at each edge of Γ maps the length of corresponding edges in Γ∗.

In the reciprocal diagrams from Figure 2.3, the force f12 in edge e12 is equal
to the length AB of the edge e∗AB in the reciprocal diagram (Γ∗). The pair of
reciprocal edges are indeed parallel, as noted. Vertex 2 in Γ is also marked,
and its equilibrium is verified by the close polygon 2, highlighted in Γ∗.

These reciprocal rules were formally introduced in Maxwell (1864) and con-
solidated as a structural analysis theory after Culmann (1866). The devel-
opment of graphic statics techniques revolutionised the analysis of masonry
arches and even the design of novel structures, as in an overview in Lee
(2018). When applied to masonry, graphic statics enables searching for the
internal states by employing reciprocal diagrams without constructing phys-
ical models. Thrust line analysis appeared in this context, as discussed in
the following section.
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2.1.3 Thrust lines and the slicing technique

A thrust line corresponds to a discrete compressive equilibrium solution rep-
resenting the internal stress states in masonry structures. It can be applied
in combination with graphic statics, as depicted in Figure 2.4. A thrust
line (G) is shown within the geometry of an arch (Λ). The thrust line is
discretised based on the arch’s voussoirs. Each vertical load applied to a
vertex i of the thrust line corresponds to the weight (wi) of the correspond-
ing voussoir. The force diagram comprises the multiple local equilibria in
the nodes of the thrust line’s vertices. The reaction force (R) is decom-
posed into its components, horizontal (T) and vertical thrust (V), whose
magnitude is obtained by measuring the reciprocal elements in Γ∗.
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Figure 2.4: Trust line (G) within the semi-circular arch (Λ) highlighting the
(equilibrium of) block i. The global equilibrium is described by the force
diagram (Γ∗).

This approach finds different equilibrium states in masonry arched struc-
tures, supported by the reciprocal relations from graphic statics. A series of
analyses were conducted throughout the 19th century applying this concept
to arches and bridges (Moseley, 1843; Snell, 1846; Jenkin, 1876). Advances
in the technique allowed it to be extended to some three-dimensional sym-
metric problems, such as domes (Eddy, 1877; Dunn, 1904). These advances
resulted in the slicing technique, which has been applied since Ungewitter
(1890), as depicted in Figure 2.5.

With the slicing technique, each slice of the vault is analysed separately as
an arch and verified with thrust lines. In Figure 2.5, the thrusts converge to
the diagonals, where they are (graphically) summed up and converge to the
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Figure 2.5: Slicing technique applied to a square cross vault from Ungewitter
(1890).

corner supports. This technique introduced, for the first time, a procedural
approach to dealing with general geometries. Any vaulted structure can
be sliced into equivalent arches and analysed. However, the constructions
become cumbersome when the geometry becomes complex or even non-
symmetrical. For this reason, the method in practice is limited to groin and
symmetric vaults, as argued in Block (2009), and it requires high graphical
expertise to properly adjust the thrust magnitude in the segments such that
all thrust lines are within the vault’s geometry.

2.1.4 The decline of graphical methods
The application of thrust lines and graphic statics, in general, declined
toward the beginning of the 20th century, influenced by the development
of elastic analysis. Elastic analysis computes stresses and deflections in
structural systems by assuming a constitutive relationship to the material.
The theory applies well to bilateral, homogeneous systems but is limited to
describing the mechanics of discrete, unilateral models like masonry (Como,
2015).
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Indeed, finding a reliable constitutive law for a heterogenous system of
blocks is challenging (Boothby, 2001). Moreover, large stress concentrations
are obtained after (even small) support displacements in elastic analyses.
However, due to its unilateral behaviour, masonry structures accommodate
large foundation settlements by developing hinges or cracks instead of stress
concentrations. In Danyzy (1732), the collapse of a series of masonry sys-
tems is documented, highlighting that the instability is caused by hinges
and displacements instead of stress concentration (Figure 2.6).

Figure 2.6: Collapse in arches highlighting the creation of structural hinges
(Danyzy, 1732).

As argued by Huerta (2020), a series of tests conducted in Engesser (1880);
Pippard et al. (1936) pointed to a mismatch in the collapse states obtained
in masonry arches with elastic analysis. The work of Pippard et al. (1936)
indeed led to the development of plastic and limit analysis as a better-suited
foundation for the analysis of masonry structures.

2.2 Limit analysis

Limit analysis is defined in this section. The origins of the method are pre-
sented in Section 2.2.1. The assumptions required to apply limit analysis to
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masonry structures are summarised in Section 2.2.2, and the limit analysis
theorems are listed in Section 2.2.3.

2.2.1 Plastic analysis

Plastic analysis developed following the mismatch between collapse loads
in structural systems and the results from elastic analysis as noted in Sec-
tion 2.1.4.

The method was developed initially for steel frames (Symonds and Neal,
1951; Baker et al., 1956; Neal, 1958; Prager, 1959). Under the application
of an increasing external load on a steel frame, the collapse does not oc-
cur until sufficient hinges are developed in the structure. Hinges develop
when the material achieves the yielding criteria, and the stresses are locally
redistributed. If the external load exceeds the elastic limit, the plastic re-
gion propagates through the structure until the collapse. Therefore, unlike
elastic, plastic analysis focuses on the states of the collapse of the structure
rather than computing its current stress state.

The search for the collapse states or collapse loads form the so-called limit
analysis branch of plastic analysis. The development of plastic analysis
allowed for the design of economical steel frames, as the plastic collapse loads
are higher than the ones computed with elastic analysis. The extension of
plastic analysis to masonry structures is credited to Heyman (1966), after
Kooharian (1952), as presented in the next section.

2.2.2 Heymanian model

The application of limit analysis to masonry structures under the Heyma-
nian model (Heyman, 1966) requires verifying three main assumptions on
the material as listed below:

(i) masonry’s compressive strength is infinite,

(ii) masonry’s tensile strength is considered null, and

(iii) no sliding occurs between the elements of the structure.

These assumptions, even if crude, accurately model masonry structures
because (i) the levels of stress encountered are usually low, far from the
stone’s compressive strength; (ii) the structure might be constructed using
dry joints, or, even if mortar is applied, the quality of mortar connecting the
blocks is usually weak or has decayed, being orders of magnitude inferior
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to its compressive strength; and, (iii) existing historic URM structures, in
general, were built carefully with an appropriate stereotomy or construction
detailing to avoid sliding.

Figure 2.7 illustrates a joint’s yield interface and equivalent internal stress
state. In Figure 2.7a, the resultant (N) is applied within the joint with
eccentricity e < h. In Figure 2.7b, the resultant is at the edge of the
interface, generating an effective moment M = hN , creating a hinge. The
simplified yield surface is shown in Figure 2.7c as the open triangle AOB.
With the resultant at any point internal to this triangle, a hinge will not
form, and at lines AO and OB, the hinge appears.

M=±hN
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Figure 2.7: Admissible domain for two blocks after Heyman (1966). (a)
Internal forces within the joint, at eccentricity e < h, (b) criteria for hinge
formation (e = ±h), and (c) yield surface for the interface.

2.2.3 Limit analysis theorems

Limit analysis solutions can be found with the applications of the lower-
bound, or safe theorem and upper-bound, or unsafe theorem.

According to the safe theorem, a structure is safe if an admissible stress state
can be found. Assuming the Heymanian model, admissible stress states are
compressive force paths within the structure’s geometry. In two dimensions,
this set of compressive, internal forces can be represented with a thrust line
(e.g., Figure 2.4), which corresponds to the line connecting the resultants
of the internal forces of the structure. For three dimensions, the internal
stress fields extend to a compressive network or a compressive membrane.

On the other hand, the unsafe theorem searches for kinematic mechanisms
for which the structure would no longer be safe or stable. For example, when
studying the problem of a collapse load, each mechanism associates with a
given (unsafe) load magnitude. An upper bound of the load magnitude can
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be computed by proposing different mechanisms or hinge positions in the
present case.

For perfect plastic materials, the safe and unsafe theorem should converge
to the same collapse state (Prager, 1959).

Section 2.3 gives an overview of lower-bound equilibrium methods, which
correspond to the core methods used for this dissertation. An overview
of upper-bound limit analysis methods is given in Boothby (2001); Como
(2013); D’Altri et al. (2019) with modern applications to three-dimensional
geometries in Chiozzi et al. (2017); Scacco et al. (2020). The application of
general analysis methods to masonry structure is presented in Section 2.4.

2.3 Lower-bound equilibrium methods
With no claim of completeness, this section lists the recent advances in nu-
merical methods that search for admissible stress states in masonry struc-
tures that have influenced the present dissertation. Modern thrust line
approaches are listed in Section 2.3.1, and two strategies for finding ad-
missible states in 3D structures are presented: membrane-based approaches
(2.3.2) and thrust network approaches (2.3.3). Block-based approaches are
presented in Section 2.3.4.

2.3.1 Modern thrust line approaches
As shown in Section 2.1.3, the search for admissible states in two-
dimensional arches can be performed by finding thrust lines within the
structure. While the graphical construction of these thrust lines is tedious
and requires experience, a series of numerical tools have been developed to
ease this process.

An algebraic formulation is proposed in Van Mele and Block (2014) to
find form and force diagrams without the need to draw them procedurally.
This framework is revisited in Alic and Åkesson (2017); Maia Avelino, Lee,
Van Mele and Block (2021), and interactive modifications to these diagrams
are introduced. Thrust line approaches have been the core of 2D masonry
analysis tools such as LimitState Ltd (2020); Obvis (2016).

Thrust line models have been combined with optimisation algorithms to
search for specific solutions, such as minimum and maximum thrusts in
Marmo (2021) and to compute safety factors in Galassi and Tempesta
(2019). A real-time interactive thrust line method is also proposed in Block,
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Ciblac and Ochsendorf (2006), enabling drawing thrust lines and observing
hinge openings for foundation displacements in the arch.

Recent studies have extended thrust line principles to 3D or pseudo-3D
structures such as the dome under symmetric loading cases (Aita et al.,
2019; Zessin et al., 2010; Paris et al., 2021) and spiral staircases (Angelillo
et al., 2021).

These developments increase the options available for analysing arches and
axisymmetric structures. However, extending lower-bound methods to 3D
is necessary to analyse vaulted systems. Two main strategies have been
developed to cope with this problem, revisited in the following sections.

2.3.2 Membrane-based approaches

Membrane-based approaches search for admissible states in spatial masonry
as compressive membranes within the structural geometry.

In this method, the equilibrium equations are solved by assuming a Pucher
formulation and considering the potential stress (or Airy) functions to de-
scribe the internal distribution of the stresses (Fraternali et al., 2002). A
second-order differential equation describes the vertical equilibrium with
this approach. Different approaches have been developed to solve this dif-
ferential equation. In Fraternali (2010); Angelillo et al. (2013); Olivieri et al.
(2021), an approximation of the relevant functions is made in polyhedral do-
mains, in Fraddosio et al. (2020), a polygonal approximation is used in an
equally spaced point grid, in Miki et al. (2015), NURBS surfaces are used,
and analytical solutions are obtained for simple geometries in Baratta and
Corbi (2010).

The stresses in the membrane are related to the curvature of the Airy stress
function. The compression-only requirement is ensured by verifying that the
potential function is concave. The membrane’s geometry can be updated by
modifying the stress function’s shape. An interactive approach is proposed
in Fraternali (2010) to update the membrane and the potential stress ge-
ometry until the membrane is within the structural geometry, i.e., intrados
and extrados and the stress function is concave. This iterative procedure
applied to a cross vault is depicted in Figure 2.8.

However, the broad application of this method is currently limited due to
the difficulties in solving these differential equations. For example, not
continuously supported structures are hard to analyse, concentrated loads
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Figure 2.8: Obtaining a compressive thrust membrane iterating on the ge-
ometry and the Airy stress function. From Fraternali (2010).

can not be easily applied to the problem, and the method is limited to
vertically applied loads.

Alternatively, thrust network approaches analyse this problem in a discre-
tised manner. They are presented in the following section.

2.3.3 Thrust network approaches

As a direct extension of the discrete thrust lines for three dimensions, thrust
network approaches search admissible states using compressive force net-
works.

Even though the equilibrium of force networks had been investigated since
Schek (1974); Williams (1990), the first formal application of force net-
works to the equilibrium problem of masonry vaults is presented in O’Dwyer
(1999). In this work, general networks are considered, and optimisation
techniques are applied to find compressive equilibrium solutions within the
bounds of the masonry. This method, however, does not deal with differ-
ent horizontal force distributions in a given network and does not allow
exploring different degrees of freedom.

Following this work and supported by graphic statics principles, Block and
Ochsendorf (2007) proposed Thrust Network Analysis (TNA) as an exten-
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sion of thrust line analysis for masonry vaulted structures. By constraining
the externally applied forces to be vertical, the same reciprocal rules of
graphic statics (see Section 2.1.2) can be extended to deal with the horizon-
tal equilibrium in the networks. With TNA, the equilibrium of the spatial
thrust networks (G) is controlled by reciprocal form (Γ) and force (Γ∗) di-
agrams. The form diagram is defined as the horizontal projection of the
thrust network, where the vertical forces vanish. The force diagram visu-
alises the horizontal equilibrium of the forces. A TNA equilibrium solution
is presented in Figure 2.9.

Figure 2.9: (a) Thrust Network (G) and corresponding form (Γ) and force
(Γ∗) diagrams. (b) Planar form and force with reciprocal relations. From
Block et al. (2014).

In Block (2009), the equilibrium is decoupled and solved through sequential
linear optimisations. In Rippmann et al. (2012), the horizontal equilibrium
is solved graphically by parallelising form and force diagrams, and the ver-
tical equilibrium computes the overall proportional height of the networks.
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In Marmo and Rosati (2017), the TNA formulation is revisited, dispensing
the use of the dual grid, which also enables the application of horizontal
forces to the model.

The decoupled formulation is updated in Block and Lachauer (2014), where
a coupled nonlinear optimisation problem is proposed by considering the
form diagram fixed and introducing the independent edges. The result-
ing network is then searched through a best-fit optimisation algorithm
(Van Mele et al., 2014), which minimises the vertical least-squares distance
between the network and a prescribed target geometry representing the
structure. The investigation of different independent edges selection is dis-
cussed in Liew et al. (2019).

The coupled approach has been revisited in Fantin and Ciblac (2016) con-
sidering disconnected networks and in Bruggi (2020) computing minimum
and maximum thrust states using constrained optimisation. Recently, the
disconnected problem has been reformulated in Nodargi and Bisegna (2022)
as a linear optimisation problem relating the elevation of the disconnected
thrust segments to moments acting in the edges of a network projected onto
the masonry’s middle surface.

The advantages of analysing vaulted masonry structures with TNA include
the simple and intuitive control over the force magnitudes and the direct
extension of well-known and accepted analysis methods. In addition, its dis-
crete formulation allows TNA to include unsupported boundaries, openings,
and external point loads. Recent advances in the method have shown that
its combination with optimisation approaches to find specific stress states
is also promising.

Nevertheless, there are still barriers that limit the use of TNA in practical
assessment scenarios, as the analysis output can not give an idea of the
structure’s stability level, i.e., only one solution is found. Furthermore,
analysing different form diagrams and their effects on the solution is still
unexplored. Moved by these limitations, TNA will be the starting point of
the development of this dissertation as listed in Chapter 3.

2.3.4 Block-based approaches

While the analysis with membrane-based and thrust network methods con-
siders the masonry as a continuous arcuated system, applying block-based
lower-bound approaches enables engineers to consider the stereotomy, fric-
tion, and possible benefic effects of interlocking among the voussoirs, as in
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an overview in Angelillo (2014).

For discrete assemblies, Heyman’s assumptions translate into rigid-block
models. Livesley (1978, 1992) developed Rigid Block Equilibrium (RBE)
as a lower-bound limit analysis method that searches for equilibrium states
with rigid blocks. RBE was revisited in Whiting et al. (2009, 2012) adding
a quadratic penalty term which enables measuring the structural instability
in a given assembly and suggests modifications in the blocks to improve
the stability of the assembly. In Figure 2.10a, a coarse model of a church
is analysed with RBE, where possible failures are detected. In Kao et al.
(2022), this approach is extended to non-convex interfaces, and a nonlinear
formulation allows catching detachment and sliding forces.

Figure 2.10: (a) Modelling of a church with RBE considering large blocks
(Whiting et al., 2009). (b) Internal forces in a Gothic cross-section subjected
to settlements with PRD (Iannuzzo et al., 2020).

Rigid-block models can also be employed combined with energy-based
dual formulations as proposed in the Piecewise Rigid Displacement (PRD)
method (Iannuzzo et al., 2020), developed after Angelillo et al. (2018); An-
gelillo (2014). With PRD, statics and kinematics are connected in a linear
programming dual approach. This enables searching for admissible stress
states in the primal problem and obtaining the dual mechanism associated
with the solution. In Figure 2.10b, a Gothic cross section is evaluated with
PRD subjected to foundation settlements, showing the internal resultants
(in green) and the failure sections (in red).

Models with non-associative frictional joints have been analysed in Gilbert
et al. (2006) for planar limit analysis problems and in Portioli et al. (2014)

47



Chapter 2. Literature Review

for 3D geometries, solving sequential second-order cone programming prob-
lems (SOCP). Further applications of rigid blocks have been studied in
Casapulla et al. (2019); Mousavian et al. (2022), analysing further benefi-
cial effects of interlocking among blocks in an assembly and in Chen and
Bagi (2020) considering crosswise tensile resistance of masonry patterns due
to contact friction.

Limit analysis block-based methods are compelling for studying masonry
problems, enabling efficient computation for several problems. These prob-
lems include stability analysis assuming a specific block stereotomy, effect
of interlocking, studies on friction effects, computation of collapse loads and
investigation of collapse mechanisms. However, for this approach, the ef-
fect of the stereotomy and parameters such as the friction coefficient highly
affect the final solution (Makris and Alexakis, 2013; Wang et al., 2019).
In practical assessment applications obtaining information about the pre-
cise stereotomy of the structure is usually impractical or impossible, which
hinders the application of these methods by practitioners.

2.4 General analysis tools
This section highlights the application of general analysis methods to ma-
sonry structures with a focus on the Discrete Element Method (DEM) in
Section 2.4.1 and Finite Element Analysis (FEA) in Section 2.4.2.

2.4.1 Discrete Element Method
Discrete Element Methods were initially developed by Cundall (1971) to
model the interaction among particles with applications to soil mechanics
resulting in the development of the numerical engineering software 3DEC
(Itasca, 2020). Lemos (1998) applied DEM to masonry structures by mod-
elling the blocks as rigid and assuming a Mohr-Coulomb criterion in the
block interface, which matches Heyman’s assumptions from Section 2.2.2.
Subsequent works have applied DEM to masonry models under seismic
loads (Lemos, 2019), foundation large displacements (McInerney and De-
Jong, 2015), crack modelling (Iannuzzo, Dell’Endice, Van Mele and Block,
2021; Sarhosis et al., 2019) and imperfections (Dell’Endice et al., 2021;
Dell’Endice, 2022).

Recently, DEM has been used as the “ground truth” for analysing rigid block
assembly (Kao et al., 2022; Mousavian et al., 2022). Compared with limit
analysis block-based methods, DEM also enables the assumption of elastic
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or plastic material law. Moreover, DEM methods enable considering seismic
loads, applying large support displacements, and studying complex collapse
mechanisms, supported by the method’s efficient interface detection. Nev-
ertheless, besides relying on the need to define a precise geometry for the
blocks in the structure, DEM models are still cumbersome, which reflects
on them being mainly applied in academic settings and seldomly applied in
engineering practice (Roca et al., 2010).

2.4.2 Finite Element Analysis

Finite Element Analysis (FEA) is the most used structural analysis ap-
proach to analyse reinforced concrete and steel structures (Hughes, 2012).
Linear and nonlinear FEA approaches can be applied to masonry structures,
as discussed in the overview of different modelling strategies by D’Altri et al.
(2019).

Linear FEA models enable fast computation with solid elements, being used
to indicate the overall path of the loads to foundation supports and zones
in which tensile stresses might appear (Roca et al., 2013). These mod-
els, however, can not incorporate masonry’s unilateral material behaviour,
heterogeneous nature, and the formation and development of hinges (Shin
et al., 2016; Block, 2009).

Nonlinear FEA models can account for nonlinear material behaviour and
crack propagation (Lourenço et al., 2022). While highly detailed, these
models are computationally cumbersome (Roca et al., 2005; Milani and
Tralli, 2012; Zampieri et al., 2017). When applying nonlinear FEA, difficul-
ties remain in determining a suitable elastoplastic law for the material or
properly modelling interfaces. Recent research has focused on determining
realistic modelling assumptions to apply nonlinear FEA models to masonry
structures (D’Altri et al., 2022) and in proposing two-stepped procedures
to circumvent the high computational cost (Lourenço et al., 2022).

Among these studies, homogenisation methods have been applied in Zuc-
chini and Lourenço (2009); Reccia et al. (2014), where continuous strain
fields are correlated with cracks, and, in Lotfi and Shing (1991), smeared
crack models have been developed. Alternatively, nonlinear FEA models
can also be used to build discrete models, at the expense of a previous
detection on the contact interface (Funari et al., 2022), or modelling the
structure with representative blocks and imposing a plasticity criterion for
the opening on the hinges (Reccia et al., 2014).
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In a recent report about the use of nonlinear FEA analysis on masonry
bridges, Gilbert et al. (2022) point to multiple issues that should be con-
sidered, such as the differences in stiffness of various parts of the structures
(also discussed in Roca et al. (2013)) and convergence problems. Further-
more, proper modelling of three-dimensional vaults is even more challenging
with this method as solid elements must be considered, which brings ques-
tions about the discretisation employed.

The following section weighs the methods discussed in this Chapter and
highlights common tools used in practice for masonry assessment projects.

2.5 Common tools used in practice

The structural analysis of existing masonry structures is challenging given
the highly complex architectural configurations, different masonry types,
and the anisotropic material behaviour (Huerta, 2008; Roca et al., 2010).
Current standard analysis methods, such as Finite Element Analysis (FEA),
have been developed to model different structural systems and materials
such as steel, concrete, and timber (Iannuzzo, Dell’Endice, Maia Avelino,
Kao, Van Mele and Block, 2021). Consequently, fewer numerical analysis
software specific to masonry structures are available (Tralli et al., 2014).

As discussed in Gilbert et al. (2022); Roca et al. (2013), Linear FEA models
can not account for the anisotropic and plastic behaviour of masonry struc-
tures. Nonlinear approaches are better suited but require the definition of
multiple parameters regarding the stiffness and strength, which are hard
to determine (D’Altri et al., 2022). Moreover, modellers must be aware of
the sensitivity in modifying these parameters to the global model behaviour
(Cattari et al., 2022). The typical budget and time available in most as-
sessment projects and the difficulties in establishing analysis parameters
hinders the application of advanced nonlinear analysis techniques for most
problems (D’Altri et al., 2019). Consequently, these sophisticated analyses
remain primarily used in academic settings (Tralli et al., 2014).

Similarly, Discrete Element Models enable various analyses considering the
structure’s unilateral response, but constructing these models is cumber-
some (Funari, Mehrotra and Lourenço, 2021). Moreover, the modelling of
each voussoir in the structure is also not aligned with the typical data from
geometric surveys and can hardly be obtained.

The lack of specialised tools for masonry structures and the limitation in
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applying conventional ones, e.g., linear FEA, increases the risk of proceed-
ing with wrong or unnecessary interventions in masonry structures. In Fig-
ure 2.11, heavy reinforcement is added to the extrados of a historic building.
This addition will permanently affect how the structure behaves and add
stiffness to the vault, which will be unable to crack to adapt to movements.

Figure 2.11: Heavy reinforcement applied at San Basilio Monastery,
L’Aquila, Italy. (Photo: Alessandro Dell’Endice)

Interventions like the ones in Figure 2.11 must be the last resort, only consid-
ered after a throughout analysis of the structure for which further adapted
analysis tools must still be developed. From the guidelines of cultural monu-
ments from the International Council on Monuments and Sites (ICOMOS),
when it comes to the structural preservation of cultural heritage, “no actions
should be undertaken without demonstrating that they are indispensable”
(ICOMOS, 2003, item 3.4).

In this context, limit analysis methods surge as an inexpensive and accurate
way to analyse masonry structures (Ochsendorf, 2002; Angelillo et al., 2018).
The application of lower-bound limit analysis can result in a safe, quickly
verifiable model well-aligned with the typical data obtained from geometric
surveys in masonry buildings (Huerta, 2001).

A few professional lower-bound limit analysis tools have recently been de-
veloped to solve this problem for two-dimensional structures and bridges
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(LimitState Ltd, 2020; Obvis, 2016). However, there is still a lack of meth-
ods to deal with general three-dimensional geometries and able to output
relevant information for practical assessments.

In this context, the initial developments of thrust network approaches, listed
in Section 2.3.3, are promising, as they enable the analysis of multiple ge-
ometries, support conditions, and loads to be considered.

2.6 Summary
This chapter provides an overview of numerical methods used to assess
masonry structures. An overview of the development of historical methods
to find equilibrium in masonry structures is presented, which resulted in the
development of limit analysis to masonry structures.

Significant lower-bound limit analysis approaches are presented as they en-
able inexpensive and safe computation of admissible stress states in vaulted
masonry structures.

General analysis tools are also listed, highlighting the difficulties in applying
these to masonry assessment problems.

Among the lower-bound limit analysis methods, recent advances in thurst
network approaches show potential to be developed further to assess ma-
sonry structures.
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Scope of the Work

Based on the literature review presented in the previous chapter and the
background on analysis methods for masonry structures, the scope of this
dissertation is described in this chapter. The problems tackled are high-
lighted, and the research objectives are summarised. This chapter closes
the introductory part of this research before proceeding with its methodol-
ogy and implementation.

3.1 Problem statements
This section presents the problem statements that motivate this disser-
tation. The assessment workflow with discrete, lower-bound equilibrium
methods is revisited in Section 3.1.1, and the specific problems tackled are
highlighted in Section 3.1.2.

3.1.1 Assessment workflow
The typical workflow for assessing masonry structures with discrete lower-
bound equilibrium methods is illustrated in Figure 3.1. This workflow is
listed and defined below.

1. Data acquisition: It includes the geometric survey, executed usually
with photogrammetry or laser scanning techniques. Visible crack pat-
terns are annotated to the model as they provide insight into the
structure’s current state. The geometry needs to be properly trans-
ferred to the analysis model, which should, in return, be adapted to
work with this data.
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Figure 3.1: Workflow for assessing masonry vaulted structures with discrete
equilibrium methods.

2. Force pattern topology: The force pattern representing the layout
of the forces within the structure should be selected at the start. It
should reflect the structure’s main geometric features and support po-
sitions and be compatible with observed cracks. It should also connect
with externally applied loads or observed settlements that might have
provoked variations in the structure’s force flow.

3. Search of admissible states: As highlighted in Chapter 2, lower-bound
methods verify that the structure is safe by finding (at least one)
admissible stress state. This work represents these states by com-
pressive thrust networks within the masonry structural geometry. A
robust and targeted search method must be implemented to find these
admissible states.

4. Assessment output: Beyond just finding one admissible internal state,
to conclude the assessment workflow, a practical assessment output
must be provided. It should indicate how far the structure is from its
limit state and provide safety factors related to its stability and capac-
ity to sustain additional external loads and foundation settlements.

3.1.2 Problems tackled
This research aims to contribute to the assessment workflow in Figure 3.1 by
developing novel methods to search efficiently for admissible stress states,
enabling pattern exploration and providing relevant practical outputs to
masonry assessment.

The problems tackled in this dissertation are highlighted here:

• Improve the search of admissible equilibrium states:
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A robust and efficient numerical procedure is needed to explore the
infinite space of admissible equilibrium states that might form in ma-
sonry structures. All possible force distributions resulting in admissi-
ble thrust networks should be investigated, which is still not available
for general vaulted structures.

• Methods to investigate multiple topologies:

The topology of the force pattern influences the result of the assess-
ment process with TNA. Therefore, investigating different force pat-
terns and adequately defining their degrees of freedom is needed to
enable variations in the topology and geometry of these patterns.

• Improve assessment output metrics:

Currently, computing the level of stability of three-dimensional ma-
sonry is challenging. Even if concepts such as the Geometric Safety
Factor (GSF) are well-known for arches, their extension for complex
three-dimensional structures is not trivial. Therefore, new metrics
should be investigated to equip lower-bound methods for assessment
scenarios and enable working with general 3D geometries.

• Estimating collapse loads on vaulted structures:

Similarly, computing vertical and horizontal collapse loads in vaulted
structures is challenging. These are sought in masonry structures
undergoing rehabilitation or to perform (simplified) analysis against
the action of earthquakes.

• Investigate the effect of settlements:

Masonry structures often present pathologies, such as crack patterns,
deformations, or distortions caused by foundation settlements. Under-
standing the effects of these settlements is still an open question, and
including the effects of settlements in masonry models is a complex
task. Therefore, better strategies to deal with these observed crack
patterns are needed.

• Lack of practical open-source masonry assessment tools:

As highlighted in Chapter 2, few specific analysis tools are available to
analyse masonry structures. Moreover, there is a lack of open-source
tools that can be freely shared and collaboratively developed. These
would be especially useful for masonry assessment as budget and time
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are limited and novel methods developed in academia often remain on
research papers that can not be easily implemented.

The research objectives to respond to these problems are presented in the
next section.

3.2 Research objectives
This dissertation will equip TNA with an optimisation framework to assess
masonry structures in multiple practical scenarios. This objective is broken
into smaller objectives accomplished through this research.

• Robust search of admissible thrust networks on vaulted structures:

The main objective of this work is to develop a robust numerical strat-
egy to find admissible thrust networks in vaulted masonry structures.
A convenient mathematical description of the networks will be sought
to enable encoding this search in a constrained optimisation problem.
State of the art solving strategies will be implemented to find specific
equilibrium states, and suitable starting points for the optimisation
will be discussed. Different objective functions will be implemented
to model relevant equilibrium states in masonry structures, respecting
the constraints from limit analysis.

• Enabling the analysis with different diagrams:

The robust search of admissible thrust networks will be equipped with
a novel methodology to find the degrees of freedom in a given pattern
or form diagram. To enable a variety of typical masonry typologies to
be analysed, parametric form diagrams will be implemented and used
in different analyses. More importantly, this work will seek to quantify
the effectiveness of these different patterns so they can be compared.
Practical instructions guiding engineers to choose, test and modify
force patterns according to the analysis will be presented.

• Metrics to determine the stability of vaulted structures:

This work will seek to extend well-known metrics for the level of sta-
bility, such as the GSF, to vaulted structures. Additionally, novel
metrics will be introduced by computing the structure’s stability do-
main with its extremes of maximum and minimum horizontal thrusts.
Beyond computing these metrics to analytical geometries, they will
also be extended to scanned geometries obtained through surveys.
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• Framework to compute collapse loads:

Supported by the robust search of admissible states, this work will
adapt the optimisation formulation to compute maximum vertical and
horizontal load multipliers. This will enable computing a lower bound
of the collapse loads in vaulted masonry structures. Strategies to
adapt the force pattern to such loads will also be investigated and
documented to serve as a guide to use in practical assessment scenar-
ios.

• Connecting foundation settlements and crack pattern:

This work will investigate the connection between foundation settle-
ments and the appearance of crack patterns in vaulted masonry struc-
tures. This connection will be established by introducing an energy
criterion in the network and adapting the optimisation framework to
minimise the structure’s complementary energy. Searching for equi-
librium states compatible with foundation displacements can reveal
the expected crack pattern at the onset of the motion.

• Collaborative open-source package to perform assessment:

By combining structural analysis and software development, this dis-
sertation will implement its findings into an open-source Python-based
package. This package is used to compute all analyses in this disser-
tation. It will be shared with the engineering and research commu-
nity, enabling future collaboration and the continuous development
and improvement of the procedures described in this thesis by other
researchers. Therefore, beyond developing the mathematical frame-
work to compute the analysis, sharing the tools used can increase the
impact of the present work.

By completing these research objectives, this dissertation contributes to the
state of the art in applying discrete lower-bound limit analysis methods to
better understand, model, and preserve vaulted masonry structures.
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Chapter 4

Equilibrium Force Network

This chapter lays the foundation of the methodology developed in this dis-
sertation by introducing the numerical formulation for computing the equi-
librium in force networks. The chapter revisits the main elements of Thrust
Network Analysis (TNA) and the equilibrium equations in terms of force
densities from the literature. The particular case of networks with fixed
horizontal projection is presented, enabling parametrising the equilibrium
in terms of fewer variables or degrees of freedom (DOF). A novel algorithm
is presented to find these degrees of freedom in general diagram topolo-
gies. This parametrisation will be used to search equilibrium states in this
dissertation.

4.1 Definition

In the following sections, the main elements of Thrust Network Analysis
(TNA) are presented after Block (2009), and their use in this work is defined.

4.1.1 Thrust network

Thrust networks (G) correspond to a directed and connected spatial graph.
They represent the spatial compressive resultants (or thrusts) within the
structure. Each node of the network is in equilibrium with the applied
forces via axial force on the edges converging to that node. One example of
a thrust network continuously supported is depicted in Figure 4.1.
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Figure 4.1: Thrust Network (G) with its horizontal projection, the form
diagram (Γ). Equilibrium Pi of node i subjected to the vertical applied
load pi is highlighted. The horizontal projection of Pi is the closed polygon
P ∗
i . Summing the polygons, the network’s force diagram (Γ∗) is obtained.

4.1.2 Form diagram
The form diagram (Γ) is a planar graph constructed from the projection of
G (see Figure 4.1). The form diagram stores the network’s topology, con-
nectivity, and planar coordinates. Each vertex i in the form diagram with
coordinates (xi, yi) maps to a vertex in the thrust network with elevation zi.
Similarly, each edge ei in the form diagram maps to an edge in the thrust
network carrying axial force fi.

4.1.3 Support conditions
Boundary conditions are applied to specific network vertices, usually on the
diagram’s boundary. Figure 4.1 highlights the support points in the form
diagram with a red dot. Reaction forces Rj arise at supports j such that
the structure is in equilibrium.
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4.1.4 Loads

Loads, such as the self-weight and externally applied live loads, are applied
to the system in the network vertices. Figure 4.1 highlights in blue the
application of a vertical load pi to node i. The equilibrium of the node can
be verified through the construction of closed polygons of force vectors Pi

indicated in Figure 4.1. Pi shows a closed cycle containing the scaled vector
of the applied load (pi) and the thrusts f1, f2, f3, and f4.

4.1.5 Force diagram

As presented in Section 2.3.3, the force diagram (Γ∗) is a graphical repre-
sentation of the horizontal equilibrium of G. When all loads are parallel, the
spatial equilibrium of a node i can be projected onto a plane perpendicu-
lar to the loads resulting in a two-dimensional graphic statics problem (see
Figure 2.4). In Figure 4.1, the projected equilibrium of node i is the closed
polygon P ∗

i in which the vertical applied load pi vanishes. The horizontal
equilibrium is then resolved with the horizontal components of the thrusts
(f∗

1 , f
∗
2 , f

∗
3 , f

∗
4 ). The form (Γ) and force (Γ∗) diagrams are reciprocal, such

that their corresponding edges ei, e∗i are parallel.

Two conventions to display and interact with force diagrams exist, the Cre-
mona convention (Γ∗

//), with parallel reciprocal edges, or the Maxwell con-
vention (Γ∗

⊥), with orthogonal reciprocal edges. Figure 4.2 depicts these
conventions, and the Maxwell convention is adopted herein.
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Figure 4.2: Form diagram (Γ) next to force diagram following parallel, or
Cremona (Γ∗

//) and orthogonal, or Maxwell convention (Γ∗
⊥).

In this work, the force diagram visualises the force distribution in the net-
works. The numerical description employed to compute the equilibrium is
based on force densities, as presented in the next section.
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4.2 Equilibrium equations
This section presents the equilibrium computation for a general force net-
work in which the position of the internal vertices and the axial forces are
unknown. The formulation requires the introduction of the force densities
from the Force Density Method (FDM), as in Schek (1974).

We assume a network composed of m edges and n vertices. We consider
nb supported vertices and ni free vertices, such that n = ni + nb. Let Ei

represents the group of neighbouring vertices to vertex i, such that edge eij
exists, with axial force fij and length lij . The equilibrium of vertex i is
computed as

∑
j∈Ei

fij
lij

(xj − xi) = px,i, (4.1a)

∑
j∈Ei

fij
lij

(yj − yi) = py,i, (4.1b)

∑
j∈Ei

fij
lij

(zj − zi) = pz,i, (4.1c)

in which the length of an edge lij is unknown and a function of the spatial
geometry of the structure, i.e., a function of xi, yi, zi and xj , yj , zj . Conse-
quently, Eqs. 4.1 are nonlinear.

To linearise these equations, Schek (1974) introduces the edge force density
qi, which is defined as the ratio among the edge’s axial force fi and its
length li,

qi =
fi
li
. (4.2)

To write Eqs. 4.1 in a matrix form, the connectivity matrix C [m × n] is
introduced defined as

Ci,j =


+1 if vertex i is the head of edge j,

−1 if vertex i is the tail of edge j,

0 otherwise.
(4.3)
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The nodal positions of the network are cast in the vectors x,y, z [n × 1],
and the applied nodes in each direction are collected in px,py,pz [n× 1].

With this description, the nodal equilibrium of the network can be written
by introducing the coordinate difference matrices (U,V,W) that store on
their diagonals the differences xj − xi, yj − yi and zj − zi for an edge eij
and are computed as

U = diag(Cx), (4.4a)
V = diag(Cy), (4.4b)
W = diag(Cy). (4.4c)

By partitioning the connectivity matrix in Ci [m × ni], Cb [m × nb] rep-
resenting the free and support nodes respectively, and by partitioning the
load vectors in px,i [ni×1] and px,b [nb×1] (analogously for y, z directions),
the 3ni internal nodal equilibrium equations become

CT
i Uq = px,i, (4.5a)

CT
i Vq = py,i, (4.5b)

CT
i Wq = pz,i, (4.5c)

in which the equilibrium variables are the force densities q [m × 1]. These
equations are often rewritten in terms of the unknown free coordinates of
the network, which are now a variable of the force densities and the position
of the supports (xb,yb, zb) [nb × 1] as

xi = D−1
i (px,i −Dbxb) , (4.6a)

yi = D−1
i (py,i −Dbyb) , (4.6b)

zi = D−1
i (pz,i −Dbzb) , (4.6c)
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where Di = CT
i QCi [ni × ni], Db = CT

i QCb [ni × nb] and Q = diag(q)
[m×m].

To conclude, the emerging reaction forces in the support i, Ri = [Rx,i; Ry,i;
Rz,i] can be retrieved from the reaction components Rx, Ry, Rz [nb × 1]
calculated as

Rx = CT
bUq− px,b, (4.7a)

Ry = CT
bVq− py,b, (4.7b)

Rz = CT
bWq− pz,b. (4.7c)

With this formulation, the infinite space of equilibrium networks for a given
topology (or connectivity) can be explored in terms of the position of the
supports (xb,yb, zb) and values of the force densities in the edges of the
network (q).

In the next section, the particular case in which the networks have their
horizontal projection fixed is studied.

4.3 Fixed network projection

As in Block and Lachauer (2014), this work focuses on networks with fixed
horizontal projection, i.e., fixed form diagram (Γ). With this assumption,
the planar coordinates of the network (x,y) are defined. As a consequence,
the horizontal equilibrium equations (4.5a and 4.5b) can be rearranged,
introducing the horizontal equilibrium matrix E [2ni×m] and the vector of
applied horizontal forces nodes in the internal nodes ph,i [2ni × 1],

Eq = ph,i, with: E =

[
CT

i U
CT

i V

]
, ph,i =

[
px,i

py,i

]
. (4.8)

Assuming that the form diagram is fixed means additional constraints to
the vector of force densities, such that its components can not be chosen
freely. Indeed, the number of force densities that can be chosen freely in
Eq. 4.8 corresponds to the number k of degrees of freedom (DOF) of the
planar form diagram. In other words, this corresponds to the degree of
statical indeterminacy of the network (Pellegrino and Calladine, 1986).
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4.4. Degrees of freedom in a projected network

As shown in Van Mele and Block (2014), the number of DOF is equal
to the rank deficiency of the matrix E. The free parameters are denoted
independent force densities, and they relate to specific independent edges
in the network. The independent force densities qid can then be used to
compute the dependent ones qd, with

qd = −E†
d (Eidqid − ph,i) , (4.9)

where Ed and Eid are slices of E related to the dependent and independent
edges, respectively, and E†

d the generalised inverse or Moore-Penrose pseudo-
inverse of Ed.

A discussion about finding and interpreting the DOF, i.e., the independent
edges, in a form diagram is presented in Section 4.4. Once qd is computed
from qid, the vector of force densities q in the system is retrieved through
the linear transformation

q = Bqid + d, with: B =

[
−E†

dEid

Ik

]
, d =

[
E†

dph,i

0

]
, (4.10)

where Ik is the identity matrix of size k.

After such variable reduction, the vertical coordinates of the free nodes in
the network zi, described in Eq. 4.11 are a function of qid and zb as in

zi (qid, zb) =
(
CT

i QCi

)−1 (
pz,i −

(
CT

i QCb

)
zb

)
. (4.11)

Eq. 4.11 will be used to compute the free nodal elevations enabling the
constraint optimisation framework described in Chapter 5.

4.4 Degrees of freedom in a projected network

This section discusses the strategies developed to deal with the indeter-
minacy of the network. An algorithm to find the independent edges is
presented in Section 4.4.1. A connection with inextensible mechanisms is
shown in Section 4.4.2, and the isolated effect of the independent edges is
illustrated in Section 4.4.3.
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4.4.1 An algorithm to find independent edges

This section describes the procedure to determine a projected network’s
degrees of freedom (DOF). This procedure is also described in Maia Avelino,
Iannuzzo, Van Mele and Block (2021a). As discussed in Section 4.3, the
number of independent force density parameters k that can be chosen freely
in Eq. 4.8 correspond to the rank deficiency of the matrix E or to the
dimension of the nullspace of the matrix E computed for the networks as

k = m− rank(E). (4.12)

Given the matrix construction adopted in this work, each column of E
relates to one specific edge in the form diagram according to the numbering
assumed when the topology was generated (see the construction of C in
Eq. 4.3).

Therefore, one base of the nullspace of E corresponds to the largest k such
that a combination of k columns arranged in matrix Eid put next to the
remaining (m− k) columns in Ed will result in

rank(Ed|Eid) = rank(Ed), (4.13)

which means that Ed is non-singular and can be inverted.

When Eq. 4.13 is verified, the edges corresponding to the k columns from the
nullspace are the independent edges of the form diagram. These edges can be
found through a sequential Singular Value Decomposition (SVD) approach.
In this sequential method, the matrix E is reconstructed column-by-column.
Each time a column is added, the matrix rank is checked through SVD. Af-
ter such addition, if the matrix’s rank is not increased, the column belongs
to the nullspace of E, and the corresponding edge can be taken as an inde-
pendent. The pseudocode for this procedure is presented in Algorithm 1.

Algorithm 1 results in a base of the nullspace of the equilibrium matrix.
This approach enables controlling the precision for discarding small singular
values. It avoids the accumulation of errors in the row-column operations
that arise in Gauss-Jordan Elimination (GSE) (see also Section 6.6.4).

The algorithm is applied to the networks in Figure 4.3. For each case,
Table 4.1 lists the number of edges m, internal nodes ni, the shape and rank
of E, the number of independent edges k, and inextensible mechanisms c.
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4.4. Degrees of freedom in a projected network

Algorithm 1 Finding independent edges in a network
i← 0
inds← [ ] ▷ Empty list to store the independent columns
Ed = E[:, i] ▷ Initiate Ed with first column
i = i+ 1
while i < m do

Etemp = [Ed|E[:, i]]
if rank(Etemp) < ncol(Etemp) then

inds← [i] ▷ column i belongs to nullspace
else

Ed = Etemp

end if
i = i+ 1

end while

Table 4.1: Key parameters used to find a set of independent edges for the
topologies depicted in Figure 4.3.

Topology m ni shape(E) rank(E) k c
(a) 60 25 (50× 60) 50 10 0
(b) 84 37 (74× 84) 71 13 3
(c) 96 45 (90× 96) 88 8 2
(d) 42 22 (44× 42) 38 4 6

Figure 4.3 shows one of the multiple possible groups of independent edges
for each topology. As discussed in Liew et al. (2019), these groups are not
unique and can not be selected randomly for most topologies, such that
their choice has a structural meaning, as shown for each topology below.

In the continuously supported orthogonal grid (Figure 4.3a), one indepen-
dent per group of continuous edges is found. This result derives from the
fact that the force density in each group of continuous edges is independent
of the others. Consequently, only one static parameter is required at each
group (Liew et al., 2019). The effect of a force increase in each independent
edge is discussed in Section 4.4.3.

The circular topology (Figure 4.3b) is composed of three circular closed
hoops and 12 meridional segments converging to the centre. One indepen-
dent per hoop is observed, and one independent for all but two meridians
converging to the centre, i.e., ten independents for 12 meridians. One inde-
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a) b)

c) d)

Figure 4.3: Independent edges highlighted in blue for different topologies:
(a) an orthogonal grid, (b) a circular arrangement, (c) a cross diagram, and
(d) a three-sided diagram.

pendent per hoop is necessary to control the axial force in the hoop, while
one independent per meridian is necessary to distribute the loads to the
supports. However, not all meridian forces can be freely chosen as they
converge to a single point where equilibrium must be ensured. In fact, at
the centre, n = 12 segments converge to the singular point, and (n − 2)
DOF are observed.

For the corner-supported cross diagram of Figure 4.3c, one independent
is found at each of the four boundaries, behaving independently of the
rest of the structure as they connect directly to two support points. Two
independents are found among the four diagonal segments connecting the
supports to the singular point at the centre of the pattern, verifying the
(n − 2) rule stated above. One independent edge is found per continuous
closed strip, as these are analogous to the closed hoops in Figure 4.3b. The
effect of a force increase at each edge is discussed in Section 4.4.3.
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4.4. Degrees of freedom in a projected network

Finally, for the three-sided diagram in Figure 4.3d, one independent edge
is found at each boundary of the pattern, where continuous polylines con-
nect two supports. One independent is also found for the three continuous
segments converging to the centre pattern singularity, following the (n− 2)
rule.

4.4.2 Connection with inextensible mechanisms

This section discussed the connection between the degrees of freedom and
inextensible mechanisms in the network by verifying the extended Maxwell’s
rule (Calladine, 1983) to the stability of frames, which is written as

k − c = b− 2n+ r. (4.14)

In which k is the number of independent states of self-stress, c the number
of inextensible mechanisms, b the number of bars, n the number of nodes,
and r the number of kinematic restraints at the supports (see also Van Mele
and Block, 2014). In the present formulation, every support point restraint
the nodes in two directions so that the equation can be rewritten, and the
number of independent edges (or independent states of self-stress) put in
evidence as

k = (m− 2ni) + c. (4.15)

Eq. 4.15 allows determining the number of inextensible mechanisms c in the
networks. More importantly, it distinguishes the DOF into two types:

(i) m− 2ni DOF computed from the connectivity or edge counting, and

(ii) c DOF linked to the inextensible mechanisms.

Examples of inextensible mechanisms leading to the second DOF type are
highlighted in Figure 4.4. In Block (2009), the DOF are also differentiated
in (i) and (ii), but only closed cycles are considered for DOF of type (ii), e.g.,
Figures 4.4a–b. The SVD analysis enables analysing cases such as patterns
with unsupported boundary edges, for which m− 2ni < 0 might arise, as in
Figure 4.4c.

Given the unsupported straight boundary of the pattern in Figure 4.4c,
the edges corresponding to the mechanisms highlighted in Figure 4.4 are
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a) b) c)

Figure 4.4: Inextensible mechanisms obtained from the extended Maxwell
rule for patterns, with (a) c = 3, (b) c = 2, and (c) c = 6.

required to be zero. Contrastingly, when the circular mechanisms are ob-
served, one independent per hoop is assigned, and the force does not vanish
as discussed in Section 4.4.3.

To obtain these inextensible mechanisms, the nullspace of the row-space
of E can be explored. Combining Eqs. 4.12 and 4.15, the rank deficiency
c of the row-space of E is defined, which is analogous to the statical and
kinematical DOF studied for frames in Pellegrino and Calladine (1986)

c = 2ni − rank(E). (4.16)

In Figure 4.5, the effect of curving the unsupported boundaries is studied
for two patterns resulting in a reduction of inextensible mechanisms and,
hence, fewer independent edges.

In Figure 4.5a, the boundary of the three-sided diagram is curved. The DOF
reduces from k = 4 to k = 2 since the inextensible mechanisms reduce from
c = 6 to c = 4. Indeed, the curved boundary “locks” some of the inextensible
mechanisms from the original pattern. As a result, the boundary forces
can not be chosen freely anymore, and there are additional linear relations
among the forces at their edges. To this problem, thanks to symmetry, these
relations are easy to read and impose that the forces in the three curved
unsupported boundaries must be equal. Hence, only the independent in one
of them can be selected.

In Figure 4.5b, an orthogonal diagram with two supported and two unsup-
ported boundaries is studied. The diagram has k = 5 independent edges
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a) b)

Figure 4.5: Effect of curving unsupported edges in the indeterminacy of
the network: (a) reduction on the DOF (independent edges) from k = 4 to
k = 2, and (b) reduction from k = 5 to k = 3.

at each path between supports and c = 7 inextensible mechanisms corre-
sponding to each transverse line. However, when the open edge is curved,
the five DOF can not be changed independently anymore. As a result, the
DOF decreases to k = 3 and the mechanisms to c = 5. Indeed, after the
symmetry is applied, the transversal edges will get activated and transmit
forces among the unsupported curved boundaries.

To conclude, this section has described how independent edges relate to
the networks’ topology by interpreting their location in selected diagrams
(Figure 4.3). It has also shown how these DOF will change by modify-
ing the geometry and locking inextensible mechanisms (Figure 4.5). A
global topology-only formula to find DOF in non-triangulated networks is
unachievable, as geometry also plays a role. Nevertheless, these DOF can
be selected for orthogonal networks based on understanding the support’s
force flow. Alternatively, Algorithm 1 can be employed. However, errors
can occur related to the threshold to disregard zero singular values with the
SVD, which will be discussed in Section 6.6.4.

In the next section, each independent edge’s effect is demonstrated graphi-
cally.

4.4.3 The isolated effect of the independent edges

This section shows the independent force densities’ effect on the thrust
geometry and the internal force distribution, i.e., its effect on the force
diagram.
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As argued in Section 4.1.5, a force diagram can be retrieved when no hori-
zontal loads are applied. Van Mele et al. (2012) present an algebraic method
to find reciprocal force diagrams from the in-equilibrium force densities in
these cases.

The independent edges in the form diagram have corresponding dual inde-
pendent edges in the force diagram. Modifying the force magnitude in the
independent edges allows for searching the infinite equilibria states possible
that keep the form diagram fixed. Similarly, by modifying the lengths of
the corresponding independent edges in the force diagram, the full range of
possible modifications in the force diagram that preserves the orientation of
all its edges is explored.

This correspondence is illustrated for the orthogonal (Figure 4.3a) and cross
(Figure 4.3c) diagrams. The results are depicted in Figures 4.6 and 4.7, the
Maxwell convention is adopted (see Section 4.1.5) for which reciprocal edges
are perpendicular.

Γ*
0G0 G1 G2

G3 G4 G5

G6 G7 G8

G9 G10 Γ*
10Γ*

9

Γ*
8Γ*

7Γ*
6

Γ*
1 Γ*

2

Γ*
3 Γ*

4 Γ*
5

Figure 4.6: Modified force diagram (Γ∗
i ) for an increase in the force magni-

tude in the i-th independent edge, showing the result in the thrust networks
(Gi) for an orthogonal continuously supported grid.

For the orthogonal grid, Figure 4.6 shows an equally distributed force di-
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agram Γ∗
0 and the resulting thrust network G0. Next to it, ten different

thrust network geometries (G1 −G10) are obtained by increasing the force
magnitude in each of the independent edges by a factor of 4.0. The resulting
force diagrams (Γ∗

1 − Γ∗
10) are depicted next to each thrust network. The

thickness of the thrust segments is scaled proportionally to the horizontal
force magnitude that they carry. For this topology, increasing the force
magnitude in each independent increases the force magnitude for the con-
tinuous polylines following the independent edge. This increase results in a
force attraction at these polylines resulting in shallow arches or creases in
the thrust networks (G).

Figure 4.7 shows the effect of the independent edge in the corner supported
cross topology, Departing from a symmetric force arrangement (G0,Γ

∗
0), a

force increase is applied individually to each independent edge. Its effects
on the network geometry can be isolated. Increasing the force on the inde-
pendent edges laying in the boundary modifies the geometry locally, making
the boundary arch shallower (Γ∗

1 − Γ∗
4). The independent edges laying on

the internal, closed strips (Γ∗
5−Γ∗

6) affect the elevation of the internal nodes,
and the independents in the diagonals (Γ∗

7−Γ∗
8) make the diagonals shallow

and attract uneven forces to the diagonal supports.
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3G3
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6G6 Γ*

7G7 Γ*
8G8

G0 Γ*
0

Figure 4.7: Modified force diagram (Γ∗
i ) for an increase in the force magni-

tude in the i-th independent edge, showing the result in the thrust networks
(Gi) for a corner supported cross diagram.

Figures 4.6 and 4.7 show the effect of increasing each independent force
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density in the networks is shown. By combining the effects of all these inde-
pendent edges, infinite thrust networks with the same horizontal projection
can be explored. The linear combination of the forces in the independents
will allow for efficiently exploring this infinite space. Moreover, visual feed-
back on the internal force distribution is obtained by keeping the connection
with the force diagrams (Γ∗), which helps interpret the force flow within the
network. Throughout this dissertation, when relevant, the force diagram
will be shown for specific results to illustrate the internal force distribution.

4.5 Summary
This section provided the numerical formulation and (re)introduced defini-
tions from the literature that will be used throughout the dissertation.

Relevant elements of TNA are presented, and the case for the fixed form
diagram is discussed. With a fixed form diagram, the statical parameter
describing the elevations of the network simplifies to (i) the force densities
in the independent edges and (ii) the elevation of the support points.

An original contribution is made in this chapter by introducing the algo-
rithm to find independent edges and showing its connection with the inex-
tensible mechanisms. The individual effect of increasing the forces in the
independent edges is depicted, showing its effect on the elevations of the
network and on the geometry of the force diagram.

The results presented offer a robust and general numerical description of
the network’s geometries. This numerical description will be explored in
Chapter 5 on formulating constrained optimisation problems in thrust net-
works.
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Constrained Equilibrium

This chapter describes the search for admissible equilibrium states as a
constrained optimisation problem. The constraints from limit analysis are
introduced and translated into the context of TNA. Different objective func-
tions relevant to masonry structures are presented, and a numerical descrip-
tion to compute these objectives in terms of the equilibrium variables is
derived. The sensitivities for these objective functions are also presented,
and starting points for the optimisation are discussed.

5.1 Problem formulation
In this dissertation, the search for admissible stress solutions will be encoded
in a nonlinear optimisation problem, which can be written as

minimise
x∈X

fobj(x) (5.1a)

subject to gi(x) ≥ 0, for i = [1, . . . ncon], (5.1b)
hj(x) = 0, for j = [1, . . . neq]. (5.1c)

The optimisation variables x ∈ X will be described in Section 5.2, following
the numerical formulation of the previous chapter.

The problem will accept a wide range of objective functions 5.1a that allow
for selecting specific admissible stress states for the analysis and will be
discussed in Section 5.4.
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The problem inequality constraints 5.1b will translate the assumptions on
admissible stress states from limit analysis and will be listed in Section 5.3.

Equality constraints 5.1c will be avoided, and the horizontal equilibrium
will be verified through the independent edges (parameter reduction) as
presented in Section 4.3.

5.2 Problem variables

The problem variables are the equilibrium variables defined in Chapter 4
necessary to describe the elevation of the internal vertices zi. They are:

• the independent force densities qid [k×1], modelling the internal forces
in the network;

• the support’s heights zb [nb × 1], modelling the support heights, i.e.,
boundary conditions, of the networks.

Therefore, the problems studied in this dissertation will have nvar ≥ k+ nb

variables. Further optimisation variables can be included depending on
the objective function or additional constraints imposed. One example is
the inclusion of the scalar variable t representing the structure’s thickness
(see 5.4.2).

The following sections list the constraints and objective functions imple-
mented. Their equations are derived in terms of the problem variables
described here.

5.3 Constraints from limit analysis

This section shows the implications of the limit analysis assumptions to the
equilibrium search executed with TNA.

Heyman (1966) shows that limit analysis can be applied to masonry struc-
tures assuming that the masonry has (i) infinite compressive strength, (ii)
null tensile strength, and (iii) that no sliding failure occurs (see also Sec-
tion 2.2.2). The two initial hypotheses reflect in the force and geometry
constraints listed in Sections 5.3.1 and 5.3.2 and remarks on the no sliding
assumption are listed in Section 5.3.3. Section 5.3.4 presents the algorithm
to lump gravity loads based on the structural geometry.
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5.3.1 Force constraints
No-tensile force constraints are imposed on the force densities of the edges
in the network to comply with the null tensile strength from the Heymanian
model. In this work, compressive forces are negative. Therefore, the force
densities qi are constrained to be non-positive as

qi ≤ 0, for i = [1, ...,m]. (5.2)

Constraint 5.2 adds m linear constraints to the problem. The force density
vector q is obtained linearly from the independent edges with Eq. 4.10.

The consequences of this force constraint can also be seen in the force dia-
gram (Γ∗). As shown in Block (2009), a compression-only state in the net-
work will reflect a force diagram having convex cells (or faces). In contrast,
if mixed tension-compression forces arise, the edges of the force diagram
intersect, and the polygons are no longer convex (Whiteley et al., 2013;
Rippmann, 2016).

Following the assumption of infinite compressive strength, no upper bound
on the axial force must be imposed. However, a maximum force density pa-
rameter qmax can be added to indirectly model the actual maximum com-
pressive strength of the material. To determine this value, the topology
of the network and masonry thickness should be considered. Indeed, the
thrusts represent singular stresses acting as resultants in specific masonry
cross-sections. Therefore, they can be linked back to stresses by retrieving
the sectional dimensions and assuming a stress profile distribution.

The following section highlights the geometry constraints imposed on the
networks.

5.3.2 Geometry constraints
The networks are constrained to remain within the masonry’s structural ge-
ometry Λ, more specifically between the extrados, or upper bound surface
ΛUB and the intrados, or lower bound surface ΛLB. As mentioned in Sec-
tion 5.3.1, the thrusts represent the resultants acting in the cross-sections
on a given point of application. As such, if the point of application exits
the section, a bending moment would appear, generating tensile stresses.

Following the methodology with a fixed planar projection (Γ), this criterion
is verified in the nodal elevations zi of the network. These elevations are
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constrained to lay between the elevations of intrados zLBi and extrados zUB
i

zLBi ≤ zi ≤ zUB
i , for i = [1, . . . , n]. (5.3)

The constraint in Eq. 5.3 adds 2n inequalities to the problem. This con-
straint is nonlinear since the heights of the free nodes computed through
Eq. 4.11 are nonlinear with the force densities.

Figure 5.1 depicts the geometry constraints applied to a thrust network (G)
obtained from a radial form diagram (Γ) and contained between intrados
(ΛLB) and extrados (ΛUB) of a hemispheric dome shape. In this figure,
the support points are marked in red, and their heights (zb) and emerging
reactions R are highlighted. Two portions of the dome are highlighted to
show the implications of the constraints.

G

Γ

ΛUB

ΛLB

zb

R

a)

b)

zj
UB

zj

zj
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Rjzj

(xj,yj) bx,j

by,j

bj

hj

zi
UB

zi
LB

zi

zi
a)
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(xi,yi)

Figure 5.1: Thrust Network (G) obtained from a radial form diagram (Γ)
constrained between intrados (ΛLB) and extrados (ΛUB) of a hemispheric
dome. Detail on an (a) internal and (b) support node.

In Figure 5.1a, a typical internal node i is shown in a front view. The
nodal elevation zi is within the structural section of the masonry. The
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limits of this section are defined by the projection of node i, with planar
coordinates (xi, yi), at the intrados ΛLB and extrados ΛUB surfaces resulting
in elevations zLBi and zUB

i , respectively. From Figure 5.1a, it is clear that
Eq. 5.3 is respected for node i.

The constraints applied to a support j are also highlighted in 5.1b. The
support point is constrained by the extrados zUB

j , which is obtained from a
vertical projection of (xj , yj) in ΛUB. However, for the case of a hemispheric
dome, the vertical projection in ΛLB is empty, and the constraint for this
node is set to a high negative value below the datum, i.e., zLBj = −∞.

Furthermore, in the present formulation, the support point defines the point
for which the emerging reaction Rj arises. For some geometries, such as
the hemispheric dome, additional constraints are added to the direction and
magnitude of Rj . These constraints impose that the extension of Rj does
not surpass the extrados of the structure. In Figure 5.1b, the limit point
for the reaction force hj is defined as well as the vector bj = [bx,j , by,j ],
which connects the support projection (xj , yj) to hj . The constraint on the
reaction writes

Fx,j = |bx,j | −
∣∣∣∣Rx,j

Rz,j

∣∣∣∣ zb,j ≥ 0, for j = [1, . . . , nb], (5.4a)

Fy,j = |by,j | −
∣∣∣∣Ry,j

Rz,j

∣∣∣∣ zb,j ≥ 0, for j = [1, . . . , nb]. (5.4b)

More specifically, constraints 5.4 impose that the support rise (zb,j) times
the reactions slopes (|Rx,j/Rz,j |, or |Ry,j/Rz,j |) must be bounded by |bx,j |,
or |by,j |. The absolute values are considered since Rx,j and Ry,j , or bx,j
and by,j may assume positive or negative values according to the position
(xj , yj) of the support in the plane. The reaction magnitudes Rx,Ry,Rz

are written with the problem variables in Eqs. 4.7.

These 2nb constraints are nonlinear. They apply to model systems assuming
that no buttressing system is available, such as self-standing domes and
arches. Indeed, the analysis can disregard these constraints in cases such
as shallow vaults or domes. In these cases, the stability of the buttressing
element can be checked a posteriori for the emerging reaction obtained in
the analysis.
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5.3.3 Remarks about no-sliding assumption

This work analyses the masonry structures through a continuous representa-
tive envelope. As such, the results obtained are not attached to any specific
stereotomy or arrangement of blocks. Indeed, to verify the no-sliding as-
sumption from Heyman (1966), a stereotomy and friction coefficient must
be assumed for the masonry.

As shown in Fantin and Ciblac (2016); Nodargi and Bisegna (2021b), a
stereotomy can be associated with TNA, having each node in the net-
work representing a voussoir in the structure. These results show that
the TNA approach adopted in this dissertation is equivalent to assuming
vertical stereotomy to the structure. This assumption corresponds to the
least conservative assumption and is far from the well-constructed historical
masonry vaults, as claimed in Heyman (1995).

5.3.4 Loads from the masonry geometry

Taking advantage of the fixed form diagram Γ and the definition of the
masonry envelope Λ, the loads can be computed from the masonry geometry
through a projection of Γ onto the structure’s middle surface Λm. Following
the projection on Λm, the loads are assigned by considering a nodal tributary
area Ai times the local thickness ti of the structure measured orthogonally
to Λm. This process is illustrated in Figure 5.2 for a radial form diagram Γ
and a masonry cap geometry Λ with a constant thickness t. The tributary
area calculation takes advantage of the definition of a centroidal dual Γd

(Block et al., 2014) connecting the centroids of neighbouring faces of the
projected form diagram (Γproj). An efficient numerical formulation to lump
the tributary weights is presented here.

The lumped weights pz [n× 1] are computed from the projected nodal co-
ordinates Xproj [n× 3] based on the nodal tributary areas. Each tributary
area Ai is divided into g elementary triangles. These triangles have a central
node i; one side connecting node i to the midpoint of the edge to a neigh-
bour j, denoted ve,ij ; and another side connecting node i to the centroid o
of a neighbouring face containing node j, denoted vc,io. In the detail of
Figure 5.2, a node i is highlighted surrounded by four neighbouring vertices
and four neighbouring faces such as its tributary area Ai is the sum of the
eight elementary triangles aijk highlighted.

To compute the area of these g triangles, a linear transformation is intro-
duced to compute the coordinates of the nF face centroids, where nF is the
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Figure 5.2: Form Diagram Γ and its projection Γproj at Λm which is the
middle surface of the masonry Λ with orthogonal thickness t. The tribu-
tary area Ai of node i comes from the dual projected diagram Γd and its
composing elements (aijn, . . . ) highlighted on the right.

number of faces in the form diagram. We assume that each face i has nv,i

corner vertices and introduce the matrix Vc [nF × n] defined as

Vci,j =

{
1/nv,i if vertex j is a corner of face i,

0 otherwise.
(5.5)

Following, the mapping matrices V0 and V1 [g×n] are introduced, mapping
the central and the neighbouring vertices. Similarly, V2 [g × nF] mapping
the centroids is defined:

V0i,j =

{
1 if node j is the centre node for triangle i,

0 otherwise.
(5.6a)
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V1i,j =

{
1 if node j is a neighbour node for triangle i,

0 otherwise.
(5.6b)

V2i,j =

{
1 if node j is a centroid node for triangle i,

0 otherwise.
(5.6c)

With these matrices, ve [g× 3] is computed, storing the vectors pointing to
the neighbours, and vc [g × 3] with the vectors pointing to the centroids,

ve = (V1 −V0)Xproj, (5.7a)
vc = (V2Vc −V0)Xproj. (5.7b)

The area of the g triangles is computed with the cross product among the
pair of vectors stored in ve and vc as

a =
1

4
|ve × vc|. (5.8)

From these elementary areas a [g × 1], the vector of tributary weights pz

[n × 1] can be computed by assuming a density ρ and a thickness vector t
with the local, orthogonal thickness ti for each node i to the masonry

pz = −ρ diag(t) VT
0 a. (5.9)

It is worth pointing out that the lumped weights must only be computed at
the beginning of the optimisation process since only the vertical coordinates
of the nodes in the thrust network will change. This algebraic calculation
allows storing the mapping matrices at the beginning of the process and
computing derivatives, if necessary. If a constant thickness t is applied,
instead of a variable thickness, Eq. 5.9 can be further simplified considering
only the scalar t instead of diag(t).
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5.4 Objective functions
This section presents the different objective functions (fobj) that are coupled
to the optimisation problem 5.1. Figure 5.3 shows the objective functions
implemented to a semi-circular arch. The objective functions implemented
and illustrated in Figure 5.3 are:

a) b) c)

d) e) f)

Figure 5.3: Examples of different objective functions on a semicircular arch:
(a) minimum horizontal thrust, (b) maximum horizontal thrust, (c) mini-
mum thickness tmin, (d) maximum vertical load multiplier λv associated to
an external vertical load pext

z , (e) maximum horizontal load multiplier λh

associated to a external horizontal load pext
h and (f) complementary energy

for boundary displacement ū.

(a) minimise the horizontal thrust,

(b) maximise the horizontal thrust,

(c) minimise the structural thickness tmin,

(d) maximise the vertical load multiplier λv,

(e) maximise the horizontal multiplier λh, and

(f) minimise the complementary energy for boundary displacement ū.

In Figure 5.3, the points in which the thrust line touches the extrados
(resp. intrados) are marked in green (resp. blue). This convention will
be adopted throughout this dissertation. They indicate the location where
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cracks are expected in the solution. When the thrust touches the intrados
(resp. extrados), a crack will form in the extrados (resp. intrados).

The analytical expression of these objectives is presented in Sections 5.4.1–
5.4.5. For each objective function, the solution in a shallow cross vault
geometry is depicted. The parametric generation of this geometry will
be discussed in Section 6.3.1.2. The geometry depicted throughout Sec-
tions 5.4.1–5.4.5 is defined with β = 30° and t/s = 0.05. The form diagram
used is a cross topology, as in Figure 4.3c having ns = 16 divisions along the
diagonals. More on the shape definition and form diagram will be presented
in Chapter 6.

Following the definition of each objective function, the gradients with regard
to the problem variables are presented in Section 5.6.

5.4.1 Minimum and maximum horizontal thrusts

The first pair of objective functions presented minimises or maximises
the horizontal thrust in the vaulted structures. The horizontal thrust is
computed using the expression of the reaction forces Rx, Ry defined in
Eqs. 4.7a–4.7b. The objective function fmin will minimise the sum of the
norm of the horizontal reactions Rx,i, and Ry,i at each support i, as

fmin =

nb∑
i=1

√
R2

x,i +R2
y,i. (5.10)

As shown in Eqs. 4.7a–4.7b, the horizontal components of the emerging
reactions can be computed linearly from the independent force densities qid

and do not depend on the height of the supports zb.

When minimising the horizontal thrust of a vaulted structure, the deepest
thrust network contained within the geometry is obtained, as depicted in
Figure 5.4. In the solution, the network touches the extrados in the midspan
to maximise its depth and reduce its horizontal reaction component.

To maximise the horizontal reaction component in the vault, it suffices to
minimise the opposite of fmin, as presented in the expression of fmax,

fmax = −
nb∑
i=1

√
R2

x,i +R2
y,i. (5.11)
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G

Λ
zi

UB

zj
LB

Figure 5.4: Optimisation minimising the horizontal thrust on a shallow
cross vault. Left: perspective with a highlight at thrust network (G) and
masonry geometry (Λ). Right: side view highlighting the points in which
the network touches the extrados zUB

i (green) and intrados zLBj (blue).

G

Λ zi
LB

zj
UB

Figure 5.5: Optimisation maximising the horizontal thrust on a shallow
cross vault. Left: perspective with a highlight at thrust network (G) and
masonry geometry (Λ). Right: side view highlighting the points in which
the network touches the intrados zLBi (blue) and extrados zUB

j (green).

Conversely, when maximising the horizontal thrust of a vaulted structure,
the shallowest thrust network contained within the geometry is obtained,
as depicted in Figure 5.5. In the solution, the network touches the intrados
in the midspan to minimise its depth and increase its horizontal reaction
component.

By studying the extremes of thrusts, a better understanding of the size of
the space of the domain of admissible stress states is provided. Further
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discussion and application to various geometries will be presented in Chap-
ter 7.

5.4.2 Minimise the structural thickness
Minimising the structural thickness in masonry structures is relevant to
calculating the Geometric Safety Factor (GSF), as shown in Heyman (1969).

In the present formulation, the minimum thickness problem is modelled by
introducing an auxiliary scalar variable t ≥ 0 representing the thickness of
the structure, such that the objective function becomes

ft = t. (5.12)

The variable thickness t entails an update in the constraints applied to
the network (Section 5.3). As the thickness t decreases, the upper and
lower bounds for the nodal elevations (zLBi and zUB

i ) need to be adjusted.
The problem becomes minimising the thickness such that there is still a
compressive thrust network within the updated bounds.

Three different strategies are developed to update the bounds in this work,
accounting for cases in which (a) the geometry of intrados and extrados is
known analytically, (b) the geometry of intrados and extrados is input as
an approximated polygonal mesh, and (c) only the approximated geometry
of a single surface is provided, e.g., the middle surface of the vault. These
strategies are illustrated in Figure 5.6 and are explained in the following
subsections.

5.4.2.1 Based on analytical description

For problems in which the geometry of intrados and extrados can be de-
scribed analytically as a function of a thickness parameter t, the elevations
of the intrados and extrados are updated with

zLBi (t) = sLB(xi, yi, t), (5.13a)

zUB
i (t) = sUB(xi, yi, t), (5.13b)

in which sLB and sUB are scalar multi-variable functions that depend on the
shape modelled, e.g., dome, cross vault (see Section 6.3). They represent
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Figure 5.6: Different strategies to minimise the structural thickness based
on: (a) the analytical description of the intrados ΛLB(t) and extrados ΛUB(t)
as a function of t, (b) an approximated description of intrados Λ̃LB and ex-
trados Λ̃UB with normal unit vectors n̂LB

i and n̂UB
i , and (c) an approximated

description of the middle surface Λ̃m with unit normals n̂m
i .

the elevation of intrados and extrados for a given nodal position in the form
diagram (xi, yi) and thickness t. As such, the new intrados and extrados,
ΛLB(t) and ΛUB(t), are computed analytically as illustrated in Figure 5.6a.
For a dome, e.g., the functions sLB and sUB described in Eqs. 6.1. The
analytical minimisation of the structural thickness tmin for the same shallow
cross vault from Section 5.4.1 is presented in Figure 5.7.

5.4.2.2 Based on intrados and extrados heightfields

An offset strategy has been developed for the cases in which only an approx-
imate heightfield of intrados (Λ̃LB) and extrados (Λ̃UB) is available. This
offset is computed based on the normal unit vector n̂i computed for the
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G

Λmin tmin
t0

Figure 5.7: Optimisation minimising the thickness on a shallow cross vault.
Left: a perspective of the solution with thrust network (G) and minimum
masonry geometry (Λmin). Right: Elevation showing the initial t0 and
minimum thickness tmin.

projection of the form diagram’s node i onto the heightfield.

We assume that Λ̃LB and Λ̃UB are known for the projection of the points
of the form diagram. As such, the initial elevations z̄LBi and z̄UB

i , and the
normal unit vectors n̂LB

i and n̂UB
i pointing to the interior of the structural

domain can be computed, as shown in Figure 5.6b.

The new bounds are computed by introducing the scalar d ≥ 0 representing
the offset distance from the initial intrados and extrados. The offset is then
computed linearly by projecting the normal vectors n̂i perpendicularly onto
the vertical direction. The magnitude of the vertical offset distance δp is
computed by Eq. 5.14 for a normal vector n̂i = [n̂x,i, n̂y,i, n̂z,i] as

δp(n̂i) =

√
1 +

n̂2
x,i + n̂2

y,i

n̂2
z,i

. (5.14)

By considering the vertical projections in the offsets, the new bounds cor-
responding to each vertex (xi, yi) in the form diagram can be linearly cal-
culated to enter the constraints in Eq. 5.3 as

zLBi (d) = z̄LBi + d δp(n̂
LB
i ), (5.15a)

zUB
i (d) = z̄UB

i − d δp(n̂
UB
i ). (5.15b)
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The objective function to minimise the structural thickness becomes then
the maximisation of d or the minimisation of −d

ft = −d. (5.12)

5.4.2.3 Based on a single surface heightfield

A similar approach applies if only a single surface is available. This surface
can be considered as the ideal vault’s middle surface (Λ̃m) or the geometry
of its intrados (Λ̃LB).

The case in which the middle surface heightfield (Λ̃m) is available is de-
scribed in Figure 5.6c. The process is based on the middle surface heights
z̄mi and the normal vectors n̂m

i . The new bounds are computed by consid-
ering a t/2 offset of the middle surface in both directions such that the new
constraining elevations are computed as

zLBi (t) = z̄mi −
t

2
δp(n̂

m
i ), (5.16a)

zUB
i (t) = z̄mi +

t

2
δp(n̂

m
i ). (5.16b)

When only the intrados surface (Λ̃LB) is available, the update occurs at the
extrados elevations considering the offset from z̄LBi by the magnitude of the
thickness parameter t as in

zUB
i (t) = z̄LBi + t δp(n̂

LB
i ). (5.17a)

For the cases in which only a single surface is available, the objective remains
the same as in Eq. 5.12, minimising the scalar t.

The main advantage of the strategies presented in Sections 5.4.2.2–5.4.2.3
is that by considering the vertical projections in the offsets, the new bounds
corresponding to each vertex (xi, yi) in the form diagram can be linearly cal-
culated. With these strategies, the structural thickness can be minimised
even for practical cases where the vaults’ geometry is not provided analyt-
ically. Indeed, after the data acquisition, only a point cloud heightfield is
obtained when assessing existing masonry structures.
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5.4.3 Maximise the vertical load multiplier

Masonry structures might collapse due to additional vertically applied load.
In this section, the maximisation of a general vertical load is taken as the
objective function of the optimisation problem 5.1. The auxiliary variable
λv ≥ 0 is introduced, representing the vertical load multiplier associated
with an external vertical load pext

z [n × 1], defining the distribution of the
applied external load to the nodes of the structure. The computation of the
heights of the network is executed with the following equation:

zi (qid, zb, λv) = D−1
i

(
(pz,i + λvp

ext
z,i )−

(
CT

i QCb

)
zb

)
. (5.18)

In Eq. 5.18, the additional external load applied to the system is added to
the tributary self-weights pz computed following Section 5.3.4. The height
of the internal vertices in the network is then linear with respect to λv.
Eq. 5.18 should be considered in the constraints on the elevations of the
network, i.e., Eqs. 5.3.

Furthermore, the external load will influence the emerging vertical reaction
forces of the system, such that Eq. 4.7c is rewritten as

Rz = CT
bWq− pz,b − λvp

ext
z,b . (5.19)

Such that the effect of Eq. 5.19 needs to be taken into account in case the
constraints in the reaction forces (5.4) are activated.

In Figure 5.8, the vector defining the loading case pext
z has null entries for all

vertices except for the vertex highlighted in the middle of the vault’s web,
which has entry -1.0 representing an additional load pointing downwards.
To maximise the effect of this load, the scalar parameter λv is maximised
such that the objective then becomes

fv = −λv. (5.20)

The solution in Figure 5.8 shows the thrust network obtained for the maxi-
mum applied vertical load. The network topology was modified to allow for
direct paths to the supports. These direct paths get activated in the optimal
solution. Results obtained with collapse loads are presented in Chapter 8.
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G

Λ

Figure 5.8: Optimisation maximising the vertical load multiplier λv associ-
ated with an external vertical load applied pext

z to the middle of the web
in a shallow vault. Left: a perspective of the thrust network (G), masonry
geometry (Λ), and applied load. Right: side view showing the force trans-
ferred to the supports.

Eq. 5.20 is linear and can be coupled to the developed framework, given
that the effects of the added external load are taken into account in the
constraints.

5.4.4 Maximise the horizontal load multiplier
A procedure to maximise the effect of a horizontal load case is presented in
this section. Similarly to the process presented in Section 5.4.3, an auxiliary
variable λh ≥ 0 representing the horizontal load multiplier is introduced.
This load multiplier is associated with a vector defining the distribution
and direction of the applied horizontal load pext

h [2n × 1]. The load vector
is composed of a stack of the components applied to the x and y directions,
respectively pext

x ,pext
y [n× 1].

The horizontal applied load needs to be feasible, i.e., there should be a com-
pressive pattern to transfer it to the supports. Mathematically, as shown in
Bruggi (2020), this can be verified by checking that the vector of horizon-
tally applied loads in the free vertices pext

h,i does not add a dimension to the
rank of the equilibrium matrix, i.e.,

rank(E) = rank(E|pext
h,i ). (5.21)

Given that Eq. 5.21 is verified, the loading case can be applied to the form
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diagram. It influences the horizontal equilibrium, which is solved with the
independent edges as described in Eq. 4.10, such that the new expression
for the edge force densities accounting for the additional external horizontal
load is

q(qid, λh) = Bqid + λhE
†
d

[
pext
h,i

0

]
. (5.22)

From Eq. 5.22, the effect of λh is accounted for in the edge force densities,
which will also influence the heights z in the structure. Furthermore, the
horizontal reactions Rx,Ry must also be reformulated to account for λh

and computed as follows

Rx = CT
bUq− px,b − λhp

ext
x,b, (5.23a)

Ry = CT
bVq− py,b − λhp

ext
y,b. (5.23b)

The objective function becomes then the maximisation of λh, so the objec-
tive function becomes

fh = −λh. (5.24)

This objective function is relevant to modelling, e.g., the static equivalent
of seismic forces in masonry vaults (DeJong, 2009). It also corresponds to
tilting the vault by a giving rotation angle such that a fraction of the weight
is applied horizontally (Zessin, 2012).

In Figure 5.9, the maximum horizontal load is evaluated for the shallow cross
vault. The vector defining the loading case pext

h points in the x direction
and applies to each node a fraction λh of its tributary weight. Hence,
the optimal λopt

h represents the maximum horizontal load multiplier (see
also Chapter 8). To respect Eq. 5.21, the diagram used for the analysis is
modified, enabling the transfer of the horizontal loads to the supports. A
diagram sliding is applied with a parabolic profile and maximum magnitude
equal to ∆ = 5% of the span (see Section 6.2.3). This sliding transformation
can be seen as the equivalent of tilting the planar diagram to respond to
the horizontal loads. The solution in Figure 5.9 shows that the network
obtained is admissible and enables the transfer of the horizontal loads to
the supports.
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Figure 5.9: Optimisation maximising the horizontal load multiplier λh asso-
ciated with external horizontal load pext

h applied to the shallow vault. Left:
perspective with a highlight at thrust network (G) and masonry geometry
(Λ) and the direction of applied horizontal loads. Right: side view showing
the force transferred to the supports.

By coupling Eq. 5.24 to the present framework, the effects of horizontal
loads can be studied, given that the effects of λh are propagated into the
equilibrium equations and constraints, as described in this section.

5.4.5 Minimise the complementary energy

This section describes the last objective function implemented in this disser-
tation, minimising the complementary energy for a given set of foundation
displacements. In continuous mechanics (see Angelillo, 2014), the comple-
mentary energy Wc expression for a continuum Ω subjected to boundary
displacements ū applied to the constrained boundary δΩD, with internal
stress represented by the tensor T and linear hyperplastic response in com-
pression described by A as

Wc = −
∫
δΩb

T · ū ds+
1

2

∫
Ω

AT : T dV. (5.25)

The first term in Eq. 5.25 is linear and accounts for the imposed displace-
ments to the supports ū. The second quadratic term reflects the internal
energy of the structure. For a reticulated system, the internal energy sim-
plifies to its axial component, which for an elastic material is written by
introducing the structure’s Young modulus E and the cross-sectional areas

95



Chapter 5. Constrained Equilibrium

As,i. Assuming that the cross-section bar areas are proportional to the axial
force that they carry, the expression can be further simplified and written
in terms of the force densities qi as

1

2

∫
Ω

AT : T dV =

m∑
i

f2
i li

2E As,i
=

1

2ϵ

m∑
i

|qi| l2i , (5.26)

in which the constant ϵ takes into account the stiffness and the axial strength
of the bars of the structure. Eq. 5.26 yields in the well-known load-path
(Liew et al., 2018, 2019; Baker et al., 2013), which is linear for a system with
fixed spatial geometry, but nonlinear in the present case where the nodal
elevations vary with the force densities. Section 5.5.1 provides a discussion
about the convexity of this term.

With the present formulation, the expression of the complementary energy
in a reticular system with stiffness parameter ϵ for a given set of support
displacements ū [n× 3] is

W̃c(ū, ϵ) = −
nb∑
i

Ri · ūi +
1

2ϵ

m∑
i

|qi|l2i , (5.27)

Under the limit analysis assumptions, the internal elastic energy in Eq. 5.27
vanishes for masonry structures. This is equivalent to assuming that the
stiffness parameter in the network bars is infinite (ϵ → ∞), such that the
complementary energy expression simplifies to

fc = −
nb∑
i

Ri · ūi. (5.28)

Eq. 5.28 will then be used as the objective function for the problem of
minimising the complementary energy. fc is a linear function of the reaction
forces. The horizontal components of the reaction forces (Eqs. 4.7a–4.7b)
are a linear function of qid, while Rz is a function of the unknown elevations
of the network z and, therefore, a function of both qid and zb.

In Figure 5.10, a shallow cross vault is subjected to a corner foundation dis-
placement ū and the optimisation is conducted minimising fc. The results
enable obtaining the thrust network compatible with the prescribed dis-
placement. Chapter 9 discusses how minimising the complementary energy
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can provide information on possible crack formation in three-dimensional
structures at the onset of foundation displacements.

G

Λ

Figure 5.10: Optimisation minimising complementary energy for the corner
foundation displacement ū on a shallow cross vault. Left: a perspective of
the solution with a highlight at thrust network (G) and masonry geometry
(Λ). Right: Elevation showing the effect of the applied displacement on the
network’s pulled diagonal.

5.5 Starting points

This section describes the starting points adopted to solve the optimisation
problem in Eqs. 5.1. Since this problem is nonlinear, selecting an appropri-
ate starting point is important to the time consumption and solvability of
the nonlinear problem.

Section 5.5.1 presents a convex implementation of the load-path optimisa-
tion for a fixed form diagram, which will be the standard starting point
strategy in this dissertation. Alternative starting points are discussed in
Section 5.5.2.

5.5.1 Load-path optimisation

We recall and rewrite the expression of the load-path (ϕ) in terms of force
densities for a reticulated structure previously derived in Section 5.4.5,

ϕ =

m∑
i

|qi|l2i . (5.29)
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The load-path is a scalar representing the volume of a reticulated system,
assuming that all bars are equally stressed to their maximum strength in
tension σt and compression σc (Maxwell, 1870). The minimisation the load-
path has been introduced in Michell (1904) and applied to multiple research
on minimising the material, including applications to trusses (Gilbert and
Tyas, 2003; Beghini et al., 2013) and compression-only reticulated shells
(Liew et al., 2018, 2019).

The load-path can also be written in terms of the external loads, noted as
ϕext, which is equivalent to ϕ, as shown in Maxwell (1870),

ϕext =

ni∑
i

Pi · ri +
nb∑
i

Ri · ri, (5.30)

in which the first term represents the work of the applied loads Pi in the
internal nodes of the network, and the second accounts for the work of the
reaction forces Ri. In Eq. 5.30, ri represents a vector from the origin to the
point i, i.e., (xi, yi, zi).

The expression of ϕext can be rewritten in the following matrix expression
as in Liew et al. (2018),

ϕext = pT
x,ixi + pT

y,iyi + pT
z,izi +RT

x xb +RT
y yb +RT

z zb. (5.31)

In this work, a convex simplification of Eq. 5.31 is considered, which can be
solved efficiently and used as a starting point for the problem in Eq. 5.1.
This convex simplification is based on four assumptions:

(i) only vertical loads are applied to the network,

(ii) the network’s horizontal projection is fixed,

(iii) the supports are co-planar, and

(iv) only compressive (or tensile) forces are considered.

Eq. 5.31 can, then, be simplified since the assumptions (i–iv) will reflect in:

(i) px = py = 0;

(ii) xb,yb are known and Rx,Ry is a linear function of the force densities
q computed per 4.7 as a function of the force densities q;

(iii) zb = 0, which also affects the expression of zi per Eq. 4.11; and,
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(iv) Di = CT
i QCi ≼ 0, meaning that Di is negative semidefinite.

Eq. 5.31 is then rewritten as

ϕext(q) = −pT
z (C

T
i QCi)

−1pz + (CT
bQCb)

Txb + (CT
bQCb)

Tyb, (5.32)

in which the first term is the matrix fraction, as defined in Boyd and Van-
denberghe (2004), and the following terms are linear with respect to the
force densities q.

The convex problem below is solved to find the compression-only thrust net-
work associated with a fixed Γ, having equilibrium matrix E and subjected
to applied vertical loads pz

minimise
q

ϕext(q), (5.32)

subject to q ≤ 0, (5.33a)
Eq = 0, (5.33b)

in which, Eq. 5.32 is convex and constraints 5.33a–5.33b are conic and linear
such that this problem corresponds to a semidefinite convex optimisation
(Boyd and Vandenberghe, 2004).

By performing the optimisation in Eqs. 5.33, a compression-only thrust net-
work is obtained as starting point for the NLP. Furthermore, if no solution
is obtained to the problem, a compression-only force distribution in input
form diagram Γ might be impossible. In this case, a new topology should
be considered. Figure 5.11 shows the results of the load-path optimisation
for three structures.

The optimal thrust networks (G) are shown next to the form diagram used in
the analysis Γ. In Figure 5.11a, a form diagram inspired by the one used to
formfind the Striatus Bridge (Bhooshan et al., 2022) is used. It is composed
of 1198 edges and 45 supports. In Figure 5.11b, a continuously supported
orthogonal form diagram with 800 edges and 80 supports is considered.
In Figure 5.11c, a corner-supported fan diagram with 1600 edges and four
supports is used.
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a)

G Γ

b)

Γ
G

c)

G Γ

Figure 5.11: Examples of load-path optimised thrust networks (G), pre-
sented next to their form diagram (Γ): (a) freeform pattern inspired by
the Striatus Bridge (Bhooshan et al., 2022), (b) four-side continuously sup-
ported vault, (c) four-corners supported vault.

Based on the solutions from the load-path, the networks can be used as a
starting point for the nonlinear optimisation imposing the constraints from
Section 5.3.

5.5.2 Alternative starting points

Alternative starting points could also be considered to solve the nonlinear
optimisation problem in Eqs. 5.1. Three such alternatives are presented
briefly in this section.
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One possible strategy is starting from a compression-only thrust network,
found through parallelisation. Previous work in TNA (see Section 2.3.3) has
developed multiple strategies to explore the compression-only equilibrium
using graphic-statics-based approaches. We highlight the example proposed
in Rippmann et al. (2012), where the algorithm starts from a form diagram
Γ and a dual diagram Γd, which are not yet reciprocal. The algorithm
updates the nodal positions Γ and Γd until they are parallel (up to a pre-
defined tolerance). When the diagrams are parallel, i.e., reciprocal, a set
of compressive force densities can be retrieved and used to start the NLP.
This strategy applies even to form diagrams which can not yet describe a
possible compression-only equilibrium state. The algorithm can be modi-
fied by a weighting factor such that the orientation of the edges in Γ is also
allowed to change, resulting in a new form diagram to start the NLP.

Alternatively, the starting point could be based solely on applying the Force
Density Method (FDM) (Schek, 1974). Indeed, suppose a given distribution
of force densities is applied to the edges of the network, e.g., uniform distri-
bution. In that case, an equilibrated geometry is obtained with Eqs. 4.6 and
could be used to start the NLP. However, depending on the distribution ap-
plied, the network will move in the plan, and the form diagram can become
unsuited for the analysis. Nevertheless, this could be combined with opti-
misation algorithms as in Liew (2020) gaining control over the horizontal
nodal movement.

A third strategy listed is a negative (or non-positive) least-squares optimisa-
tion, which corresponds to a well-known convex optimisation (Lawson and
Hanson, 1995). The problem seeks to find a negative and nonsingular q ̸= 0
that respects the horizontal equilibrium Eq. 4.8 and has also been applied
in Block (2009).

5.6 Derivatives

This section presents the sensitivities required to solve optimisation 5.1 us-
ing gradient-based methods. The fundamental derivatives of the equilibrium
equations are presented in Section 5.6.1. The objective functions’ gradients
are derived in Section 5.6.2, and the Jacobian matrix of the constraints is
presented in Section 5.6.3.
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5.6.1 Fundamental derivatives
The first fundamental derivatives stores the sensitivity of the vectors of force
densities q, computed per Eq. 4.10, with respect to the independent force
densities qid

∂q

∂qid
= B. (5.34)

The sensitivities of the vertical elevations of the thrust network, computed
per Eq. 4.11, are described. The elevations are a function of both qid and
zb, leading to the sensitivities ∂zi/∂qid [ni×k] and ∂zi/∂zb [ni×nb], which
can be computed by applying the chain rule to Eq. 4.11 and the matrix
inverse derivative rules in Petersen and Pedersen (2012), resulting in

∂zi
∂qid

=
∂zi
∂q

∂q

∂qid
= −D−1

i CT
i WB, (5.35)

∂zi
∂zb

= −(CT
i QCi)

−1CT
i QCb. (5.36)

The reaction forces computed per Eq. 4.7 are derived with respect to the
independent force densities qid resulting in the following derivatives of shape
[nb × k]

∂Rx

∂qid
= CT

bUB, (5.37a)

∂Ry

∂qid
= CT

bVB, (5.37b)

∂Rz

∂qid
= CT

bWB+CT
bQC

[
−D−1

i CT
i WB

0

]
. (5.37c)

While Rx and Ry are a function of the force densities only, the reactions in
the z−directions are also function of zb with sensitivity ∂Rz/∂zb [nb × nb]
computed as

∂Rz

∂zb
= CT

bQC

[
−D−1

i Db

Inb

]
. (5.38)
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The fundamental derivatives presented in this section are used to express
the gradients and Jacobians in the following sections.

5.6.2 Gradient functions

The gradient vector for each objective function is presented below. They will
be used in the implementation of the optimisation described in Chapter 6.

5.6.2.1 Gradient of minimum and maximum thrusts

The gradient of minimum fmin and maximum fmax thrusts are presented
(see Section 5.4.1). Their expressions are a function of qid only, and each of
the scalar components j of ∂fmin/∂qid [k×1], representing the sensitivity of
the objective function to the j-th independent force density, can be obtained
applying the chain rule

(
∂fmin

∂qid

)
j

=

(
∂f

∂q

∂q

∂qid

)
j

= ±
nb∑
i

Rx,i

(
∂Rx

∂qid

)
i,j

+Ry,i

(
∂Ry

∂qid

)
i,j√

R2
x,i +R2

y,i

. (5.39)

Where the sign ± reflects the minimisation or maximisation of the thrust,
the notation ()i,j represents the (i, j) matrix element, and the terms
∂Rx/∂qid and ∂Ry/∂qid are computed using Eqs. 5.37a–5.37b.

5.6.2.2 Gradient of minimum thickness

For the minimum thickness optimisation (see Section 5.4.2), the gradients
are obvious since the objective function is simply the auxiliary variable t
representing the thickness of the structure. Therefore the gradient with
respect to t is

∂ft
∂t

= 1. (5.40)

The auxiliary variable, in this case, will also influence the constraints by
updating the structure’s new bounds (intrados and extrados). This effect
will be discussed in Section 5.6.3.
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5.6.2.3 Gradient of maximum load multipliers

The gradients for the maximum vertical (Section 5.4.3) and horizontal (Sec-
tion 5.4.4) load multipliers are also straightforward with the auxiliary vari-
ables introduced, respectively λv and λh,

∂fv
∂λv

=
∂fh
∂λh

= −1. (5.41)

However, whenever λv, or λh are added as variables of the problem, their
effect on the elevation of the free nodes, reaction force magnitudes, and
equilibrium equation needs to be accounted for. This is discussed in detail
in Section 5.6.3.

5.6.2.4 Gradient of complementary energy

The gradient of the complementary energy expression fc, defined in Eq. 5.28,
on the problem variables ∂fc/∂qid [k×1] and ∂fc/∂zb [nb×1] are written in
terms of the partial derivatives of the reaction forces, defined in Eqs. 5.37–
5.38, as

∂fc
∂qid

= −

[
∂Rx

∂qid

T

,
∂Ry

∂qid

T

,
∂Rz

∂qid

T
]ūx

ūy

ūz

 , (5.42a)

∂fc
∂zb

= −∂Rz

∂zb

T

ūz. (5.42b)

5.6.3 Jacobian of the constraints

This section describes the composition of the Jacobian matrix for the NLP
described in this Chapter. The Jacobian matrix assumes the shape [ncon ×
nvar], in which ncon is the number of constraints in the problem and nvar

is the number of variables which varies according to the variables used in
the problem and constraints activated. Consequently, the Jacobian matrix
is modular based on activated variables and constraints. A base case is
presented in Section 5.6.3.1 and variations are discussed in Sections 5.6.3.2–
5.6.3.4.
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5.6.3.1 Base case: minimum thrust optimisation

The minimisation of the horizontal thrust is the base case, which can be
described with

• nvar = k+nb variables, with k the independent edges and nb support
elevations.

• ncon = m+2n+2nb constraints, in which m for the compression-only
requirement, 2n constraining the nodes to remain within the structural
thickness and 2nb for constraining the direction and magnitude of the
reaction forces.

The arrangement of the Jacobian matrix is shown in the scheme in Fig-
ure 5.12.

Figure 5.12: Arrangement of the Jacobian matrix for the base case described
in this Section.

In which ∂Fx/∂zb and ∂Fx/∂qid are defined below and are analogous to
the y-direction. By introducing the notation ()i to represent a slice in the
i-th line of matrices, the column vector ∂Fx,i/∂zb [nb× 1] can be expressed
as
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∂Fx,i

∂zb
= −

∣∣∣∣Rx,i

Rz,i

∣∣∣∣ (Inb
)
T
i −

zb,i|Rx,i|
R2

z,i

(
∂Rz

∂zb

)T

i

. (5.43)

The term ∂Fx,i/∂qind can be expressed as the column vector [k × 1] in
Eq. (5.44), where the ± sign reflects the sign of Rx,i

∂Fx,i

∂qind
= − zb,i

R2
z,i

(
|Rx,i|

(
∂Rz

∂qind

)
i

± |Rz,i|
(

∂Rx

∂qind

)
i

)T

, (5.44)

5.6.3.2 Introduction of thickness parameter

When a thickness parameter t or an equivalent offset magnitude d is intro-
duced (see Section 5.4.2), one new column is added to the Jacobian matrix
to account for the new variables. This variable will affect the constraints in
the nodal elevations and the reaction vectors.

On the nodal elevations, when the intrados and extrados can be described
analytically (Section 5.4.2.1), the derivatives ∂zUB/∂t and ∂zLB/∂t [n× 1]
representing the sensitivities on the upper and lower bounds with regard to
a change in the thickness parameter t must be provided (for a hemispheric
dome these are provided in Eqs. 6.2).

When analytical descriptions of the bounds are not provided, two strategies
were discussed in Sections 5.4.2.2–5.4.2.3. When intrados and extrados are
available (Section 5.4.2.2), the derivatives with respect to the offset distance
d as

∂zLBi

∂d
= δp(n̂

LB
i ), (5.45a)

∂zUB
i

∂d
= −δp(n̂UB

i ). (5.45b)

An analogous procedure applies for the case in which only a single surface
is provided (Section 5.4.2.3).

5.6.3.3 Introduction of a vertical load multiplier

The addition of a vertical load multiplier λv influences the internal eleva-
tions of the network zi and the reaction vectors in the z-direction Rz with
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sensitivities computed as

∂zi
∂λv

= D−1
i pext

z,i , (5.46)

∂Rz

∂λv
= CT

bQC
∂zi
∂λv
− pext

z,b . (5.47)

The multiplier does not affect the reactions Rx and Ry per se and only
increases the height near the load point of application. However, given
the constrained framework, for still fitting the network within the bounds,
higher forces arise at edges linking the applied load to the supports, indi-
rectly increasing the horizontal reactions (see Figure 5.8).

5.6.3.4 Introduction of a horizontal load multiplier

The addition of a horizontal load multiplier λh influences the horizontal
equilibrium, and therefore the computation of q per Eq. 4.10, with

∂q

∂λh
= E†

d

[
pext
h,i

0

]
, (5.48)

which propagates to the computation of the nodal elevations of the free
nodes with the chain rule

∂zi
∂λh

= −D−1
i CT

i W
∂q

∂λh
, (5.49)

which also propagates to the reaction forces with sensitivities computed as

∂Rx

∂λh
= CT

bUC
∂q

∂λh
− pext

x,b, (5.50a)

∂Ry

∂λh
= CT

bVC
∂q

∂λh
− pext

y,b, (5.50b)

∂Rz

∂λh
= CT

bQC
∂zi
∂λh

+CT
bWC

∂q

∂λh
. (5.50c)

Similarly, the sensitivities of Eqs. 5.50 propagate to constraints involving
the planar reaction forces (Eqs. 5.4).
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5.7 Summary
This chapter described the mathematical foundation necessary for conceiv-
ing a modular multi-objective optimisation framework to search admissible
stress states in masonry structures. The optimisation described is nonlin-
ear. A complete description of the variables adopted, constraints imposed,
and objective functions implemented has been provided.

The variables adopted come from the mathematical formulation of Chap-
ter 4. The constraints applied are a translation of the limit analysis assump-
tions to TNA. A series of objective functions relevant to assessing masonry
structures have been described. These objective functions are listed in Ta-
ble 5.1. Cases for which the masonry geometry is described analytically or
provided by point clouds can be analysed with the formulation.

This chapter has also presented the gradients of all objective functions and
the Jacobian matrix. The Jacobian matrix varies according to each prob-
lem’s active constraints and variables. The mathematical description pro-
vided in this chapter will be implemented in Chapter 6 and will be used
to compute the numerical results of this dissertation presented in Chap-
ters 7, 8, and 9.

Table 5.1: Summary of the different objective functions implemented in this
work.

objective function symbol definition

minimise horizontal thrust fmin Eq. 5.10
maximise horizontal thrust fmax Eq. 5.11

minimise thickness ft Eq. 5.12
maximise vertical multiplier fv Eq. 5.20

maximise horizontal multiplier fh Eq. 5.24
minimise complementary energy fc Eq. 5.28
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Implementation

This chapter describes the implementation of the search for admissible stress
states in masonry structures as a nonlinear optimisation problem. To com-
pute the results presented in this dissertation, the author developed a novel
Python-based package named compas_tno. The package’s workflow, main
elements, and protocols are presented. A discussion about solving strategies
for constrained nonlinear problems is also included.

6.1 Thrust Network Optimisation
An open-source Python-based package named compas_tno (Maia Avelino,
2023), or simply TNO, is introduced in this section. The package has been
developed to perform the Thrust Network Optimisation introduced in this
dissertation. It provides the datastructure necessary to set up and solve the
modular multi-objective optimisation framework mathematically defined in
Chapter 5 to search for admissible thrust networks in masonry structures.

It fits within the COMPAS (Van Mele, 2017) ecosystem, which provides the
basic infrastructure for software development and collaboration within the
AEC industry. It links to and inherits from the parent package compas_tna
(Van Mele et al., 2021), which has been developed to perform the design
of compression-only structures with Thrust Network Analysis (TNA) based
on graphic form and force diagrams (see also Section 2.3.3).

Owing to its insertion in the Python environment, which has been increas-
ingly used for scientific research, compas_tno connects with several open-
source optimisations and mathematical packages, such as NumPy, SciPy,
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and IPOPT (Harris et al., 2020; Virtanen et al., 2020; Wächter and Biegler,
2006). A graphical illustration of the TNO ecosystem is presented in Fig-
ure 6.1. Being developed entirely in Python, it does not rely on any specific
CAD environment, which brings additional flexibility to professionals work-
ing with different CAD software.

The documentation and repository of the project can be accessed at:

• https://blockresearchgroup.github.io/compas_tno/

As a dynamic, growing scientific contribution, compas_tno is freely avail-
able, and shared with the scientific community to enhance the collaboration
of methods. As highlighted in the problem statements of this dissertation,
much of the past development of numerical tools for masonry structures
has been limited to academic papers, which other researchers can not di-
rectly and easily implement. By providing an overview of compas_tno in
the following sections, the implementation proposed in this dissertation can
be used and further developed by others.

Figure 6.1: Ecosystem in which compas_tno is inserted, benefiting from
open-source scientific packages available in the Python environment and
building upon the COMPAS (Van Mele, 2017) framework and previous re-
lated work, such as compas_tna (Van Mele et al., 2021).

The workflow for setting up a problem with TNO is depicted in Figure 6.2.
The main elements or classes are the:

• FormDiagram: defining the flow of forces in the structure.

• Shape: defining the masonry geometry to be analysed.

• Optimiser: storing the information about the optimisation settings.
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2.1. from_library
2.2. from_meshes

2.3. from_pointclouds

1. Form
Diagram

1.1. from_library
1.2. from_lines
1.3. from_mesh

1.4. assign supports
1.5. modify diagrams

2. Shape

3. Optimiser 4. Analysis

3.2. declare variables
3.3. set constraints
3.4. set objectives
3.5. set features

3.6. set staring point

2.4. geometric info
2.5. density (ρ)

4.1. apply_selfweight
4.2. apply_envelope

4.3. apply_bounds_on_q
4.4. apply_reaction_bounds
4.5. apply_external_forces

4.6. set_up_and_run

3.1. select NLP solver

5. Solution

5.1. optimal value
5.2. arg min

5.3. visualisation

methods parameters instructions output

Figure 6.2: General workflow of compas_tno which enables setting up and
solving constrained optimisation problems with thrust networks.

• Analysis: gathering the form diagram, shape, and optimiser objects,
performing preconditioning operations, and running the optimisation.

• Solution: summarising the output of the optimisation.

In the following sections, these classes are introduced.

6.2 FormDiagram
Constituting the base of the TNA method, the FormDiagram, as defined in
Section 4.1.2, represents the geometry of the projected thrust network.

The input form diagram comes from different sources accessed through the
three main methods highlighted in Figure 6.2 and listed:

1.1. from_library: which creates a series of parametric form diagrams
that fit common rectangular and circular footprints.

1.2. from_lines: create the form diagram from lines provided by the user.

1.3. from_meshes: create the form diagram from meshes provided by the
user, where the connection with topology generating algorithms, such
compas_singular (Oval, 2019), is possible.
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After creating a FormDiagram object, additional functions are available to
modify the diagram.

1.4. assign supports: based on the information about the structure’s
boundary conditions, supports on specific vertices of the input form
diagram can be selected.

1.5. modify diagrams: a few standard modifications are introduced to
the diagrams to increase their variations.

The following sections specify how to generate form diagrams and modify
their geometry and topology.

6.2.1 Parametric diagrams

A few common topologies have been implemented parametrically in TNO.
Four of these parametric implementations are described here and will be
used throughout the applications in this dissertation. They are illustrated
in Figure 6.3 and described herein:

• radial diagram: polar diagram defined by two discretisation param-
eters being the number of meridians nM and the number of circular
parallels, or hoops nP. The location is defined by the central point
position Xc and the size by the radius R. Oculus openings can be con-
sidered with the parameter Ro. This diagram will be used to analyse
problems on hemispheric domes (see Sections 7.2.1). A diagram with
(nP, nM) = (12, 16), R = 5.0 and Ro = 0.75 is depicted in Figure 6.3a.

• orthogonal diagram: the orthogonal diagram is defined through two
discretisation parameters (nx, ny), and the start and end dimensions
of two opposite corners [[x0, xf ], [y0, yf ]]. This diagram is suitable for
performing analysis of continuously supported vaults, such as pavillion
vaults. Supports can be assigned to the continuous boundaries of the
pattern. A square orthogonal diagram is presented in Figure 6.3b with
(nx, ny) = (14, 14).

• cross diagram: corresponds to the orthogonal diagram added with
the main diagonals. The parameters are identical to the ones neces-
sary to construct the orthogonal diagram; however, for this topology,
ns = nx = ny. Supports can be applied to the corners or the full
perimeter. Based on the support assigned, different vaults can be
studied. The cross diagram with ns = 14 and corner support is pre-
sented in Figure 6.3c.
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• fan diagram: unlike the orthogonal arrangement, the parallel seg-
ments arriving at the diagonals are directed to the corners. The pa-
rameters are identical to the ones necessary to construct the cross
diagram. Supports can be applied to the corners or the full perime-
ter. The fan diagram in a square footprint with ns = 14 is presented
in Figure 6.3d.

(x0, y0)

(xf, yf)ns

(x0, y0)

(xf, yf)ns

(x0, y0)

(xf, yf)

ny

nx

a) b)

c) d)

nM

nP R

Ro

Xc

Figure 6.3: Examples of parametric diagrams available in compas_tno,
namely, (a) radial, (b) orthogonal, (c) cross, and (d) fan diagram.

These diagrams will be used to model examples in this dissertation, which
correspond to common masonry typologies, such as groin vaults, cloister
vaults, and domes. In compas_tno, they are completed by general input
mesh options and mesh transformations discussed in the following sections.
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6.2.2 General input meshes

Mesh generator input sources can be connected to TNO, such as the topol-
ogy finding algorithm implemented in compas_singular (Oval et al., 2017,
2018) that generate patterns based on singularities, line and point features.
Figure 6.4 shows meshes created with compas_singular.

Figure 6.4: Feature-based topology finding performed with compas_singular
(Oval, 2019). Coarse quad meshes (top row) with singularities (pink) are
densified with different discretisation levels and smoothed circular or square
footprints.

6.2.3 Mesh transformations

Pragmatic geometric modifications can also be applied to patterns in TNO,
increasing the diversity of patterns used to study masonry problems. These
transformations are presented in Figure 6.5 and listed below:

• scale and shear: simply scaling or shearing the meshes expand the
possible shapes generated, e.g., modifying the geometry of the radial
diagram with different scale factors leads to an oval footprint (see
Figure 6.5a).
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(a) (b) (c) (d)

Figure 6.5: Geometric transformations applied to the diagrams: (a) scale
and shear, (b) sag defined by force densities in the boundary qbound and
inner qinner edges, (c) slide of magnitude ∆, and (d) addition of members,
e.g., diagonals.

• sag: straight boundaries in non-continuously supported diagrams, as
the cross diagram (see Figure 6.3c), induce zero forces on edges ar-
riving at the straight boundary (see also Section 4.4). Curving the
unsupported boundaries enables three-dimensional interaction among
elements, as the edges pointing to the curved boundary can distribute
compressive forces to them. A sag strategy is applied in this work by
increasing the force densities in the open boundaries qbound and per-
forming an update in the geometry allowing the nodes to move in the
plan. Figure 6.5b shows the cross diagram after setting qbound = 10.0
and qinner = 1.0.

• slide: a mathematical profile, e.g., a parabola, can be imposed to
slide nodes in the diagram in one direction up to a magnitude ∆
(Figure 6.5c). The sliding profile can be combined with a tapered
profile in the orthogonal direction to create a planar field for sliding
the nodes. The slide transformation has been applied to the diagram
analysing the maximum horizontal multiplier in Section 5.4.4. This
transformation is equivalent to tilting the planar form diagram to
enable a path for the horizontal forces to the supports.

• adding members: the addition of new edges, e.g., diagonals to the
quad (structured) elements of the mesh, enables additional load paths
in the structure (see Figure 6.5d). In Section 8.2.2, these additional
paths will increase the maximum value of collapse loads. Not only can
diagonals be added, but also additional paths to the supports can be
superimposed to the diagram, as in the problem of the shallow cross
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vault presented, where straight paths were added (see Section 5.4.3).

6.3 Shape

The Shape class is responsible for storing the geometry of the masonry
structure used to constrain the form diagram. Three input sources are
available in TNO:

2.1. from_library: a series of parametric shapes is available in TNO,
they correspond to the typical masonry typologies. Examples include
domes, cross, and pavillion vaults.

2.2. from_meshes: create the shape from user-defined meshes of its intra-
dos and extrados.

2.3. from_pointclouds: interpolate in the point clouds to find meshes
used as intrados and extrados.

Two general parameters act on the definition of the shape:

2.4. geometric information: Information such as thickness, central
point, radius, discretisation, etc., used to define the geometry.

2.5. density (ρ): density assumed to the masonry for lumping the self-
weights.

Based on the input source and the parameters defined, the shape object
has three main properties: intrados, extrados, and middle representing
the key surfaces used for the problem formulation. Intrados and extrados
meshes are used to constrain the elevations of the nodes in the form diagram,
as described in Section 5.3.2. The middle surface is used to compute the
total area, and hence volume, and to distribute the self-weights lumped in
the nodes of the form diagram, as formalised in Section 5.3.4.

The next section describes parametric shapes, followed by the strategy
adopted to deal with data from point clouds.

6.3.1 Parametric shapes

Three parametric shapes defined in TNO are presented in this section, cor-
responding to hemispheric domes, cross vaults, and pavillion vaults. These
geometries will be analysed throughout Chapters 7–9.

116



6.3. Shape

6.3.1.1 Hemispheric dome

The geometry of the hemispheric dome is defined in Figure 6.6a. Its geome-
try is defined parametrically based on the thickness t, the central radius Rc,
and the centre point coordinates Xc. We assume that the thickness is ap-
plied orthogonally to the middle surface. A dome with thickness-over-radius
t0/Rc = 0.10 is depicted in Figure 6.6b.

a) b)

Figure 6.6: Dome geometry: (a) principal cross section and parameters, and
(b) intrados and extrados surfaces obtained for t/Rc = 0.10.

Based on these parameters, the geometry of the dome can be obtained
analytically through the functions sm, sLB and sUB describing its middle,
intrados, and extrados geometry. For a dome centred in the origin Xc =
[0, 0, 0], these equations are:

sm(xi, yi) =
√
R2

c − x2
i − y2i , (6.1a)

sUB(xi, yi, t) =
√
(Rc +

t
2 )

2 − x2
i − y2i , (6.1b)

sLB(xi, yi, t) =

{√
(Rc − t

2 )
2 − x2

i − y2i if x2
i − y2i ≤ (Rc − t

2 )
2,

−zmin otherwise.
(6.1c)

Eqs. 6.1 describe the geometry of the dome’s intrados and extrados in terms
of the variable thickness t and, therefore, enable the direct minimum thick-
ness minimisation described in Section 5.4.2. The sensitivities of the intra-
dos and extrados elevations for a point (xi, yi) are used for the minimum
thickness problem as described in Section 5.6.3.2 and are computed for the
dome as:
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∂zUB
i (t)

∂t
= +

1

2

Rc + t/2

zUB
i (t)

, (6.2a)

∂zLBi (t)

∂t
= −1

2

Rc − t/2

zLBi (t)
. (6.2b)

6.3.1.2 Parametric cross vaults

A parametric scheme is also introduced to model cross vaults. Cross vaults
are generated by the intersection of two barrel vaults having the same profile.
This profile is defined in Figure 6.7a by four parameters: its base length l0,
the radius R, the springing angle β, and the thickness t. In Figure 6.7b, a
cross vault with t/s = 0.050, R/l0 = 0.71, and β = 20° is depicted.

a) b)

Figure 6.7: Cross vault geometry: (a) principal cross section and parameters
and (b) geometry obtained for t/s = 0.050, R/l0 = 0.71, and β = 20°.

These parameters enable effectively modelling different cross vaults by vary-
ing their “pointiness” defined by (R/l0), their springing angle (β), and
thickness-over-span (t/s). This parametrisation is adopted in Maia Avelino,
Iannuzzo, Van Mele and Block (2021c) after Huerta (2004); Romano and
Ochsendorf (2010). The parameters adopted in the proposed analysis, par-
ticularly referring to the springing angle β, allow detailed modelling of the
typical fill near the supports of groin vaults. Analytical sensitivities for
minimisation of the thickness are also obtained, as for the dome, since the
pointed cross vaults result in circular sections.
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6.3.1.3 Parametric pavillion vaults

Pavillion or groin vaults are also among the most common typologies of
masonry. A parametric model is implemented to consider pavillion vaults
following the same definition as the cross vaults. Geometrically, pavillion
vaults are also built from the intersection of two circular profiles. However,
instead of presenting open boundary edges, as in the cross vaults, their
profile is lowered to create a base. The cross-section and parameters adopted
are described in Figure 6.8a. A pavillion vault with β = 30°, R/l0 = 0.50,
and t/s = 0.050 is depicted in Figure 6.8b.

a) b)

Figure 6.8: Pavillion vault geometry: (a) principal cross section and param-
eters and (b) geometry obtained for t/s = 0.050, β = 30°, and R/l0 = 0.50.

6.3.2 Shapes from meshes and pointclouds

compas_tno offers the basic infrastructure to deal with polyhedral meshes
or point clouds. One example of such geometries will be analysed in Sec-
tion 7.4. In Figure 6.9a, the intrados mesh obtained after a survey at St.
Angelo Church, Italy (see Section 7.4), is depicted. Figure 6.9b shows the
intrados (ΛLB), extrados (ΛUB) and middle (Λm) meshes interpolated from
the surveyed data.

To efficiently deal with geometries after scanning, which often have hun-
dreds of thousands of faces (see Figure 6.9a), TNO works with a “low-poly”
projection of the form diagram on these surfaces. As such, only the infor-
mation needed for the analysis, i.e., the intrados and extrados elevations at
the form’s nodes are stored, reducing geometry’s complexity, and used in
the algorithms described in Sections 5.4.2.2–5.4.2.3. The middle surface is
defined by interpolating the heights of the intrados and extrados meshes,
as shown in Figure 6.9b. Indeed, when the intrados, extrados, and mid-
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Figure 6.9: (a) Intrados mesh obtained after a survey at St. Angelo Church,
Italy, with 2.900.000 faces. (b) Intrados (ΛLB), extrados (ΛLB) and middle
(Λm) meshes used in the analysis.

dle meshes are topological twins of the form diagram, evaluating bounding
elevations and tributary areas is straightforward.

6.4 Optimiser

The Optimiser object stores instructions to set the optimisation variables,
constraints, objectives, features, and starting points. It also stores infor-
mation on the nonlinear programming solver applied to the problem. The
scheme in Figure 6.10 depicts the modular framework developed and lists
the main options that can be passed to the Optimiser. These options come
from the general workflow (Figure 6.2) and are described below.

3.1. Selecting the NLP solver

The selection among two nonlinear programming solvers (NLS) is
passed to the Optimiser. Either a Sequential Least Squares Pro-
gramming (SLSQP) or a dual interior point optimisation (IPOPT) can
be selected. Details about the solver selection and solving strategies
are presented in Section 6.6.

3.2. Declare variables

The variables are set as keywords passed in a list to the Optimiser.
The keywords available are listed in Table 6.1, where the mathematical
symbol used in this work is also referenced (see Chapter 5).
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NLP Solver

3. Optimiser

q
zb
t

t_dist
lambdh
lambdv

funicular
envelope

reac_bounds

min_thrust
max_thrust
min_thk
max_dist
max_load
Ecomp

loadpath
feasibility

SLSQP
IPOPT

fixed
sym

Variables

Starting Point

Constraints

loadpath
parallelise
current

Objectives

Features

Figure 6.10: Optimiser and information to be added to the modular frame-
work. The keywords employed are listed in this section.

Table 6.1: Selection of variables passed as keywords to the optimiser

keyword variable symbol

q force densities q
zb support elevations zb
t thickness t

t_dist magnitude offset d
lambdh horizontal load multiplier λh

lambdv vertical load multiplier λv

3.3. Set constraints

The variables are set as keywords passed in a list to the Optimiser.
The keywords available are listed in Table 6.2.

3.4. Set objectives

The objective functions selected are passed to the Optimiser as a
keyword. The keywords available are listed in Table 6.3, with pointers
to the sections where these objectives are defined.

3.5. Set features

Two features are added to the solving pipeline. The first imposes
that the form diagram will remain fixed in the plan, as described in
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Table 6.2: Selection of constraints passed as keywords to the optimiser

name constraint

funicular subject members to compressive forces
envelope constrain vertex elevations within envelope

reac_bounds bounds the extension of the reaction forces

Table 6.3: Objective functions passed as keywords to the optimiser

name objective section

min_thrust min. horizontal thrust 5.4.1
max_thrust max. horizontal thrust 5.4.1
min_thk min. thickness 5.4.2
max_dist max. offset distance 5.4.2
max_load max load multiplier 5.4.3–5.4.4
Ecomp min. complementary energy 5.4.5

loadpath min. load-path 5.5.1
feasibility constant obj. function –

Section 4.3. It triggers the computation of the independent edge per
Algorithm 1. The problem proceeds by taking the independent force
densities as only static variables.

The second feature imposes symmetry (sym) to the forces in the net-
work’s edges based on prescribed axes of symmetry. In Figure 6.11a,
one axis of symmetry a′1 is imposed to the problem, and a pair of
symmetric edges esym is highlighted. In Figure 6.11b, three axis are
applied (a′1, a′2, a′3) a group of eight symmetry edges (esym) is shown.
Based on the groups of symmetry obtained, additional linear equali-
ties are imposed on edges’ force densities, which reduces the number
of variables in the optimisation.

3.6. Set the starting point

The selected starting point is provided to the Optimiser, trigerring a
pre-conditioning step according to the options discussed in Section 5.5.
Among these options, the standard is the loadpath optimisation. Al-
ternatively, a form-and-force parallelise algorithm can be applied,
or the problem can start from the current force densities distribution.
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a) b)

esym

esym

esym

esym

esym

esym

esym esym

esym esyma1’ a2’

a3’a1’

Figure 6.11: Color plot showing the symmetric edges identified based on
the selected topology and symmetry axes imposed. (a) cross topology with
diagonals and one axis of symmetry (a′1,) (b) fan diagram with three axes of
symmetry (a′1, a′2, a′3). A group of symmetric edges is highlighted by esym.

6.5 Analysis
The Analysis object executes methods to modify the form diagram and
run the analysis. The main methods applied are listed below:

• apply_selfweight: lump tributary weights in the nodes of the net-
work according to the procedure described in Section 5.3.4.

• apply_envelope: stores the intrados and extrados elevation for every
vertex based on the Shape of the problem, ensuring the application of
the geometric constraints described in Section 5.3.2.

• apply_bounds_on_q: assign a qmin and qmax to bound the force den-
sities, representing the force constraints from Section 5.3.1.

• apply_reaction_bounds: apply constraints on the emerging reac-
tion forces based on the Shape of the problem, also described in Sec-
tion 5.3.2.

• apply_external_forces: apply external vertical or horizontal loads
according to the prescribed list of vertices and magnitude for applica-
tion of such load cases.

• set_up_and_run: set up all matrices and vectors and call the opti-
misation.
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The solving strategies adopted to compute the optimisation are presented
in the following section.

6.6 Solving strategies

This section provides an overview of the solving strategies in compas_tno to
find admissible thrust networks. A discussion about the solving strategies
for the starting point (load-path) is listed in Section 6.6.1. The nonlinear op-
timisation solvers (NLS) implemented are presented in Section 6.6.2 followed
by a comparison of their performance in Section 6.6.3. A discussion about
the precision in determining independent edges is done in Section 6.6.4, and
the solving pipeline is summarised in Section 6.6.5.

Whenever solving times are listed in this section, they have been computed
in a laptop with a 2.2 GHz Intel Core i7 (I7-8750H) processor and 16 GB
of RAM.

6.6.1 Load-path solvers

The load-path problem formulated in Section 5.5.1 is the default starting
point for the optimisation process. It corresponds to a semidefinite pro-
gramming problem (SDP). Two convex solvers have been implemented in
compas_tno to solve this problem: MOSEK and SDPT3.

6.6.1.1 MOSEK

MOSEK (ApS, 2019) is a library that enables solving large-scale convex op-
timisation problems. compas_tno connects with MOSEK through CVXPY
(Diamond and Boyd, 2016; Agrawal et al., 2017), which is a python pack-
age for disciplined convex programming. The connection with CVXPY is
established within the Python environment. MOSEK is used as the default
convex solver in compas_tno. MOSEK version 9.3 is used.

The three problems in Figure 5.11 are revisited to show the performance
of MOSEK. The complexity of the problems is presented in terms of the
number of edges in the diagram (m) and the number of supports (nb). The
running time, number of iterations, and optimal load-path value (ϕopt) are
presented in Table 6.4. The running times with MOSEK vary from 4.64
seconds in example 5.11b with 800 edges and 80 supports to 41.7 seconds
in example 5.11c on the diagram with 1600 edges and four supports. These
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Table 6.4: Comparison of convex solvers MOSEK and SDPT3 for the load-
path starting point optimisation executed in the examples from Figure 5.11.

solver example m nb ϕopt n. iter time [sec]

MOSEK 5.11a 1198 45 254.9 34 12.9
5.11b 800 80 226.9 33 4.64
5.11c 1600 4 443.4 34 41.7

SDPT3 5.11a 1198 45 254.9 54 14.7
5.11b 800 80 226.8 41 5.11
5.11c 1600 4 443.5 73 22.0

results are listed in Table 6.4 in comparison with the second solver imple-
mented, presented in the next section.

6.6.1.2 SDPT3

SDPT3 (Toh et al., 1999) is a semidefinite programming solver that is im-
plemented in the CVX (Grant and Boyd, 2014, 2008) library for MATLAB.
To date, this solver has not yet been written to Python, and the connec-
tion to SDPT3 is made through MATLAB. Therefore, the implementation
of SDPT3 requires moving data between Python and MATLAB. MATLAB
version 2022b and SDPT3 version 4.0 were used in the analysis.

The same examples from Figure 5.11 are analysed with SDPT3. The optimal
load-path value (ϕopt), number of iterations, and running times are listed
in Table 6.4. For problems with lower densities, e.g., m < 1200, SDPT3
and MOSEK perform similarly, e.g., 14.7 versus 12.9 seconds in problem
5.11a and 5.11 versus 4.64 seconds in problem 5.11b, with slightly faster
runs calculated with MOSEK. Nevertheless, for denser meshes, e.g., m >
1500, such as example 5.11c, SDPT3 performed better with 22.0 versus 41.7
seconds. Finally, the optimal load-path values obtained in all examples are
similar, up to minor numerical errors (< 0.1%).

In compas_tno, MOSEK is selected as the standard load-path solver as it
simplifies the data handling and installation process, being independent of
MATLAB. Nevertheless, given the better performance of SDPT3 on denser
meshes, this solver is still available as an option to users.

Regarding the mesh densities analysed, as discussed in Chapters 7–9, most
networks used in the analysis will have less than 1000 edges.
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6.6.2 Nonlinear solvers

Following the starting point optimisation defined in Section 6.6.1, this
work’s core nonlinear optimisation problem must be solved. Two solving
strategies are implemented and presented here.

They correspond to a simpler (and faster) implementation of the Sequential
Least-Squares Problem (SLSQP), followed by a more robust implementa-
tion of an interior point algorithm (IPOPT) which is the general solver of
the package. As highlighted in Nocedal and Wright (2006b), these two com-
peting strategies are the most suitable for handling inequality-constrained
nonlinear problems. Both solvers and their performance are presented in
the following subsections.

6.6.2.1 Sequential Least-Squares Programming

A version of the Sequential Least-Squares Programming (SLSQP) (Kraft,
1988), available in the open-source Python library Scipy (Virtanen et al.,
2020), is implemented. This solver treats the problem as a sequence of con-
strained least-squares problems. The algorithm optimises successive second-
order (quadratic/least-squares) approximations of the objective function
with first-order (affine) approximations of the constraints.

Most of the objectives implemented (see Chapter 5) are already second-order
or linear and are unaffected by these approximations. Nevertheless, the con-
straints are always nonlinear. Indeed, these constraints are calculated via
Eq. 4.11 from the variables qind and zb, requiring the inverse of the matrix
D−1

i = (CT
i QCi)

−1. Therefore, the affine approximations of the constraints
might be imprecise in some circumstances. The constraints applied in nodal
elevations are smooth and usually are handled well by SLSQP. However, the
constraints in Eqs. 5.4 are harder to approximate, which makes problems
where these constraints are activated, such as the dome, less suitable for
solving with SLSQP. Nevertheless, these simplifications benefit the solving
time, and problems usually run faster in SLSQP. SLSQP always requires an
appropriate, compression-only starting point to solve the NLPs in this dis-
sertation. The load-path optimisation presented in Section 6.6.1 is usually
a good starting point. The performance of this solver is also affected by the
number of variables, and problems with more than 1000 edges can hardly
be solved with SLSQP and finish without attaining convergence.
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6.6.2.2 Interior Point Optimisation

The dual interior point optimisation (IPOPT) from Wächter and Biegler
(2006) is implemented as the default solver in compas_tno. IPOPT repre-
sents the preferred strategy to solve large-scale, gradient-based optimisation
problems. It implements an interior point line search filter method that finds
a local optimum for problems, handling equality and inequality constraints.

Among the advantages of this solver are good precision and robustness in
searching for the solution. The solver performs a line search combined with
an adaptative barrier strategy that improves the sensitivity (Nocedal et al.,
2009; Pirnay et al., 2012). Due to the line search procedure, IPOPT can be
slow near the convergence, and it has been observed that it is susceptible to
bad-scaled problems. Incidentally, the problems of this dissertation, when
evaluated with engineering unities, tend to be bad-scaled, e.g., the minimum
thickness problem of the dome (measured in meters) (see Section 7.2.1) in
engineering units will lead to a difference in the weight of the dome and
the minimum thickness of up to four orders of magnitude. To avoid these
effects, the density assumed for the problems is set as default to 1.0, while
the usual specific density of masonry is around 20.0 kN/m

3. A comment on
bad-scaled problems and local minima is provided in Section 6.6.3.3.

In Section 6.6.3, the optimisation problems performed in Chapter 5 are
revisited, comparing the performance of SLSQP and IPOPT.

6.6.3 Solving benchmarks
This section presents a benchmark study conducted on the NLS imple-
mented in compas_tno. The performance of the solvers is compared on
two different geometries: a cross vault in Section 6.6.3.1 and a dome in
ction 6.6.3.2

6.6.3.1 Performance on cross vault problem

This section presents the results obtained for the optimisation in Chapter 5
to benchmark the NLS implemented in compas_tno. The optimisations
were performed with a square cross vault having R/l0 = 0.5 and β = 30°
and (initial) thickness t = 0.50 m (see Section 6.3.1). The form diagram
is the cross diagram (see Section 6.2.1) with a footprint of 10 × 10 m and
level of discretisation ns = 16. The results for minimum thrust, minimum
thickness, and maximum horizontal and vertical load multipliers are listed
in Table 6.5. The optimal values are reported in the analysis conducted
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Table 6.5: Solver comparison on different nonlinear optimisation problems
computed in a rounded cross vault.

solver problem opt. val. n. iter time [s] Figure

IPOPT min_thk 0.151 24 1.8 5.7
min_thrust 52.9 24 1.4 5.4

max_load (λh) 0.179 36 1.8 5.9
max_load (λv) 6.09 57 3.0 5.8

SLSQP min_thk 0.151 15 0.8 5.7
min_thrust 52.9 6 0.2 5.4

max_load (λh) 0.179 21 0.4 5.9
max_load (λv) 6.09 26 0.6 5.8

with ρ = 1.0. A reference to the Figure containing the solution for each
analysis is also referenced in Table 6.5.

Table 6.5 shows that for the cross vault example, SLSQP solves the problems
with shorter run times than IPOPT. The optimal value obtained by the
solvers is the same. The solving times observed with IPOPT range from
1.4–3.0 versus 0.2–0.8 seconds obtained with SLSQP.

The minimum thickness problem (min_thk) is solved with an optimal value
of 0.151, corresponding to 1.51% of the vault’s span. A complete study of
cross vaults will be presented in Section 7.2.2. The minimum thrust problem
(min_thrust) results in the optimal value of 52.9, representing a thrust-
over-weight T/W = 97%. These values will be discussed in Section 7.3.2.

Regarding the maximum load problem (max_load), the optimisation is set
to maximise the horizontal (λh) and vertical (λv) multipliers. For the opti-
misation of the horizontal load multiplier (λh), the optimal value obtained
is 0.179, i.e., the maximum applied load computed in the problem is 17.9%
of the self-weight. For the vertical load multiplier (λv), the optimal result
results in a load multiplier of λmax

v = 6.09, which corresponds to a nor-
malised pointed load of Pmax/W = 11.2% applied at the vault’s web (see
Figure 5.8). Applications of the horizontal and vertical maximum load will
be discussed in Chapter 8.

A sensitivity study at the time of the analysis is presented in Table 6.6. It
shows the increase in the computational time for an increase on the diagram
level of discretisation ns from 10 to 20. The number of edges m and the
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Table 6.6: Sensitivity study of the min_thk problem of for the cross vault
varying the discretisation level (ns) of the mesh.

ns m nvar SLSQP IPOPT
time [s] opt.val. time [s] opt.val.

10 240 15 0.48 0.140 1.60 0.140
12 336 16 0.69 0.148 2.03 0.148
14 448 17 1.07 0.151 2.67 0.151
16 576 18 1.66 0.150 3.78 0.150
18 720 19 2.14 0.150 4.61 0.150
20 880 20 2.28 0.153 6.13 0.152

number of variables in the optimisation problem nvar are shown for each
discretisation level. For the minimum thickness problem, the variables of
the problem are nvar = k+nb+1 (see Section 5.4.2). The time consumption
for the SLSQP increases from 0.48 to 2.28 seconds, while for IPOPT, it
varies from 1.60 to 6.13 seconds. The optimal value encountered using both
optimisers is the same up to rounding errors.

As a conclusion for the study on the cross vault problem, SLSQP performs
better, as this problem has a small number of variables nvar ≤ 20. In the
following subsection, the problem of a hemispheric dome is revisited.

6.6.3.2 Performance on dome problem

The problem of a hemispheric dome (see Section 6.3.1) is analysed with the
IPOPT and SLSQP solvers in this section. This problem will be revisited
in Chapter 7 of this dissertation. The dome’s geometry is obtained with
t = 0.5 m and Rc = 5.0 m. The circular diagram used in the analysis has
a level of discretisation set to (nP, nM) = (16, 20) (see Section 6.2.1). Ta-
ble 6.7 presents the results, including the number of variables (nvar) in the
optimisation problem, the optimal value, the number of iterations, time con-
sumption, and a corresponding Figure displaying the results in subsequent
chapters.

For the dome problem, IPOPT successfully solves the optimisation for all
objective functions while only the minimum thrust problem (min_thrust)
converges with SLSQP. This relates to the fact that for the dome problem,
the constraints on the reaction forces get activated. Furthermore, this prob-
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Table 6.7: Solver comparison on different nonlinear optimisation problems
on the hemispheric dome with t/Rc = 0.10 and diagram discretisation
(nP, nM) = (16, 20). (* symmetry applied)

Solver problem nvar opt. val. n. iter time [s] Fig.

IPOPT min_thk 54 0.205 34 4.0 7.2
min_thrust 53 15.4 23 2.6 7.12
max_load (λv) 54 11.1 35 5.2 8.2
max_load (λh) 339 0.144 186 789 8.12
max_load* (λh) 196 0.144 103 399 8.12

SLSQP min_thk 54 - - - 7.2
min_thrust 53 15.4 9 0.6 7.12
max_load (λv) 54 - - - 8.2
max_load (λh) 339 - - - 8.12

lem presents a significantly higher number of variables than the cross vault
problem since the boundary is continuously supported.

Regarding the results obtained with IPOPT, the minimum thickness prob-
lem (see Section 7.2.1) yields a minimum thickness of 0.205 m, with a run-
ning time of 4.0 seconds. The minimum thrust result results in an optimal
value of 15.4 and solving time of 2.6 seconds. It corresponds to a thrust-
over-weight (T/W = 19.9%) as further discussed in Chapter 7.

For the maximum vertical load, the problem of a concentrated load ap-
plied at the apex is presented in Table 6.7. This problem is discussed in
Section 8.2.1. The optimal value obtained is 11.1, corresponding to a con-
centrated load equivalent to Pmax/W = 14.4% of the dome’s weight. The
solving time for this problem is reported as 2.6 seconds.

Finally, for the maximum horizontal load, additional diagonal members are
added to the form diagram (see Section 8.3.1). The new members increase
the number of independent edges, increasing the number of variables of the
optimisation (nvar = 339). As a consequence, the solving time is longer,
789 seconds. Symmetry features (see Section 6.4) can be applied to this
problem, considering one axis of symmetry parallel to the direction of the
load applied, reducing the number of variables to nvar = 196 and the running
time to 399 seconds.

In conclusion, while running times are lower with SLSQP, IPOPT can solve
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more complex problems with more variables and efficiently deal with non-
continuously differentiable constraints. For this reason, IPOPT is selected
as the standard solver of compas_tno.

6.6.3.3 A comment on local minima

The problems computed in compas_tno are nonlinear and prone to local
minima. Users can carry out a series of practical mitigation strategies to
avoid being trapped in local minima, especially for problems for which an
analytical solution is not available. Some of these strategies are listed in
this section.

• Change the optimisation starting point:

Different starting points can be used (see Section 5.5), including, e.g.,
the best fit to the masonry geometry (Van Mele et al., 2014). Similarly,
a pre-conditioning optimisation can be computed to obtain a starting
point already admissible, e.g., computing a minimum thrust solution
before computing a minimum thickness or a maximum load problem.

• Parameter stressing:

The initial parameters can be stressed after obtaining a particular
solution, e.g., the value of minimum thickness tmin obtained can be
challenged by constraining the problem to a t′ < tmin to ensure its
non-feasibility. It also applies, e.g., for checking the non-feasibility of
an external load P ′ > Pmax.

• Problem scaling:

It is well known that gradient-based nonlinear solving processes are
vulnerable to scaling (Nocedal and Wright, 2006a). Therefore, chang-
ing the dimensions of the problem, e.g., meters instead of millimetres,
can alter the stopping criteria of the solving process. No automatic
scaling process is performed in the current version of compas_tno.
However, at the end of the optimisation, the range of the problem
variables is presented. Users can then manually adjust load magni-
tudes or scale the input geometry based on these values.

• Incremental diagram discretisation:

Starting at a coarse discretisation can avoid stationary points and save
time as the results should converge progressively to a lower-bound
solution (see, e.g., Table 6.6 or Figure 7.1).
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• Varying the solver and stochastic optimisation:

Minimum values can be confronted using different solvers. Besides
SLSQP and IPOPT, the entire library of solvers available in SciPy
(Virtanen et al., 2020) can be accessed through compas_tno, includ-
ing stochastic solvers, e.g., genetic algorithm and differential evolu-
tion. These could be used to stress a particular solution searching
for potential better objective functions in the vicinity of the optimal
point.

The listed strategies can mitigate the effect of local minima in the results
obtained with compas_tno.

6.6.4 Independent edges precision

The independent edges concept presented in Section 4.4 is essential to the
numerical formulation of the present dissertation. They enable proper con-
trol over the DOF in the networks. Nevertheless, as the definition of the
independent edges relies on SVD, the threshold to determine zero singular
values influences the selection of independent edges when the patterns are
not triangulated. Indeed, for non-triangulated structures, some of these
DOF relate to inextensible mechanisms (see Figure 4.4), which will be iden-
tified based on the null singular values from the sequential SVD process.
When the DOFs are not correctly defined, the optimisation fails regardless
of the solver selected.

Therefore, before initiating the optimisation, a check is performed on the
independent edges by checking the minimum singular value of Ed prior to
computing its Moore–Penrose pseudoinverse (see Eqs. 4.10). Moreover, a
tolerance parameter can be selected beforehand to define the SVD precision
in the rank calculation. This tolerance enters in the rank computation of
Algorithm 1 to find the independent edges. If the set of independents does
not pass the test above, the tolerance can be reduced, or the heuristics
discussed in Section 4.4 can lead to a new set of independents.

6.6.5 Solving workflow

To conclude, the solving pipeline to find admissible thrust networks with
compas_tno is illustrated in Figure 6.12, including possible pitfalls and
a protocol to recompute the optimisation problem. A description of the
workflow is listed here:
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Figure 6.12: Solving pipeline adopted at compas_tno.

1. The workflow starts with the form diagram selected for the analysis.

2. Loads and constraints are applied to the diagram based on the Shape
adopted to the problem and following the options passed to the
Optimiser.

3. The starting point is computed following the solving strategy adopted
in Secion 6.6.1. If the starting point, i.e., a compressive network, can
not be found, the loads should be checked, or the diagram should be
modified.

4. After the starting point is computed, the independent edges are found
and checked as described in Section 6.6.4. In case the independents
are not suitable for the analysis, the tolerance of the SVD process can
be modified, or the diagram can be updated.
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5. The nonlinear optimisation can then be computed following the solver
selection discussed in Section 6.6.2. The problem is prone to not
finding a solution. If no solution is found, the starting point can
be modified, loads and constraints can be checked or relaxed, or the
diagram can be modified.

6. Finally, when a solution is found, results can be saved and visualised.

The problem might be infeasible if no solution is found even after the mod-
ifications suggested in the workflow. This might represent, e.g., that the
thickness of the structure is insufficient, the applied loads are too high, or
the diagram is not a suitable force flow for the problem.

From a lower-bound perspective, when an admissible stress state can not be
found, it still does not mean the structure is unsafe, only that the approach
applied can not determine that it is safe. The framework developed in this
thesis aims to minimise the cases in which the latter happens. Through the
implementation of different solvers and the definition of checking protocols,
this implementation is designed to be the core of a reliable lower-bound
TNA-based analysis tool.

6.7 Summary
This chapter described the implementation developed to set up and solve
the modular multi-objective constrained optimisation problem described in
the previous chapter. A Python-based software package named compas_tno
has been developed for this purpose. The datastructure of the package is
presented alongside some of its core functionalities. Among these function-
alities, the definition of parametric form diagrams and parametric masonry
geometries have been presented, enabling its application to relevant case
studies in masonry structures. Two different nonlinear optimisation solvers
were implemented in the package. These solvers were presented in this
chapter, along with a performance test. The full pipeline for the solving
process has also been presented, listing possible pitfalls and limitations of
the methodology. The framework developed is available open-source, en-
abling further collaboration and continuous development. In the following
chapters, the tool is applied to relevant case studies.
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Chapter 7

Stability of masonry structures

This chapter introduces a methodology to compute the level of stability in
vaulted masonry structures. First, a methodology to compute their Geomet-
ric Safety Factor (GSF) is presented and applied to domes and parametric
cross vaults. The GSF is obtained through the computation of the mini-
mum thickness problem. Beyond computing the GSF, the stability domain
of the structures is also obtained. This domain is obtained for analytical
geometries and those obtained from point clouds. Through the combined
study of the GSF and the stability domain, this chapter offers a novel and
robust methodology to measure the stability of vaulted structures.

7.1 The problem
7.1.1 Overview

Finding one admissible stress state informs whether the structure in its
configuration is safe, but it does not provide information about the level
of stability. For practical assessment scenarios, determining the latter is
needed. It implies answering how far the structure is from the collapse
state and how stable it is in its current configuration. This work answers
the first question by evaluating the Geometric Safety Factor (GSF), while
the second by computing the structure’s stability domain.

The GSF is defined as the ratio between the current structural thickness and
the minimum thickness of the tightened cross-section, which still contains
an admissible stress state (Heyman, 1966). While the GSF is an accepted
measure of stability, applying it to three-dimensional structures is challeng-
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ing. It requires a proper way to quantify the vault’s thickness, especially
when applied to non-analytical geometries, i.e., structures obtained from
point clouds.

A minimal thickness structure is said to be at its limit state, as only one
admissible stress state is possible. For a structure that is not in the limit
state, i.e., not in the imminence of collapse, its level of stability corresponds
to the size of its domain of admissible stress states. A reasonable measure of
this domain is represented by the ratio among its extreme (maximum and
minimum) thrusts. The maximum and minimum thrusts usually correspond
to different stress states and have distinct horizontal thrust values. However,
at the limit state, minimum and maximum thrust coincide.

By exploring these two concepts, the level of stability in masonry structures
can be adequately evaluated. However, there is currently no straightfor-
ward way to compute these measures for general masonry structures. The
developed methodology will address this research gap in this chapter.

7.1.2 Opportunities

This work searches for lower-bound admissible networks through a con-
strained optimisation procedure. While previous work has focused on find-
ing only one admissible solution (e.g., Block and Lachauer, 2014; Fraternali,
2010; Bruggi, 2020), the constrained framework presented in this disser-
tation enables exploring the entire space of admissible stress states and,
therefore, effectively computing stability measures.

Understanding how the stability domain changes as a function of the thick-
ness give a direct measure of the robustness of the structure from its initial
state until the collapse state. This robustness can be associated with the
structure’s capacity to carry additional imposed loads or undergo external
settlements.

Furthermore, the domain of admissible states can be enlarged by evaluating
different form diagrams. Having developed a general numerical procedure
that enables multiple topologies to be analysed, this chapter will discuss
and quantify how changing the force flow increases the GSF value and the
size of admissible stress states.
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7.1.3 Implementation

This chapter will compute the GSF of masonry structures by minimising
the structural thickness. The minimum thickness is obtained by solving
the problem described in Section 5.4.2. The problem will be applied to a
hemispherical dome and vaults. For both cases, the geometric constraints
on the nodal elevations apply following Section 5.3.2. For the dome analysis,
the additional constraints from Eqs. 5.4 apply to bound the reaction forces
at the base. The starting point for each optimisation is the minimum load-
path solution (Section 5.5). After finding the minimum thickness of the
problem, the GSF can simply be computed by the ratio between the real
and the minimum thickness.

To compute the stability domain, successive minimum and maximum thrust
optimisations are performed for reduced thickness values until the structure
reaches its limit state. The mathematical problems (min/max) to be solved
are presented in Section 5.4.1.

The results summarised in this chapter have been the subject of the fol-
lowing publications by the author: Maia Avelino, Iannuzzo, Van Mele and
Block (2021a,b,c).

7.2 Minimum thickness problem

This section presents the study of the minimum thickness problem with
Trust Network Optimisation. Applications include a hemispheric dome in
Section 7.2.1 and parametric cross vaults in Section 7.2.2.

7.2.1 Minimum thickness in the masonry dome

The geometry of the hemispheric dome is defined by the parameters pre-
sented in Section 6.3.1.1. The dome is described by its thickness-over ratio
t/Rc, with thickness computed orthogonally to the dome’s middle surface
and considering the central radius Rc.

The form diagram is selected following the well-known dome’s meridian and
hoop stresses. The diagram is defined by the tuple (nP, nM) representing
the number of parallels nP and number of meridians nM, as described in
Section 6.2.1.

A sensitivity study varying the parameters (nP, nM) is carried out for nP =
[4, 8, . . . , 24] and nM = [12, 16, . . . , 24], and the dome’s minimum thickness is
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computed for the 24 diagram combinations. The results are summarised in
the graph of Figure 7.1. As a benchmark, the results are compared with the
minimum thickness of a masonry hemispherical dome obtained in Heyman
(1967), (tmin/Rc)ref = 0.042.
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Figure 7.1: Sensitivity analysis of minimum thickness (tmin/Rc) obtained
for the dome problem computed varying the number of meridians nM and
parallels nP. Values are compared to the benchmark (tmin/Rc)ref = 0.042
(Heyman, 1967).

The results of the sensitivity study show that the minimum thickness value
varies only with the number of parallels nP since the solutions correspond-
ing to different nM values collapse to the same curve (Figure 7.1). The
deviation against the minimum reference thickness decreases significantly
with the increase in the density of parallels. For nP ≥ 20, the difference
of the minimum thickness results decreases to less than 2%. These results
validate the methodology against the analytical study, showing that good
approximations are achieved for a fine diagram discretisation.

The solution obtained for (nP, nM) = (20, 16) is analysed in detail assuming
a dome with initial thickness-over-radius t0/Rc = 0.10 and Rc = 5 m.

The solution of the minimum thickness problem for (nP, nM) = (20, 16) is
depicted in Figure 7.2. In these plots, the thickness of the edges is propor-
tional to the force carried. Consequently, edges carrying zero force vanish.
Following the convention from Chapter 5, the vertices touching the intrados
(resp. extrados) are denoted with blue (resp. green) dots. The minimum
thickness-over-span obtained for this problem is tmin/Rc = 0.041. The Ge-
ometric Safety Factor (GSF) of the structure based on the initial thickness
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t0 can then be computed as GSF = t0/tmin = 2.44.

tmin

S

Figure 7.2: Minimum thickness obtained (tmin/Rc = 0.041) for the hemi-
spheric dome with (nP, nM) = (20, 16). Perspective on the left and main
cross-section (S) on the right highlighting the angles β1, β2 where the cracks
are observed and the elevation of the support nodes zb.

Regarding the internal distribution of the forces in the minimum thickness
solution, a bi-axial compressive cap is observed in the upper portion of the
dome, and a uniaxial stress state forms towards the supports, where the
hoop forces vanish (Figure 7.2). The normalised horizontal thrust at the
base is Tlimit/W = 24.3%. This value matches the minimum thrust obtained
at the limit thickness computed in Nodargi and Bisegna (2021b).

A six-hinges symmetric crack pattern appears in the dome’s main cross-
section. In the perimeter of the top compressive cap, the thrust network
touches the extrados of the structure at angle β2 = 60.6° from the springings
corresponding to a cylindrical crack visible from the intrados of the dome.
Near the base, the thrust network touches the intrados of the dome at
angle β1 = 23.3°, indicating a cylindrical crack in the dome visible from
the extrados. The supports height is zb = +0.421 m, as highlighted in
Figure 7.2, in a position such that the vector of the reaction forces extends
to the outer perimeter of the dome, resulting in the final structural hinges
observed in the cross-section.

The internal state obtained follows the one described in Heyman (1967).
In the limit state, the expected collapse mechanism will occur following
a detachment of the dome’s meridional segments with the crown descend-
ing vertically. Theoretically, a hemispheric dome constructed with such
dimensions would be on the verge of collapse, and any additional load or
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foundation displacement affecting the structure would cause its failure. In
practice, however, constructed hemispheric domes have significantly larger
(or tapered) thickness-over-radius values making them safe. Nevertheless,
this theoretical result is relevant to compute the GSF of stable domes as
executed in this section.

In Section 7.3.1, the dome problem is revisited by constructing its stability
domain considering sufficient and realistic thicknesses.

7.2.2 Minimum thickness of parametric cross vaults

This section studies the problem of the minimum thickness in square cross
vaults as published by the author in Maia Avelino, Iannuzzo, Van Mele and
Block (2021c).

The geometry of the vaults is parametrised following the definition in Sec-
tion 6.3.1.2. The parameters adopted correspond to the radius-over-length
R/l0, which defines the “pointiness” of the vaults and the springing angle
β. The geometries generated by varying these parameters in the ranges
R/l0 = [0.5− 1.0] and β = [0°− 40°] are depicted in Figure 7.3.
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Figure 7.3: Cross vault geometries obtained varying R/l0 = [0.5− 1.0] and
β = [0°− 40°]. All vaults are plotted with thickness-over-span t/s = 0.05.
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The minimum thickness is reported as the thickness-over-span t/s, where
the effective span s, i.e., the distance among the springs, is considered.

Unlike the dome case, the form diagram representing the flow of forces for a
cross vault is not trivial and has been debated historically, as in the overview
in Huerta (2009); Gaetani et al. (2016). This study will demonstrate the
difference in analysing the minimum thickness problem with different dia-
grams. Initially, the two diagrams depicted in Figure 7.4 are employed. The
first diagram corresponds to the fan diagram, while the second corresponds
to the cross diagram (see also Section 6.2.1).

a) b)

Figure 7.4: Diagrams used in this analysis with a highlight on the indepen-
dent edges (blue) and support positions (red) for the (a) fan diagram and
(b) cross diagram.

The fan diagram links the ridges of the structure directly to the supports.
In 3D, this topology represents a series of inclined arches spanning from
two of the corner supports. The pattern is composed of 784 edges and 30
independent edges shown in Figure 7.4a.

The cross diagram comprises parallel arches that carry the loads to the
diagonals that are then directed to the supports. The diagram has 448
edges and 12 independents (Figure 7.4b). Both diagrams are generated
with the same level of discretisation ns = 14, meaning that the unsupported
boundary edges are divided into 14 segments.

The minimum thickness problem is solved for the parametric cross vaults,
and the results are depicted in Figures 7.5a and 7.5b, for the fan and cross
diagrams, respectively. The minimum thicknesses are presented in functions
of R/l0 and are grouped in five curves corresponding to different springing
angles β = [0°, 10°, 20°, 30°, 40°].
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Figure 7.5: Normalised Minimum thickness (tmin/s) for (a) fan and (b)
cross diagrams. Curves are grouped considering different springing angles
β = [0°, 10°, 20°, 30°, 40°].

Figure 7.5 shows that the curves observed in the analysis of both diagrams
present a distinct non-continuous minimum (cusp). This minimum repre-
sents the optimal R/l0 value for each springing angle, i.e., the best achiev-
able geometry once β has been defined. Overall, increasing β results in
lower global values of minimum thickness. However, after a certain R/l0
is reached, this beneficial trend is no longer observed, and lowering the
springing angle reduces the minimum thickness values. It is also noticeable
that the optimum R/l0 decreases with increasing β, meaning that for higher
springing angles, the optimal R/l0 is less “pointy”. The optimal values of
R/l0, i.e., the singular points in the graph, and the corresponding minimum
thicknesses are listed in Table 7.1.

For the fan diagram (Figure 7.5a), the thrust networks obtained at the op-

144



7.2. Minimum thickness problem

Table 7.1: Values of minimum thickness tmin/s and optimal R/l0 reported
for the minimum value for each springing angle β.

diagram fan diagram cross diagram

β R/l0 tmin/s R/l0 tmin/s

0° 1.14 3.3% 0.72 2.4%
10° 0.97 2.8% 0.68 2.0%
20° 0.79 2.1% 0.61 1.4%
30° 0.69 1.5% 0.56 0.9%
40° 0.62 1.1% 0.53 0.5%

timum R/l0 for β = [0°, 20°, 40°] are depicted in Figure 7.6. The results
enable visualising the geometric trade-off between the springing angle and
the pointiness (R/l0). When β = 0°, the minimum thickness is 3.3% of
the effective span, and the corresponding vault is defined by R/l0 = 1.14
(Figure 7.6a/Table 7.1), which corresponds to a highly pointed vault. Con-
versely, for β = 40°, the minimum thickness corresponds to only 1.1% of
the effective span and results in a less pointed vault with R/l0 = 0.62 (Fig-
ure 7.6c/Table 7.1).

Figure 7.6: Minimum thickness solution obtained with the fan diagram for
(a) β = 0° with tmin/s = 3.3%, (b) β = 20° with tmin/s = 2.1%, and (c)
β = 40° with tmin/s = 1.1%.

Qualitatively, the networks obtained with the fan diagram present the same
7-hinges mechanism. The edges connecting the fan segments have zero force
and therefore vanish in Figure 7.6. It indicates that all the fan lines can be
considered as separate arches, spanning from the supports across the vault’s
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ridge. The only non-negligible connection among these arches can be found
along the midspan of the vault, transferring the thrust along the inclined
arches. Consequently, each inclined arched can be analysed as a separate
mechanical system; i.e., the equilibrium can be described as a pseudo-3D
solution, as is common when using the slicing technique (Huerta, 2001;
Block, Ciblac and Ochsendorf, 2006).

The solutions obtained with the fan diagram are equivalent to the pointed
arch problem described in Lengyel (2018) for which the exact 7-hinges mech-
anism is described for the optimal pointiness of the arch.

The same trend in the values of R/l0 is observed for the cross diagram
(Figure 7.5b). However, the optimal R/l0 for this diagram is found earlier
than for the fan diagram, i.e., for lower values of R/l0. The minimum
thickness solution for the optimal R/l0 for β = [0°, 20°, 40°] is shown in
Figure 7.7. For β = 0°, the minimum thickness is smaller in comparison with
the fan diagram, equals 2.4% of the span (instead of 3.3%), and is achieved
earlier for R/l0 = 0.72 (instead of 1.14). The same trend is observed for
larger β.

Figure 7.7: Minimum thickness solution obtained with the cross diagram
for (a) β = 0° with tmin/s = 2.4%, (b) β = 20° with tmin/s = 1.4%, and (c)
β = 40° with tmin/s = 0.5%.

Regarding the hinge configuration (Figure 7.7), this flow of forces behaves
as a series of arches that thrust to the main diagonals and then towards
the supports. Consequently, these arches have different spans and do not
present the same individual hinge behaviour as in the fan diagram. Instead,
a global 7-hinge mechanism appears in the vault (Figure 7.7a) with two
hinges forming at the supports, two hinges points in the diagonals, two
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hinge lines extending through the diagonals, and a hinge point in the apex
of the arch in the boundary.

Regarding the behaviour of both diagrams, the cross outperforms the fan
diagram for lower R/l0. This indicates that the vault tends to behave as
individual arches for higher values of R/l0, while it preferably bears on the
diagonals for values before that.

Nevertheless, the discontinuous minimum observed for these diagrams sug-
gests that there must be a family of diagrams outperforming cross and fan
diagrams for intermediate values of R/l0, as noted in Maia Avelino, Ian-
nuzzo, Van Mele and Block (2021b).

Two parametric strategies are proposed to enlarge the space of form dia-
grams analysed. The first strategy adds diagonals to the cross diagram.
Due to the straight unsupported boundaries, the diagonals can not activate
unless a curvature is applied. This is done by imposing a parabolic sliding
(see Section 6.2.3) with magnitude ∆, as shown in Figure 7.8a. The param-
eter ∆/s is varied from [0−7.14%]. The addition of diagonals is disregarded
to compute the tributary areas. Hence, for ∆ = 0, the diagram obtained is
equivalent to the cross diagram. The diagram obtained for ∆/s = 7.14% is
depicted in Figure 7.8a.

a) b)

∆

Figure 7.8: Modified diagrams considered in the analysis: (a) curved dia-
gram with ∆/s = 7.14%, and (b) parametric diagram obtained for λ = 0.5.

The second transformation starts from the cross diagram and inclines the
parallel arches according to an inclination parameter 0 ≤ λ ≤ 1. For λ = 0,
the cross diagram itself is obtained. For λ = 1, the fan diagram is retrieved.
Figure 7.8b depicts the parametric diagram obtained for λ = 0.5. This
diagram was proposed in Nodargi and Bisegna (2022).
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Figure 7.9: Values of minimum thickness obtained for β = 20° for all di-
agrams in this study: fan, cross, curved (∆/s = 7.14%), and λ-envelope
minima for λ ∈ [0− 1].

These diagrams are used to investigate the minimum thickness problem for
β = 20°, and the results are plotted in Figure 7.9.

The result for the minimum thickness problem using the curved diagram
with ∆/s = 7.14% is depicted in Figure 7.9 plotted in green. The curve
obtained follows the same trend as before, having a singular minimum point.
This diagram shows the minimum at R/l0 = 0.65 with tmin/s = 1.5%. It
outperforms the original fan and cross diagrams from R/l0 = [0.63− 0.74].
Adding the diagonals enables new force paths to form to the support and
creates a combined behaviour between the fan and cross diagrams.

The results for the λ-parametrisation are also shown. The diagram is anal-
ysed for nine intermediate values of λ = [0.1, 0.2, . . . , 0.9]. In Figure 7.9, the
minima for these curves are plotted. This diagram links the low points ob-
tained with the fan and cross diagram and outperforms them for the range
R/l0 = [0.61 − 0.79]. This transition diagram results in solutions where
the inclined arches do not converge directly at the supports but rather are
directed to the main diagonals.

The results of this section are combined to create the contour plot in Fig-
ure 7.10. In this diagram, the minimum thickness can be quickly checked
for various cross vaults based on their pointiness R/l0 and springing angle
β. The safest zone, i.e., the zone with minimal thicknesses, is obtained for
β = [30° − 40°] and R/l0 = [0.5 − 0.6] resulting in shallow and rounded
vaults.
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Figure 7.10: Contour plot for the minimum thicknesses computed by the
present study considering all diagrams. Highlight points A, B, and C will
be analysed further in the following sections.

Practitioners could employ this chart to quickly benchmark the minimal
thickness of cross vaults during field expeditions. In addition, future re-
search might improve and extend these results by testing other form di-
agrams. In Section 7.3.2, selected vaults A, B, and C, highlighted in Fig-
ure 7.10 will be revisited, and their stability domain is computed considering
the parametric diagrams introduced in this section.

7.3 Stability domain
In this section, the stability domain of vaulted structures is investigated.
The problem is applied to a dome in Section 7.3.1 and selected cross vaults
in Section 7.3.2.

7.3.1 Stabiliy domain on the masonry dome
This section constructs the stability domain of the hemispheric dome anal-
ysed in Section 7.2.1 with t0/Rc = 0.10, Rc = 5 m and diagram discretisa-
tion (nP, nM) = (20, 16). The sequential optimisation starts at the minimum
thickness obtained and computes the minimum and maximum thrust states
for increasing thickness values. The computed minimum Tmin/W and max-
imum Tmax/W normalised thrusts are computed and plotted in the graph
of Figure 7.11. This graph represents the stability domain of this structure,
limited by the lines of maximum (red) and minimum (blue) thrust that meet
the limit state (black). A secondary horizontal axis is placed at the top of
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the graph and enables obtaining the GSF for the limit state, which is 2.44
for this problem. The stability domain shrinks parabolically towards the
limit state, which gives an idea of the stability drop for reduced thickness
values.
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Figure 7.11: Stability domain for the dome with t/Rc = 0.10 and diagram
(nP, nM) = (20, 16). At the limit state, the GSF is highlighted as 2.44.

From the stability domain of Figure 7.11, the minimum and maximum
thrust for the dome is Tmin/W = 19.9%, and Tmax/W = 62.6%. The
minimum thrust value matches values from the literature, as in Nodargi
and Bisegna (2021b). As observed in Section 7.2.1, in the limit state, the
normalised thrust is Tlimit/W = 24.3%.

The minimum and maximum thrust states are depicted in Figures 7.12 and
7.13, respectively.

The minimum thrust state (Figure 7.12) returns a solution which is similar
to the one from the minimum thickness problem (Figure 7.2). A top bi-
axial cap forms at the dome’s crown, and a uniaxial state appears toward
the support. The cross-section depicts the formation of four symmetric
hinges. A pair of hinges formed by the thrust touching the extrados (green)
is obtained at the perimeter of the biaxial cap, at β2 = 67.6°. A second
pair touches the intrados near the supports at β1 = 18.6°. Numerically, this
state can form since the height of the supports is encountered below the
reference datum zb = −0.322 m. In Figure 7.12, the support point is not
shown as it is below the datum. This convention will be consistently used
during this work.
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Regarding crack pattern, this solution matches and confirms Heyman’s
“orange-slice” mechanism for the supports’ outward (passive) radial displace-
ment. In this mechanism, cracks form along the meridians where the hoop
forces are null, and a top cap is preserved uncracked. This crack pattern
has been documented for historical domes, as in Poleni (1748).

S

t0

Figure 7.12: Minimum thrust solution for a hemispheric dome with t0/Rc =
0.10 with diagram discretisation (nP, nM) = (20, 16). Perspective (left) and
main cross-section (right) with angles β1, β2 indicating hinge locations (S).

S

t0

Figure 7.13: Maximum thrust solution for a hemispheric dome with t0/Rc =
0.10 with diagram discretisation (nP, nM) = (20, 16). Perspective (left) and
main cross-section (S) (right).

For the maximum thrust solution (Figure 7.13), a compressive ring is ac-
tivated in the dome’s base, and the extreme points touching intrados and
extrados remain at the same location as in the previous solution. Under
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inward (active) displacement of the supports, a global mechanism for the
dome is not activated, and the compressive ring in the base ensures stabil-
ity. It is also noted that this ring creates a discontinuity on the thrust, as
depicted in the section (Figure 7.13).

This theoretical solution would represent an active, radial movement in the
base of the dome, which is unlike as high forces would be required to provoke
such a state. Depending on the discretisation near the base, the force in
the ring could attain infinity, which would increase the stability domain of
Figure 7.11. From the safe theorem, the stability domain computed is a
lower bound of the actual size of the domain of admissible stress states.
Strategies to increase this domain will be discussed in the following section.

7.3.2 Stabiliy domain on selected cross vaults

In this section, three cross vaults (A, B, C) from the parametric study con-
ducted in Section 7.2.2 are revisited, and their stability domain is computed.
The cross vaults selected have β = 20° and pointiness (R/l0)A = 0.61,
(R/l0)B = 0.71 and (R/l0)C = 0.79. They are highlighted in the contour
plot in Figure 7.10. The thickness adopted in this analysis is t/s = 0.05 for
all the vaults.

Figure 7.14 shows the stability domain of the structures. The vault’s mini-
mum and maximum thrusts, GSF, and the diagrams for which these states
appear can be directly retrieved from this graph. The individual domains for
cross (λ = ∆ = 0), fan (λ = 1.0) and curved (∆/s = 7.14%) diagrams are
depicted together with the ∆/s ∈ [0−7.14%] and the λ ∈ [0−1] parametric
envelopes (see Section 7.2.2).

The stability domain of structure A (Figure 7.14a) shows that the maximum
and minimum thrusts are obtained with the curved and cross diagrams,
respectively. The fan diagram’s results are a subspace of the orthogonal
diagram. This is evident when the λ-envelope is shown. For this structure,
the λ-envelope does not increase the stability space obtained with the cross
(λ = 0.0) diagram. The ∆-envelope, however, increases the stability domain
on the maximum thrust side, as curved bounds enable larger thrusts to ap-
pear. Finally, the cross arrangement achieves an overall minimum thickness
value, resulting in a GSF of 3.6.

Looking at structure B (Figure 7.14b), both the cross and fan diagrams
present similar minimum thickness values. The λ-parametrisation extends
the stability domain beyond the cross and fan space for this problem. The
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Figure 7.14: Stability domain for selected cross vaults A, B, and C, using
the different diagram assumptions presented in this chapter.

minimum thickness and largest GSF are found for this diagram family, more
specifically, when λ = 0.7 resulting in the GSF of 2.8. The maximum thrust
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behaviour for this example is again obtained with the curved diagram and
the ∆-envelope.

For structure C (Figure 7.14c), the fan diagram provides the global mini-
mum thickness, resulting in a GSF of 2.4. However, this diagram is not re-
sponsible for the observed minimum and maximum overall thrusts achieved
for cross and curved diagrams, respectively. The GSF is not improved by
looking at the envelope achieved for the λ-parametrisation, as the fan dia-
gram itself results in the optimum GSF. However, the stability domain is
enlarged for values of t/s ∈ [2%− 3%].

The study presented in this section provides a complete analysis of the
behaviour of cross vaults. It highlights that a combined selection/choice
of the form diagrams is crucial to describe their mechanics. As argued
in Huerta (2001), cross vaults behave elastically (i.e., a unilateral reversible
mechanical system) and can adapt to different support displacements, which
induce minimum and maximum thrust states.

This conclusion offers a new perspective on the classical debate about the
force flow in Gothic vaults, as in the overview in Huerta (2009), after Abra-
ham (1934). The loads in the Gothic cross vaults do not follow a fixed
arrangement, and neither can be precisely identified. Instead, they are in
constant change following, e.g., foundation settlements induced by the sur-
rounding elements, additional imposed loads, active or passive states in the
building etc.

The tools offered by this work offer a novel way to perform such analyses, en-
abling meaningful conclusions about the vault’s structural behaviour. Even
more intricate admissible states will be investigated in Chapter 9, in which,
beyond the minimum and maximum states, their response to nonsymmet-
rical foundation displacement can be studied.

Based on these conclusions, the following section shows how TNA applies
to a real case study conducted in an existing vaulted structure, where the
pattern must adapt to predetermined structural geometry constraints.

7.4 Applications to an existing vault
In this Section, the concepts developed in this chapter are applied to a case
study with geometry obtained from digital surveys. The case study is the
St. Angelo Church in Anagni, Italy, depicted in Figure 7.15, showing a
southwest (SW) aerial view and the vaults at the main nave. The access
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to the church and equipment for conducting the survey were provided dur-
ing the 3rd International Summer School on Historic Masonry Structures
in 2021 (HIMASS, 2021). The geometric survey and findings about the his-
tory of this monument were summarised in Maia Avelino, Oliveri, Donval,
Fugger, Lai, Lasorella, Saretta, Weichbrodt and Sangirardi (2022). The fol-
lowing sections demonstrate how the proposed methodology can be applied
to compute the stability levels in the main nave vaults.

Figure 7.15: Left: SW Aerial view of St. Angelo Church, in Anagni, Italy.
Right: Photography of the main vaults inside the church.

7.4.1 Geometry acquisition

Terrestrial and aerial close-range photogrammetry were executed by tutors
and students of the summer school acknowledged in Maia Avelino, Oliveri,
Donval, Fugger, Lai, Lasorella, Saretta, Weichbrodt and Sangirardi (2022).
Approximately 300 images were captured from the interior, and 110 other
aerial images were obtained with a drone. Eight ground control points
(GCPs) were defined to scale the model and connect interior and exterior
imaging data. The images obtained were treated with Metashape (AgiSoft,
2021), resulting in a dense point cloud. This point cloud was then used to
compute textured meshes with approximately 450.000 faces for the exterior
mesh and 2.600.000 for the interior mesh. These meshes are presented in
Figure 7.16.

Access to the extrados of the vaults was possible where the thickness t =
0.25 m was measured at an opening in the vault’s keystone. Measures were
taken to estimate the geometry of the fill present in the extrados. Based
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Figure 7.16: Digital model obtained after the survey. Perspectives of the
(a) interior and (b) exterior surveyed meshes.

on the analysis of the material of the church and surrounding buildings, the
specific weight of the vaults has assumed for the vault ρvault = 20 kN/m3

and fill ρfill = 14.0 kN/m3. In the following sections, the focus is given to
the geometry and structural analysis of the vaults of the main nave.

7.4.2 Structural analysis

Based on the survey, the geometry of the vault and the fill were obtained
as depicted in Figure 7.17. The structural section of the vault and the fill
are highlighted in Figure 7.17a. The fill is considered only as loads, and the
networks are constrained to remain within the structural volume. This is
a conservative assumption, especially given that the fill is heavy and well-
packed. Also, it is assumed that the thrust is transferred to the lateral
system of the vault only at the corners, i.e., the vault is unsupported along
the boundaries.

Main dimensions are reported as lx = 5.74 m, ly = 3.34 m and h = 2.33 m.
The typology of the vault corresponds to a mix between a rectangular cross
vault and a barrel vault with lunettes. Figure 7.17b depicts the vaults’ main
features, highlighting the creases and level curves. The creases do not meet
at the keystone but leave a clear space where simple curvature is observed.
Along the lunettes, double curvature is observed.

Based on the features described and highlighted in Figure 7.17b, the form
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Figure 7.17: Geometry considered for the structural analysis with highlights
in the structural section, main dimensions, and the fill. Supports, creases,
and level curves in the vaults are highlighted.

diagrams depicted in Figure 7.18 are employed in the analysis. As discussed
in Section 7.3.2, considering different form diagrams is required to define
the structural behaviour. For real applications, constraints on geometric
features, supports, and curvature must be considered in the search for the
force flows. The rationale behind each pattern is listed for (a)-(e):

(a) (b) (c) (d) (e)

Figure 7.18: Form diagrams adopted to assess the cross vault in this section.

(a) it corresponds to the orthogonal diagram from Section 7.2.2 adjusted
to the rectangular footprint of the vault,

(b) adapted cross diagram matching the diagonal to the creases in the
geometry,
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(c) obtained by modifying diagram (a) through the ∆-parametrisation
described in Section 7.3.2, this diagram adds diagonal members and
curves the four unsupported boundaries,

(d) it corresponds to the fan diagram from Section 7.2.2 adjusted to the
vault’s footprint,

(e) modification of diagram (d) to match the creases in the vault and
curvature applied to the unsupported boundaries as in diagram (c).

The minimum thickness problem adopting the strategy described in Sec-
tion 5.4.2.2 is performed by decreasing the structural section based on the
offset of intrados and extrados meshes. The values of minimum thickness
obtained for the five patterns and their minimum and maximum thrust in
the original geometry (t = 0.25 m) are depicted in Table 7.2.

Table 7.2: Minimum thickness and normalised extremes of horizontal thrust
for form diagrams (a)-(e).

diagram tmin [m] GSF Tmax/W Tmin/W

(a) - - - -
(b) 0.249 1.0 74% 64%
(c) 0.106 2.4 106% 61%
(d) 0.115 2.2 107% 69%
(e) 0.097 2.6 106% 70%

From the results in Table 7.2, diagram (a) does not allow finding an admis-
sible stress state for this problem and, therefore, no values of tmin and GSF
are reported.

Patterns (b)-(e) resulted in admissible solutions for the geometry and loads
of the problem. The highest GSF is obtained for diagram (e), where the
minimum thickness is tmin = 0.097m. The minimum and maximum overall
thrusts are obtained for diagrams (c) and (d). Diagram (b) allows finding
one admissible stress state, but it results in a low GSF equal to 1.0 after
rounding. Consequently, diagrams (c), (d), and (e) are more appropriate to
the problem studied. The stability domain for this vault, assuming diagrams
(c), (d), and (e), is depicted in Figure 7.19.

From the stability domain, besides identifying the minimum and maximum
states for the original vault, also depicted in Table 7.2, minimum and maxi-
mum thrusts are also shown until the collapse state. Figure 7.19 shows that
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Figure 7.19: Stability domain for the vault studied with diagrams (c), (d),
and (e).

the minimum thickness is always obtained with diagram (c) and that dia-
gram’s (d) stability domain is a subspace of the one obtained with diagram
(e). The thrust networks obtained for the key points in this diagram are
depicted in Figure 7.20.

Figure 7.20a depicts the overall minimum thrust obtained with diagram
(c). This solution corresponds to the deepest network within the vault. Two
orthogonal continuous cracks are suggested by the model running in the two
ridges of the vault. Figure 7.20b depicts the maximum thrust obtained for
this problem, achieved using diagram (d), corresponding to the shallowest
solution encountered. The supports move up and touch the extrados of the
vault, and the network touches the intrados at several points. Even if these
networks are admissible for the local vaults, the obtained reactions should
be transmitted to the nave’s cross-section and transferred to the supports
to ensure overall structural safety (see Ochsendorf, 2002; Huerta, 2004).
However, in this work, such global stability analysis is not performed.

Figure 7.20c depicts the minimum thickness solution in the already updated,
tightened envelope with tmin = 0.097 m, showing that a thin solution of
tmin/lx = 1.7% of the main span is needed to find at least one admissible
thrust network. This solution is obtained with diagram (e), which is the
diagram better matching the level curves for this vault. Diagram (e) follows
the creases in the structure and models the force flow near the lunettes as a
series of inclined arches (fan arrangement). Near the keystone, this pattern
presents a parallel arrangement, which enables a uniaxial state matching

159



Chapter 7. Stability of masonry structures

a) b)

c)
tmin

Figure 7.20: Best solution obtained for (a) minimum thrust, (b) maximum
thrust, and (c) minimum thickness tmin for the St. Angelo vault. Diagrams
adopted are shown next to each analysis.

the location where the geometry is similar to a barrel vault.

This study shows how the proposed approach can be applied to a practical
assessment scenario. Indeed, the stability domain approach is useful for
studying different diagrams and understanding the mechanical behaviour in
the vaults. Nevertheless, it also shows the difficulties of constructing form
diagrams suitable to highly constrained structural envelopes. Moreover,
the vault’s extrados is also hard to obtain. In the present case, thanks
to the high level of fill, the thickness of the vaults near the springs could
not be measured and were safely considered equal to the keystone, which
is probably over-conservative. Moreover, difficulties arise in picking up the
self-weight, especially when fill is added to the vault.

Therefore, even if the method enables a variety of new analyses in existing
masonry vaults, more advances are necessary to transfer the geometries to
the analysis and model the interaction between the vault and fill.
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7.5 Summary
This chapter shows how the methodology developed can be used to inves-
tigate the structural stability of vaulted masonry structures. It offers an
integrated methodology for computing the Geometric Safety Factor (GSF)
and obtaining the structure’s stability domain discrete lower-bound equilib-
rium methods.

The GSF is obtained by minimising the structural thickness of the structure.
The minimum thickness problem was calculated for a hemispheric dome,
validating results from the literature. An extensive parametric campaign
has been performed to investigate the stability of square cross vaults. The
results enable a lower-bound estimate of the minimum thickness necessary
for these structures. Finally, a minimum thickness map in groin vaults has
been presented that engineers can use in practice to quickly assess existing
structures.

The stability domain is drawn for domes and vaults. It represents a novel
way to visualise and quantify the level of stability in general structures. It
enables a comparison of different form diagrams or families of form diagrams
that surge after proper parametrisations. More importantly, by plotting the
domain of specific diagrams, this work reflects on the admissible equilibrium
space that the analysis can not yet capture and can guide strategies to
update the diagram and enlarge these domains.

Finally, this chapter also applied its findings to structure with geometry ob-
tained through a digital survey. For this application, a safe estimation of the
GSF has been presented. The stability domains can also be obtained based
on different form diagrams. It has been encountered that the diagram better
matching the structure’s curvature achieved the highest GSF. However, a
series of difficulties and limitations are revealed when applying the method-
ology to a real case study. They require pragmatic modelling assumptions
to estimate thicknesses and fill loads exemplified in the analyses.

Finally, the presented results enable a robust search over the admissible so-
lutions space in masonry vaulted structures, as was not possible before. The
following chapters will elaborate on the metrics and procedures presented
in this chapter to study further limit states.
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Chapter 8

Collapse loads on vaulted
masonry structures

This chapter investigates collapse loads on vaulted masonry structures. Us-
ing the modular multiobjective optimisation framework described in this
dissertation, vertical and horizontal load multipliers are maximised in a
direct optimisation. The applications enable obtaining a lower-bound esti-
mate of the maximum load applied to three-dimensional systems. The so-
lution obtained also identifies where cracks would form before the structure
collapses. Examples presented include domes and cross vaults subjected to
vertical and horizontal loads.

8.1 The problem

8.1.1 Overview

Masonry structures might fail due to the action of extreme vertical or hor-
izontal loads. Failing over the action of vertical loads is rare, given the
usually elevated self-weight of masonry structures. Nevertheless, incidents
like the fire in the Notre Dame Cathedral in Paris might result in exceptional
loads applied to the vaults, resulting in the loss of significant cultural monu-
ments and entailing complex repairs (Praticò et al., 2020; Manuello Bertetto
et al., 2021). Furthermore, the current necessity to rehabilitate and reuse
existing buildings might demand the application of additional large loads
to masonry systems. Therefore, understanding the mechanical behaviour of
vaults under externally applied loads is a pressing issue.
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Understanding the failure of masonry structures under horizontal load is
critical, especially in seismic zones. Recent seismic events have demon-
strated that reevaluating masonry structures to horizontal loads is necessary
(Indirli et al., 2013; Morandi et al., 2022). The failure by horizontal or ver-
tical load action relates to support displacements, as argued in Ochsendorf
(2002). As the load increases, the supports give in, forming a mechanism.
For cathedrals and vaulting systems, these supports are usually buttresses,
which might rotate, spreading the supports of the vaults that then collapse.

A series of difficulties arise in modelling the collapse loads in masonry
structures. Determining the position and opening of the hinges in three-
dimensional systems is especially challenging (Milani and Tralli, 2012). Fur-
thermore, there are no specific analysis tools to deal with this problem sys-
tematically.

8.1.2 Opportunities

Applying lower-bound equilibrium methods brings opportunities to study
this problem by obtaining safe estimates of the maximum load in three-
dimensional structures. Using the modular multiobjective optimisation
framework described in this dissertation, vertical and horizontal load multi-
pliers are maximised until the structures hit their limit, i.e., until an admis-
sible solution is no longer found. An estimated location for the formation of
cracks is obtained without predefining possible fracture planes. The method
is applied to general three-dimensional structures under nonproportional
loading cases.

8.1.3 Implementation

The maximum vertical applied load is obtained by directly maximising the
scalar λv representing the load multiplier associated with a given external
loading case. This optimisation is described in Section 5.4.3.

The maximum horizontal applied load is computed by directly maximising
the horizontal load multiplier λh, following the description in Section 5.4.4.
For the analysis with the horizontal loads, a check must be performed pre-
viously, as mentioned in Section 5.4.4, ensuring that there are compressive
paths to transfer these loads to the supports or adapting the pattern to
enable this force transfer if necessary.
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8.2 Maximum vertical load multiplier
Four applications of the maximisation of vertical loads are presented in this
Section. Sections 8.2.1 and 8.2.2 investigate a hemispheric dome with an
applied pointed load at its crown and off-centred. Section 8.2.3 presents a
cross vault subjected to a travelling pointed load, and Section 8.2.4 revisits
the example of St. Angelo church and computes a collapse line load.

8.2.1 Dome loaded in the crown
The problem of a pointed load applied in the hemispheric dome’s crown is
studied in this section. The dome’s geometry is defined by the thickness over
radius t/Rc = 0.10. The sensitivity study executed in Section 7.2.1 will be
repeated, varying the number of meridians nM and the number of parallels,
or hoops nP. The normalised maximum load obtained in the dome’s crown
is presented in the graph of Figure 8.1, where the curves are combined for
each nM.
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Figure 8.1: Sensitivity study for the normalised maximum load Pmax/W
applied in the dome’s apex. Results are grouped by the number of meridians
nM.

The maximum load obtained varies according to the number of parallels
nP only, as the results for different nM collapse to the same curve. This
behaviour is similar to the one obtained for the minimum thickness prob-
lem (see Section 7.2.1). Given the symmetry of this problem, it can also
be tackled by slicing the dome in lunettes and analysing thrust lines sepa-
rately. As the discretisation increases, the maximum load decreases until a
convergence point. Denser diagrams enable more constraints to be applied
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to the nodes, resulting in a lower estimate of the maximum load. From the
present analysis, for diagrams with nP = 24, the maximum normalised load
applied at the crown corresponds to Pmax/W = 14.2%.

The solution obtained for a level of discretisation (nP, nM) = (16, 20) is
depicted in Figure 8.2. The hoop forces vanish for this solution. The result-
ing thrust lines in the dome’s section are pointy at the load’s application
point. Indeed, whenever the hoops get activated, the thrust network (and
consequently their sectional thrust lines) becomes flatter, i.e., less pointy
(see Section 7.2.1), which would be inefficient for carrying the pointed load
in the crown.

Pmax

Pmax

Figure 8.2: Maximum apex load for the dome Pmax/W = 14.4% with
(nP, nM) = (16, 20). Left: Perspective view, right: the main cross-section
with an indication of the extrados hinge angle β1.

Looking at the cross-section in Figure 8.2, a symmetric 5-hinge mechanism
is observed. One hinge is obtained at the point of load application, where
the thrust touches the extrados, a pair of hinges touches the intrados at
β1 = 43.6°, and another pair touches the extreme of the extrados near the
supports. The mechanism suggested by this solution presents cracks running
up to the dome’s crown, a lowering of the dome’s apex, and a rotation of
the central part of the dome.

The cracking pattern described matches the results observed for the load
testing of a masonry cap in Lau (2006), the kinematic mechanism described
for masonry domes in Chiozzi et al. (2017), and for the study at the St.
Peter’s Dome in Funari, Silva, Mousavian and Lourenço (2021).
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The maximum load obtained here is a lower bound of the collapse load and
has been validated against the collapse load on unreinforced masonry struc-
ture in experiments (Fugger et al., 2022). Externally reinforced masonry
structures could also be investigated with this approach, considering that
the added reinforcement introduces a tensile capacity enabling the thrust
network to go outside the structural section, as in Fabbrocino et al. (2015);
López López et al. (2022).

Finally, this section provides benchmarks for the maximum load applied
to the dome’s crown with a simple and verifiable methodology. While the
problem of the maximum load at the crown has already been discussed in
the literature, applying the load off-centred is a more challenging problem
for which an axisymmetric solution is insufficient. This problem is discussed
in the following section.

8.2.2 Off-centred load in the dome
The problem of maximising a pointed load applied at 3/4 of the dome’s
diameter is studied. The problem is initially solved with the same symmet-
ric diagram from Section 8.2, where the parametric analysis for (nP, nM)
discretisations is performed and plotted in the graph of Figure 8.3.
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Figure 8.3: Sensitivity study for the normalised maximum load Pmax/W
applied off-centred to the dome. Results are grouped by the number of
meridians nM.

Unlike the results in Figure 8.1, the curves for a different number of merid-
ians nM do not converge, showing that a decrease in the maximum applied
load is observed for a higher number of parallels. This difference indicates
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Pmax
Pmax

Figure 8.4: Maximum load off-centred for the dome Pmax/W = 4.9% with
(nP, nM) = (16, 20). Left: Perspective view, right: the main cross-section
with angles β1 and β2 indicating asymmetric cracks.

that the solution obtained is not symmetric and can not be approximated
simply through axisymmetric sections. To depict this effect, the solution
obtained for (nP, nM) = (16, 20) is presented in Figure 8.4.

As observed in the thrust network from Figure 8.4, only a local mechanism
effectively gets activated to transfer the applied load. The external load
travel to the support through the meridian where the load is directly applied.
Limited force distribution occurs by activating the hoop where the load is
applied. The main cross-section is also highlighted. The thrust is tilted
and pointed at the point of application to accommodate the load. The two
pairs of hinges relocate to maximise the applied load and are now found at
β1 = 31.2° and β2 = 121.8°. Finally, the maximum load decreases and is
equal to Pmax/W = 4.9% for the discretisation assumed.

New diagrams are studied to transfer the applied load effectively and engage
a fully three-dimensional behaviour in the dome. The new diagrams and
the logic behind their creation are depicted in Figure 8.5.

Four new patterns are proposed. They are created based on the singular
elements of the problem, which are highlighted in Figure 8.5. These elements
are the geometric singularity at the dome’s crown (xdome), the singular
point of application of the load (xload) and the continuous circular supports
available (xb). Based on these elements, the following strategies lead to new
diagrams:
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(a) (b) (c) (d)

np

nM

Figure 8.5: Adapting symmetric patterns to account for singularities of the
problem, such as the load applied at xload, geometry pole xdome and circular
supports xb. Modifications applied are (a) the addition of direct paths to
supports, (b) diagonals, (c) a second pole, and (d) the pole and diagonals.

(a) addition of direct paths from xload to the nearest supports,

(b) the addition of diagonals in the quads of the original pattern to engage
a three-dimensional response,

(c) the addition of a pole at xload with additional paths to the supported
boundary, and

(d) the addition of a pole at xload and diagonals to the quads of the
pattern.

Strategies (a) and (b) enable keeping the same number of discrete supports
to the dome, while strategies (c) and (d) increase it. While this is expected
to affect the maximum load obtained, as shown in the sensitivity study
(Figure 8.3), additional paths to the support reduce the applied load, i.e.,
are on the conservative side. The analysis of maximum applied loads for
the new patterns generated is shown in Figure 8.6. An overview of their
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number of edges, independents, supports, and the maximum applied loads
are summarised in Table 8.1.

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

a)

b)

c)

d)

Figure 8.6: Perspective, planar and sectional view for the modified diagrams
(a)–(d) subjected to their maximum applied load Pmax. Location of extrados
cracks indicated by angles β1, β2.
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Table 8.1: Results obtained with the adapted meshes to the off-centred
maximum load Pmax on the dome.

diagram Pmax/W diff. m nb k β1 β2

ref. 4.9% - 620 20 33 31.2° 121.8°
(a) 7.3% +48% 684 20 36 31.2° 121.8°
(b) 9.2% +86% 920 20 318 31.2° 131.1°
(c) 9.9% +101% 1232 32 53 31.2° 148.8°
(d) 10.2% +107% 1472 32 293 31.2° 157.1°

The results increased the maximum load for all strategies (Table 8.1). For
diagram (d), the load increases to Pmax/W = 10.2%, representing an in-
crease of 107% on the maximum load compared to the results using the
symmetric diagram. For the most straightforward strategy, i.e., strategy
(a), the increase in the applied load is already 48%, showing how adding
new paths to the supports effectively increases the maximum load.

Table 8.1 also shows the number of edges, supports, and independent edges.
From Chapter 5, the number of variables of the problem relates to the
number of independent edges, which is significantly increased for strategies
(c) and (d).

The force flow obtained enables an interpretation of the mechanisms acti-
vated for each diagram. For diagram (a), the additional paths to the support
are activated, transferring the loads to adjacent supports (Figure 8.6a). On
the main cross-section, the extrados cracks are encountered at the same an-
gles (β1, β2) as in the symmetric solution. Indeed, due to the discretisations
adopted, β1 is the same for all patterns.

In diagram (b), besides following the shortest paths to the supports, diag-
onal forces get activated that direct the applied load to supports on the
opposite side of the dome, representing a global instead of a local resisting
behaviour as in diagram (a), which consequently increases the maximum
load to 86% higher than the reference (Table 8.1 / Figure 8.6b). The cracks
at the level of the supports extend through the dome’s perimeter. In the
main section, the crack on the opposite side of the load application is closer
to the ground (β2 = 131.1°).

The additional pole added in diagram (c) adds new force paths direct to the
supports, which get activated (Figure 8.6c). This additional pole also dis-
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tributes the load to the opposite side of the dome. From this redistribution,
the hoop forces along the base get activated. A global mechanism is again
seen in this solution. Intrados cracks extend through the dome’s perimeter,
and the extrados crack at the main section is found at β2 = 148.8°.

Diagram (d) improves the solution by adding diagonals to the problem (Fig-
ure 8.6d). Consequently, the load applied flows to the closest supports and,
through oblique paths, to the supports located on the opposite side of the
dome, as in diagram (b). A global mechanism is again evident, with cracks
along the dome’s perimeter and low extrados crack at the main section
(β2 = 157.1°). A tilted compressive cap also appears in this solution, help-
ing to resist the pointed load.

This study is the first to maximise the off-centred load in a masonry dome.
Such load case is unlike for hemispheric domes since the loads to activate a
collapse would be too high due to their high self-weight. Nevertheless, the
results validate the strategies adopted to modify the diagrams and confirm
that various lower-bound equilibrium solutions can be investigated with the
present methodology.

8.2.3 Pointed load travelling a cross vault

In this section, a square cross vault is subjected to a pointed load travelling
its ridge considering an adapted form diagram, as in Section 8.2.2.

The cross vault geometry is constructed with the parametrisation described
in Section 6.3, for which t/s = 0.05, R/l0 = 0.50 and β = 30° are taken.

The form diagram analysed corresponds to the cross topology (see Sec-
tion 6.2) for which the discretisation level assumed is ns = 14. The pointed
vertical load is applied to seven nodes along the vault’s ridge, from its centre
until its unsupported boundary. Figure 8.7a shows the pattern used in this
analysis and the (0–7) positions in which the downward unit load is applied.
For each position, the maximum vertical load multiplier is computed.

Two transformations of the cross diagram are considered to investigate the
effect of the pointed load travelling the cross vault. These modifications
have been introduced in Section 6.2.3 and are used to create the patterns
(b)–(d) illustrated in Figures 8.7b–d and described here:

(b) This pattern is created by applying a sag to the diagram using force
densities. The force density in the inner edges is set to qinner = 1.0 in
the boundary qbound = 25.0. This modification moves the boundary
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Figure 8.7: Diagrams for the cross vault analysis: (a) original arrangement
and 0–7 load positions, (b) diagram transformed with sag, (c) diagram
transformed with direct paths to the supports, and (d) combined effects
of adding paths to the supports and sag.

edges inward by around ∆ ∼ 5% of the span and enables the loads to
travel orthogonally to the unsupported boundaries.

(c) This pattern is created by adding a direct path from the point of
application of the load to the adjacent supports.

(d) This diagram combines strategies (b) and (c).

The maximum applied load is presented in Table 8.2 for each position 0–7.
The results are reported in terms of normalised maximum load (Pmax/W ).
The graph in Figure 8.8 depicts the maximum applied load per load position,
grouping the results by the diagram used.

For the load applied in position 0, a normalised maximum load Pmax/W =
72.6% is found using the original cross diagram. As the pointed load moves
outside the centre, the maximum applied load drops significantly (see Fig-
ure 8.8). At position 1, this value decreases to 14.0% and less than 10.0%
as the load travels towards the open edge. This result derives from the fact
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Table 8.2: Normalised maximum load (Pmax/W ) applied in positions 0-7
for each strategy adopted.

load strategy adopted
position (a) (b) (c) (d)

0 72.6% 72.8% 72.6% 72.6%
1 14.0% 19.9% 39.9% 43.8%
2 6.3% 9.5% 25.3% 27.2%
3 3.7% 6.9% 14.1% 16.8%
4 2.1% 4.5% 9.3% 13.2%
5 1.4% 3.0% 6.2% 9.9%
6 1.1% 2.2% 6.3% 7.2%
7 3.7% 6.1% 3.7% 6.1%

(a)

(c)
(b)

(d)

0 1 2 3 4 5 6 7
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m
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Figure 8.8: Graph with the normalised maximum load (Pmax/W ) applied
grouped per diagram strategy adopted. (a) original diagram, (b) sag ap-
plied, (c) paths added to the supports, and (d) sag and paths to the sup-
ports.

that the force flow is fixed in the original diagram and can not adapt to the
new force applied. Figure 8.9 shows the results obtained for the load ap-
plied in positions 0, 2, 3, 4, 5, and 7. The force flow obtained is symmetric,
and the additional load needs to travel to the main diagonals before going
toward the supports.

The following results consider the same problem using the three modified
diagrams shown in Figure 8.7b-d. The results are depicted in Figure 8.10
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a) b) c)

d) e) f)

Pmax Pmax Pmax

Pmax Pmax Pmax

Figure 8.9: Results for the maximum load Pmax obtained travelling the ridge
of the cross vault for the orthogonal diagram. Results for the load applied
to the positions (a) 0, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 7.

for the loads in positions 2, 4, and 6. The results are discussed in detail
below.

When the sag transformation is applied to the diagram, an average 72%
increase in the maximum load is obtained. From the solutions in Fig-
ures 8.10b-2,4,6, new force paths can form as the lines curve inwards, and
the applied loads are distributed among them. The loads do not need to
move to the diagonals exclusively and are shared among the curved lines
following alternative paths to the supports.

When direct paths to the supports are added, an average increase of 240%
is observed. As shown in Figure 8.10c-2,4,6, when the direct line is added to
the pattern, this is the preferred path to the loads, resulting in a significant
increase in the limit loads. Consequently, the curve for this diagram in
Figure 8.8 is smoother than the curves obtained before, showing that this
simple modification in the form diagram result in a better transition for the
problem of the load travelling the ridge of the cross vault.

The last result reported in this section combines the sag and the added lines
to the supports. Results are depicted in Figure 8.10d-2,4,6. This strategy re-
sults in the best values obtained. On average, the maximum loads obtained
were increased by 330%. The loads flow directly to the support through the
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b.2) b.4) b.6)

c.2) c.4) c.6)

d.2) d.4) d.6)

Pmax Pmax Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

Figure 8.10: Results for the maximum load Pmax obtained travelling the
ridge of the cross vault following the proposed modifications in the patterns
suggested in this section. Results are displayed for the strategies (b), (c),
and (d) with the load applied in positions (2), (4), and (6).

added lines and engage the parallel arches. Consequently, additional force
paths are available to transfer the pointed load to the supports, increasing
the maximum load values.

This section evaluated the problem of a maximum load applied in a cross
vault. Pragmatic transformations are applied to the diagrams, and the max-
imum loads are re-computed. The results show that this problem’s maxi-
mum load estimation can be increased three-fold, reducing the conservatism
of the analysis.
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8.2.4 Line load applied to an existing vault

In this section, the scanned geometry from St. Angelo church is revisited
and subjected to a line load applied at 1/3 of its main span. The results are
depicted in Figure 8.11, and the values of the maximum load line obtained
are presented in Table 8.3.

Figure 8.11: Results of maximum line load Pmax applied at 1/3 of the span
in the vaults of St. Angelo church. Results reported for meshes (b)–(e) from
Figure 7.18.

The diagrams used for the GSF analysis in Section 7.4 are repeated in
this section. The maximum load obtained with diagrams (b)–(e) is com-
puted and shown next to the GSF previously calculated. From the values
in Table 8.3, the maximum load is obtained for diagram (c), resulting in
Pmax = 13.5 kN/m. The solution obtained with this diagram is depicted
in Figure 8.11c. In this solution, the diagonals get activated. A line crack
(visible from the intrados) and a kink are visible where the load is applied.
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Table 8.3: Maximum line load applied at the vault of St. Angelo church

diagram Pmax [kN/m] GSF (see 7.4)

(b) 9.13 1.0
(c) 13.5 2.4
(d) 6.10 2.2
(e) 5.39 2.6

Interestingly, this solution was not the one for which the maximum GSF
was obtained; as for diagram (c), the GSF obtained is 2.4. On the other
hand, the diagram with the best GSF (diagram (e)) resulted in the lowest
maximum load value Pmax = 5.39 kN/m, which reinforces the importance of
analysing different diagrams and indicates how the flow of forces in masonry
structures adapts to the boundary conditions applied.

The values of maximum load should, nevertheless, be analysed in combi-
nation with the church’s cross-section, considering its interaction with the
buttressing systems so the maximum load can be defined appropriately (see
Ochsendorf, 2002; Huerta, 2004). This study, however, goes beyond the
focus of the present chapter.

This section highlights opportunities to apply the methodology developed
in this dissertation to estimate collapse loads in a masonry vault with non-
analytical geometry. A conservative result can be quickly obtained and used
by engineers to assess safety factors in masonry structures.

In the following section, the problem of horizontal loads is studied.

8.3 Maximum horizontal load multiplier
In this section, the maximum horizontal load problem in three-dimensional
structures is investigated and discussed for a dome in Section 8.3.1 and a
square cross vault in Section 8.3.2.

8.3.1 Tilting of the dome
This section evaluates the maximum horizontal multiplier of a hemispheric
dome. As discussed in Zessin et al. (2010), this problem is the equivalent of
tilting the dome of a given angle for which a fraction of the vertical weight
is applied as a statical horizontal force.
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A difficulty arises when modelling horizontal forces with the fixed diagram
assumption. A compressive path must exist to transfer the applied hori-
zontal loads to the supports in compression. This can be done by checking
the rank of the equilibrium matrix stacked with the vector of the applied
loads as discussed in Section 5.4.4. In most cases, the diagram must be up-
dated to enable a compressive solution. Furthermore, the analysis is more
time-consuming than the other analysis presented in this dissertation (see
solving benchmarks in Section 6.6.3). The computational time can be re-
duced by applying symmetry features, as described in Section 6.4. For the
present analysis, a horizontal symmetry axis is considered parallel to the
load crossing the dome’s centre, which reduces the analysis time by 42%
(see comparison in Table 6.7).

The strategy adopted to enable the horizontal loads in the dome is the
addition of diagonals which is performed here for a radial diagram with
(nP, nm) = (16, 20) similar to the one used in Section 8.2.1. The dia-
gram with diagonals is the mirrored version of the diagram depicted in
Figure 8.5b. The solution obtained with this diagram is depicted in Fig-
ure 8.12, and the maximum horizontal multiplier obtained is λmax

h = 14.4%,
i.e., the maximum horizontal load applied is Pmax/W = 14.4%.

PmaxPmax

Figure 8.12: Results for maximising the horizontal force applied to a hemi-
spheric dome with Pmax/W = 14.4%. Results are shown in perspective and
in planar view.

The solution obtained can be compared quantitative and qualitatively to the
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literature. In Zessin et al. (2010), the tilting test with physical models on
a dome with t/Rc = 0.10 resulted in λh = 18.0%. Recently, a multiplier of
λh = 17.6% has been computed in Nodargi and Bisegna (2021a). The value
obtained in this dissertation is conservative. However, it presents a differ-
ence of 20% to the values obtained in the literature, meaning that further
diagram modifications are necessary to achieve a better approximation.

Regarding the crack pattern, a circular crack appears near the dome’s base,
where the network touches the intrados (blue points). These cracks match
the opening in the voussoirs observed in Zessin et al. (2010) and the uni-
lateral cracks claimed in Nodargi and Bisegna (2021a). Cracks are also
observed near the crown where the network touches the extrados. The ref-
erences also suggest this as the collapse involves the dome’s crown descend-
ing and sliding. The hoop forces in the solution vanish, and the diagonal
segments activate, bringing the loads down to the supports.

This solution shows how the methodology can be used to investigate admis-
sible stress states considering horizontal load. Unlike the graphical TNA
approach from Block (2009), the problem is not limited to gravity loads.
Also, even if the horizontal loads applied here are proportional to the self-
weight, this fact is not exploited by the analysis, which can compute the
problem for general horizontal loads (given that the diagram can transfer
the loads in compression to the supports). Nevertheless, horizontal loads
add complexity to the model and are especially hard to deal with by keeping
the horizontal projection fixed. Future work should also explore additional
topologies for the flow of force in this problem, possibly in combination with
topology generators such as the ones proposed in Oval et al. (2018).

In the following section, the case of cross vaults is considered, which due to
their unsupported edges, require new strategies to update the diagram.

8.3.2 Tilting of cross vaults

The final section of this chapter deals with the horizontal loads in cross
vaults. The geometry analysed is identical to the one used in Section 8.2.3,
with t/s = 0.05, R/l0 = 0.50, and β = 30°. The base diagram adopted is
the cross topology with discretisation level ns = 14 (see Section 6.2).

This problem is challenging due to the unsupported boundaries in the cross
vault since horizontal loads can not be applied orthogonally to the edges
located in these boundaries. Therefore, the diagram is curved following the
∆-strategy applied in Section 7.2.2 combined with a tapering field in the
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orthogonal direction (see Section 6.2.3). The base diagram is then modified
with ∆/s = 5%.

Finally, the optimisation for maximising the horizontal multiplier is com-
puted. The maximum value obtained for this problem is λmax

h = 18.9%,
meaning that the maximum horizontal load applied to the dome is equal to
Pmax/W = 18.9%. The solution is depicted in Figure 8.13. In addition, the
magnitude of the reaction forces (R1, R2) is highlighted in Table 8.4.

R1 R2

R1

R2

PmaxPmax

s

Figure 8.13: Results for the maximum horizontal force Pmax/W = 18.9%
applied to the cross vault with a horizontal slide of the nodes of the pattern
of ∆/s = 5% and a highlight on two reactions R1 and R2.

Table 8.4: Reaction forces R1, R2 at the highlighted corners of the cross
vault subjected to λmax

h = 18.9%.

Reaction Rx,i/W Ry,i/W Rz,i/W

R1 21.5% 22.0% 24.0%
R2 -30.9% 26.1% 26.0%

The action of the horizontal forces results in a tilted thrust network, as
depicted in Figure 8.13. Consequently, the components of the reaction forces
are uneven (Table 8.4). The vertical components of the reaction forces are
larger on the side opposite to the applied horizontal load (Rz,2/W = 26%)
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than on the side facing it (Rz,1/W = 24%). The supports on the opposite
side take the horizontal forces, with increased Rx,2/W = −30.9%. Indeed,
the sum of the four reactions in the x-direction results in the reaction to
the applied horizontal multiplier λmax

h = 18.9%.

Further analysis could be performed to update the topology of this diagram.
The only paths currently available to transfer the loads to the supports are
the main diagonals, which are now curved thanks to the sliding applied to
the nodes. By providing additional paths, this value can be increased.

8.3.3 Stability domain under horizontal loads

The final analysis of this chapter shows how the applications of horizon-
tal loads described here can be combined with the previously studied sta-
bility domains (Chapter 7). The geometry and the form diagram from
Section 8.3.2 are employed. The vault is now subjected to a horizontal
multiplier of λh = 10.0%, which is inferior to its maximum calculated
λmax
h = 18.9%, resulting in a Load Safety Factor LSF=1.89. As the vault

can withstand λh = 10.0%, we can draw its stability domain to further
analyse its maximum and minimum horizontal thrust states. The stabil-
ity domain for the cross vault is presented in Figure 8.14, in which states
of minimum (Tmin) and maximum (Tmax) thrust and minimum thickness
(tmin) are depicted.

From the analysis in Figure 8.14, we can successfully combine horizontal
load and the stability domain. The crack patterns arising even before
the horizontal load reaches its maximum are identified by looking at the
equilibrium states in the extreme points of the diagram. As discussed in
Ochsendorf (2002), the supports are expected to spread out (even if slightly)
as the horizontal load increases towards collapse. Therefore, the horizontal
load λh = 10.0% might induce a state of minimum thrust (Tmin) owing to
the spread of the supports. The crack pattern is highlighted for this case
in Figure 8.14, revealing a crack line in the web opposite to the load. Fur-
thermore, the GSF can be computed for this loading case, equal to 1.51.
Therefore, the GSF for the horizontal load can be used as an additional
metric to the LSF=1.89 computed above.

The results presented in this section show how cross vaults can be anal-
ysed against horizontal loads with the present methodology. The results
of horizontal loads in general in this chapter are initial and have not been
precisely the focus of the work in this dissertation. A more detailed treat-
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Figure 8.14: Stability domain for the cross vault problem subjected to λh =
10.0%. Highlight in the thrust network at minimum (Tmin) and maximum
(Tmax) thrusts and at the limit state, i.e., minimum thickness (tmin)

ment of the form diagrams should be considered to progress further in this
direction. Nevertheless, they are promising since they can be implemented
in the same modular framework and applied to general three-dimensional
structures.

8.4 Summary

This chapter demonstrates the application of the framework developed to
maximise horizontal and vertical applied loads. The results correspond to a
lower bound of the collapse loads in masonry structures. Accurately deter-
mining these values is critical for masonry assessment to ensure safety over
extreme events, such as earthquakes, or to evaluate structures undergoing
rehabilitation where new loads might be introduced.
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Maximum loads for general three-dimensional geometries are obtained
through a direct constrained optimisation in the modular framework de-
veloped. Several applications showcase how the method can be applied to
typical masonry typologies, such as cross vaults and domes.

The external loads modify the force flow in the structure and require adapt-
ing the form diagrams. This chapter has implemented practical strategies
to adapt these patterns to the load applied. Compared to the starting dia-
grams, the adaptation strategies have increased the maximum vertical load
estimation by up to 107% in domes and up to 330% in cross vaults.

Applications considering horizontal loads have also been presented. The
results obtained for the dome were conservative and were also applied to
problems with unsupported boundaries, such as cross vaults.

Besides giving a safe estimate of the collapse loads, the location where frac-
tures are more likely to develop is identified, which could be used to plan
maintenance in the structures if needed. The method could be further com-
bined with kinematic tools, performing analysis to compute the development
of the suggested collapse mechanisms.

This chapter also showed a combination of the external loads and the stabil-
ity domains from the previous chapter. This combination enables the study
of further admissible states that might arise when the loads are applied so
that the supports settle, inducing minimum or maximum thrust states.

The combination of external forces and general support settlements will be
further discussed in the following chapter.
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Chapter 9

Understanding the effects of
foundation settlements

In this chapter, we demonstrate the application of the method developed
to the search for admissible internal states arising in masonry structures
after the action of prescribed boundary displacements. These foundation
displacements represent a significant cause of the collapse of masonry struc-
tures. The problem formulation and opportunities for applying TNA are
highlighted. A list of relevant applications in two- and three-dimensional
structures is presented.

9.1 The problem

9.1.1 Overview

Unlike elastic systems, foundation settlements applied to masonry structures
lead to the development of cracks and the creation of rigid macro-blocks
(Ochsendorf, 2002). In engineering practice, one of the major challenges
when assessing existing structures is how to associate the observed cracks, or
pathologies, with foundation settlements (Ochsendorf, 2006; Como, 2013).

This can be done by introducing an energy-based criterion that minimises
the structure’s complementary energy for a given foundation displacement
(Angelillo, 2014). This approach has been applied to a normal, rigid, no-
tension (NRNT) material in Angelillo et al. (2018), with applications to 2D
structures in Iannuzzo, Dell’Endice, Van Mele and Block (2021); Iannuzzo
et al. (2020).
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Upper-bound methods have also been employed to study this problem in
arches in Zampieri et al. (2018) and semi-circular arches in Coccia et al.
(2015). As mentioned in Section 2.2.3, this method assumes the position
of the hinges, and a collapse multiplier is computed for that specific hinge
consideration. The upper bound of this collapse multiplier can then be
estimated by varying the position of the hinges, usually with stochastic
methods. However, defining the collapse mechanisms in 3D is a complicated
task, as discussed in Scacco et al. (2020).

Therefore, understanding cracks in three-dimensional masonry structures is
still an open and challenging question.

9.1.2 Opportunities

A series of opportunities exist to study this problem under the lower-bound,
three-dimensional framework developed in this dissertation. The optimisa-
tion framework can be coupled with an energy criterion minimising the
complementary energy for given foundation settlements.

By searching among infinite admissible stress states, the ones compatible
with specific settlements, the locations where cracks are most likely to form
following these movements are revealed. The outcome helps to understand
the mechanical behaviour of the vaulted masonry structures at the onset of
foundation settlements.

Unlike upper-bound procedures as in Scacco et al. (2020), the locations of
the hinges do not need to be defined a priori, and the input remains only the
structural envelope and the form diagram. Unlike Iannuzzo et al. (2020);
Gesualdo et al. (2019), it applies to general three-dimensional geometries.
Furthermore, the presented method allows for the computation of the com-
bined effects of external horizontal loads and settlements, which might arise
when analysing structures subjected to earthquakes. These would affect the
neighbouring supporting structures.

9.1.3 Implementation

The solutions presented in this chapter are computed by minimising the
complementary energy introduced in Section 5.4.5. The constraints from
limit analysis apply as described in Section 5.3.

The results presented in this chapter have been published in a recent paper
by the author in Maia Avelino, Iannuzzo, Van Mele and Block (2022).
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9.2 Crack patterns from settlements
This section demonstrates how the proposed approach can be applied to
suggest the location in which cracks will form for arches (Section 9.2.1),
domes (Sections 9.2.2 and 9.2.3), and vaults (Section 9.2.4).

9.2.1 Analogy on the masonry arch
The first structure to be analysed is a semi-circular arch subjected to a
unitary displacement on its right support. It validates the methodology
and evidences its intuitive physical result. The geometry of the arch is
defined in Figure 9.1.

T
VL VR

T

Figure 9.1: Geometry of the arch as a function of the central radius Rc and
thickness (t). Reaction forces are decomposed in the horizontal thrust (T )
and vertical reactions on the left (VL) and right support (VR).

The thickness over (central) radius t/Rc = 0.20 is considered for the analy-
sis. The arch is subjected to four sets of settlements ūi applied to the right
support: outwards ū1 = [1, 0], inwards ū2 = [−1, 0], downwards ū3 = [0,−1]
and upwards ū4 = [0, 1]. A linear form diagram with 50 nodes is used in the
analysis with supports at both extremities. The self-weight (W ) is lumped
into the diagram nodes according to its tributary areas after projection in
the arch’s central geometry (see also Section 5.3.4).

The results are presented in Figure 9.2, highlighting the points in which the
thrust line touches intrados and extrados with blue and green dots. When
the thrust line touches the intrados (resp. extrados), a crack forms on the
extrados (resp. intrados). The obtained value of the objective function, i.e.,
complementary energy (W̃c), and the normalised thrust (T ) and vertical
reaction (VR) of the right support are presented in Table 9.1.

For the outward and inward displacements (Figures 9.2a–b), the arch as-
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d)

b)a)

c)

Figure 9.2: Thrust line obtained for the unitary foundation settlement (a)
ū1, (b) ū2, (c) ū3, (d) ū4 applied to the right support.

Table 9.1: Results of complementary energy W̃c and normalised reaction
forces for the orthogonal displacements ū1– ū4.

Displacement T/W VR/W W̃c/W

ū1 15.8% 50.0% 15.8%
ū2 25.5% 50.0% -25.5%
ū3 18.9% 47.7% 47.7%
ū4 18.9% 52.3% -52.3%

sumes the well-known minimum and maximum thrust states (Ochsendorf,
2006; Heyman, 1995; Huerta, 2006). The normalised horizontal reactions
are Tmin/W = 15.8% and Tmax/W = 25.5%. These solutions correspond to
the arch’s deepest and shallowest possible thrust lines. For the deepest, an
intrados hinge in the apex and two extrados symmetric hinges appear. For
the maximum, a pair of hinges appear in the extrados and another in the
intrados at the supports.

The downward and upward settlements (Figure 9.2c–d) produce a tilted
thrust line with uneven vertical reaction forces. For the downward, pas-
sive displacement, the vertical component of the settled support reduces to
VR/W = 47.8%, the horizontal thrust is Tdown/W = 18.9%, and the ob-
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jective function is equal to W̃c/W = 47.7%. For the upward settlement, a
mirrored thrust line with the same T/W ratio is obtained, and the vertical
component of the settled support is increased to VR/W = 52.3%.

This simple example demonstrates the intuitive results obtained. Only uni-
lateral cracks can form in the arch, i.e., cracks opening at the opposite side
to the touch-point. In the following sections, three-dimensional structures
are revisited, resulting in more complex crack patterns.

9.2.2 The masonry dome

In this section, a hemispheric dome is analysed. The geometry of the dome
considers t/Rc = 0.10. A radial diagram comprising nM = 20 meridians
and nP = 16 hoops is adopted in the analysis. The diagram is depicted in
Figure 9.3a, with a highlight on the independent edges and supports.

The dome is subjected to two sets of unitary foundation displacements. A
spreading displacement ū1 (Figure 9.3b), and a splitting displacement ū2

(Figure 9.3c) dividing the dome into two halves.

a) b) c)

Figure 9.3: (a) Radial form diagram with nM = 20 meridians and nP = 16
hoops showing independent edges (blue) and supports (red). (b) Unitary
outward ū1 and (b) unitary splitting ū2 displacements applied to the nb =
20 supports.

Figure 9.4 shows the minimum of the complementary energy once the
spreading displacement ū1 has been applied to the radial diagram. The
normalised objective function reported is W̃c/W = 19.9%. The solution
matches the minimum thrust solution obtained in Section 7.3.1. Likewise,
the objective function obtained matches the normalised horizontal thrust
Tmin/W = 19.9% reported in 7.3.1.
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Figure 9.4: Thrust network (G), main cross-section (S), form (Γ) and force
(Γ∗) diagrams for the minimum complementary energy in the dome assum-
ing the outward displacement ū1 and radial diagram.

The internal force distribution presents a bi-axial compression cap in the
upper part of the dome and a uniaxial stress field near the supports. Two
cylindrical crack lines are identified by neighbouring vertices touching the
intrados (blue) and the extrados (green). The internal force distribution
for this solution is shown by looking at its reciprocal force diagram (Γ∗).
In Γ∗, the lengths of the perimetral edges measure the magnitude of the
radial horizontal thrust emerging (e.g., Ti) and, therefore, the perimeter of
Γ∗ corresponds to W̃c for the spreading displacement. For this reason, the
solution for the support spreading and minimum thrust match.

The solution in Figure 9.5 shows the thrust network obtained for the radial
diagram under splitting displacement ū2. The normalised objective function
reported is W̃c/W = 11.3%. The settlement induces the two halves of the
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dome to tilt inwards, increasing the pressure onto the central strip of the
dome orthogonal to the settlements, which assumes a maximum thrust state.
The increased force is evident by the increased length of the corresponding
edges in Γ∗ (see Ti). For the split displacement ū2, W̃c corresponds to the
sum of the x−components of the reaction forces, which is represented by
the height of Γ∗, as noted in Figure 9.5. The new internal force distribution
decreases the height of the diagram when compared with Figure 9.4.

TiTi
0 1% 2% 3%

G

Γ Γ*

S

Figure 9.5: Thrust network (G), main cross-section (S), form (Γ) and force
(Γ∗) diagrams for the minimum complementary energy in the dome assum-
ing the splitting displacement ū2 and radial diagram.

Finally, the solutions presented in this section connect the results of min-
imum thrust and horizontal spreading displacement in the supports and
illustrate how a new range of phenomena can be modelled by considering
general foundation displacements. The form diagram is modified in the fol-
lowing section to better catch the new behaviour induced by the prescribed
displacement.
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9.2.3 Form diagram exploration
Different form diagrams are studied for the dome problem subjected to
the splitting displacement (Figure 9.3c). A topology change is proposed to
modify the direction of the meridional members (Oval et al., 2018). The
radial diagram’s central pole (P) is removed, and a pair of two-valent sin-
gularities (S) is introduced. Consequently, the circular hoops become oval,
and the meridians arrive at the support oblique to the prescribed support
displacement. This modification is shown schematically in Figure 9.6.

P S2
S2 S2

Figure 9.6: Topology modification performed by removing the pole (P) and
adding a pair of two-valent (S2) singularities. Other singularities can be
added, reducing the number of meridians going to the centre.

The logic described in Figure 9.6 is applied to the diagram in Figure 9.3a.
The number of supports (nb = 20) and the same discretisation level to
the central horizontal meridian (16) are kept. The diagrams obtained are
presented in Figure 9.7a–d, with highlights on the set of independent edges
(blue) and support points (red). An overview of the number of edges m and
independent edges k for the patterns are presented in Table 9.2.

(a) (b) (c) (d)

Figure 9.7: Patterns (a)–(d) resulting after the topology change.

The modified patterns are analysed for the splitting displacement. The re-
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sults of normalised complementary energy W̃c/W and the difference, com-
pared to the results obtained with the radial diagram, are also shown in
Table 9.2.

From the values of complementary energy, pattern (d) behaves the best.
For this diagram, a reduction of 40% is obtained, with W̃c/W = 6.8%.
Diagrams (a)–(c) also reduce the objective function by at least 13%.

Table 9.2: Results after a topology variation for the problem of the dome
under splitting displacement.

Pattern m k W̃c/W diff. (%)

a 468 21 9.9% -13%
b 458 23 9.6% -15%
c 424 25 8.5% -25%
d 430 27 6.8% -40%

The geometry of the optimal thrust networks for the new patterns is pre-
sented in Figure 9.8, with its form (Γ) and force Γ∗ diagrams. The inclined
meridians get activated in the solutions obtained, enabling an alternative
force flow oblique to the applied settlement. This new force flow elongates
Γ∗ and reduces its height, and hence W̃c. Indeed, the reduction in the ob-
jective function noted in Table 9.2 is verified graphically by the incremental
decrease in the height of the force diagrams from (a) to (d). Regarding the
internal force distribution, hoop forces also vanish toward the supports, sug-
gesting possible inclined meridian cracks. A curved crack line appears near
the base, equivalent to the cylindrical cracks seen for the spreading displace-
ment, but these are no longer symmetrical. A depression in the network is
observed in the central (vertical) strip, as this portion of the structure con-
centrates the loads due to the two halves leaning inwards. In all diagrams,
near this central strip, the network touches the extrados suggesting crack
lines along this region.

Based on this topology exploration, the solution in Figure 9.8d represents
an internal stress state better fitting for the imposed spitting displacement.
More importantly, the procedure described here enables the exploration of
different possible force flows in connection with a given masonry geome-
try and settlement. The topology search was non-exhaustive, and further
diagrams can still be proposed for this problem, further decreasing the com-
plementary energy value.
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Figure 9.8: Thrust network (G), form (Γ) and force (Γ∗) diagrams for the
dome subjected to displacement ū2 for diagrams (a)–(d).

In the following section, cross and pavilion vaults are also investigated under
general foundation displacements, and a discussion on their crack pattern
is presented.
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9.2.4 Cross and pavillion vaults
In this section, foundation displacements are applied to cross and pavilion
vaults. The results show the locations where the crack patterns are more
likely to form.

The geometries are obtained following the parametrisation presented in Sec-
tion 6.3.1. The vaults are generated through the intersection of two barrel
vaults with the same semicircular profile (R/l0 = 0.5), with a springing
angle β = 30◦ and a thickness over span t/s = 0.05.

The orthogonal diagram topology is used to analyse both geometries (see
Section 6.2.1), the difference being that for modelling the pavillion vault,
the boundary of the pattern is continuously fixed. Consequently, more DOF
(and independent edges) exist. This diagram is depicted in Figure 9.9a. For
the corner-supported cross diagram, readers are referred to Figure 7.4.

The displacement field applied to the cross vault is depicted in Figure 9.9b
and corresponds to a unitary corner horizontal outward displacement ū1.

The displacement field applied to the pavillion vault problem is a unitary
outward sliding of one of its line-supports ū2 and is depicted in Figure 9.9c.

(a) (b) (c)

Figure 9.9: (a) Orthogonal pattern used in the pavilion vault analysis with
highlights on supports and independent edges. (b) Outward displacement
ū1 applied to the corner of the cross vault. (c) Line horizontal outward
displacement ū2 applied to the pavillion vault problem.

The results for these two analyses are depicted in Figures 9.10 and 9.11.

The minimum complementary energy for the cross vault problem is de-
picted in Figure 9.10. The value of the normalised objective function is
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W̃c/W = 20.4%. The outward diagonal displacement reflects a spreading
of the webs crossing the pulled diagonal. This spreading results in two
crack lines crossing that diagonal, obtained by connecting adjacent vertices
touching the extrados (green). Uneven horizontal thrusts are observed, de-
creasing the horizontal thrust in the displaced corner (Ti) and increasing
the pressure applied to the opposite diagonal (Tj). This uneven horizontal
reaction is reflected in the elongated shape of Γ∗. Graphically, the value of
W̃c corresponds to the length of Ti in Γ∗ as the horizontal component of
that reaction is parallel to the foundation displacement.

0 5% 15%

Ti

Tj
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Γ Γ*

S

Figure 9.10: Thrust network (G), main cross-section (S), form (Γ) and force
(Γ∗) diagrams for the minimum complementary energy in the cross vault
for the corner displacement ū1 and orthogonal diagram.

Figure 9.11 depicts the minimum complementary energy for the pavillion
vault problem. The value of the normalised objective function is W̃c/W =
2.6%. The support movement suggests crack lines in the intrados on the
web adjacent to the settlement. The force paths parallel to the settlement
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assume a minimum thrust behaviour (e.g., Ti) or vanish. Consequently, the
loads flow in the perpendicular direction in which the force paths assume
a maximum thrust configuration (e.g., Tj). This is evident in Γ∗, where
the magnitudes of Ti and Tj are highlighted, and the diagram assumes an
elongated shape having a low height and hence low W̃c.

0 5% 10%

Tj

TjTi

Ti

G

Γ Γ*

S

Figure 9.11: Thrust network (G), main cross-section (S), form (Γ) and
force (Γ∗) diagrams for the minimum complementary energy in the pavillion
vault for the line settlement ū2 and considering the orthogonal continuously
supported diagram.

A comparison with the results reported in this section can be made with
works in the literature using Discrete Element Modelling (DEM). For the
cross vault problem, the crack patterns described in the webs in Figure 9.10
match the results obtained in McInerney and DeJong (2015). The problem
of the pavillion vault subjected to the leaning of one of its supporting walls
has been recently studied in Dell’Endice et al. (2021) in which the cracks
suggested in the webs (see Figure 9.11) have also be encountered. Still,
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for this work, the resultant contact forces in the section parallel to the
settlement are depicted and are equivalent to the sectional thrust line shown
in Figure 9.11S. In these studies, the structures are displaced until they
collapse. Indeed, this is a major difference from the results obtained with
TNA. Here, only the crack pattern at the onset of the displacement can
be obtained, and the nonlinear effects of displacing the geometry are not
considered.

Finally, this section shows how specific compatible admissible solutions can
be obtained by coupling TNA and the complementary energy formulation.
This can be used to improve the understanding of the crack patterns aris-
ing in three-dimensional structures and to search for specific stress states on
these structures. In the following section, we will show how the complemen-
tary energy can be combined with concepts presented in previous chapters,
such as the stability domain.

9.3 Stability domain for general settlements

This section revisits the stability domain concept, taking advantage of the
new possibilities presented by imposing general foundation displacements.
The stability domain obtained for a rotation in one support of a circular
arch is presented in Section 9.3.1, and the domain obtained for a rotation
in one support of a cross vault is presented in Section 9.3.2.

9.3.1 Arch under rotational support displacement

The semi-circular arch described in Section 9.2.1 is revisited. The unitary
support displacement is parametrised with the rotational angle α. The
foundation displacement vector becomes then ū(α) = [cosα, sinα]. The
rotation angle is evaluated into 36 positions, having an interval of 10◦. The
angle α is then computed for the interval α ∈ [0°, 10°, . . . , 350°].

The minimum complementary energy is computed for each displacement
position. The results are depicted in the graph of Figure 9.12 in which the
x-axis shows the normalised horizontal thrust (T/W ) and the y-axis shows
the normalised vertical reaction in the displaced corner (VR/W ).

In the graph of Figure 9.12, each vertex (a)–(f) corresponds to one thrust
line mechanism. From the 36 positions of the vector ū(α) computed, six
unique corners appear in the diagram, which means that the thrust line
assumes the same geometrical configuration and crack position for a range
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of the angle [αmin, αmax]. This range is illustrated graphically next to each
vertex in Figure 9.12 and is indicated in Table 9.3.

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.30
T/W
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Figure 9.12: Left: Stability domain for the minimum complementary energy
obtained rotating the unitary vector ū(α). Right: Schematic representation
of the unitary vector ū(α) and rotation α

Table 9.3: Intervals of mechanism obtained by minimising the complemen-
tary energy W̃c for the rotating displacement ū(α).

Mechanism αmin αmax T/W VR/W W̃ c/W

(a) −50° 50° 15.8% 50.0% 15.8%
(b) 60° 100° 18.9% 52.3% -52.3%
(c) 110° 110° 22.7% 51.2% -55.9%
(d) 120° 240° 25.5% 50.0% -25.5%
(e) 250° 250° 22.7% 48.8% 38.1%
(f) 260° 300° 18.9% 47.7% 47.7%

The mechanisms in (a) and (d) correspond to the minimum and maximum
thrust solution depicted in Figure 9.2a-b. The mechanisms (b) and (f)
correspond to the up and down displacement fields depicted in Figure 9.2c-
d. The arch’s stability to the rotational displacement correlates with the
area of the diagram highlighted in grey in Figure 9.12. When the thickness
of the arch is reduced, this domain reduces similarly to the domains from
Chapter 7. The domain reduces to a point for the limit thickness tmin.

The following sections will explore this stability domain for a cross vault.
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9.3.2 Cross vault under rotational displacement

In this section, the cross vault from Section 9.2.4 is revisited. The struc-
ture is now subjected to a rotational support settlement contained in the
plane of the vault’s diagonal. The unitary displacement is rotated on that
plane with the angle α. The vector is evaluated in 36 positions with
α ∈ [0°, 10°, . . . , 350°]. For each position, the complementary energy prob-
lem is computed assuming two form diagrams: the cross and fan corner
supported diagrams depicted in Figure 7.4. The result for each support
displacement is plotted in the graph in Figure 9.13. This graph reports the
normalised vertical (Vi/W ) and horizontal (Ti/W ) reactions for the rotated
support i. The results referring to the cross (resp. fan) diagram are shown
in blue (resp. orange). The solution in selected points (a)–(d) is highlighted,
and the thrust network solution is presented, showing the obtained crack
pattern.

From the results in Figure 9.13, we observe that the domain of stability
obtained with the cross diagram for this geometry is larger than the one
obtained with the fan diagram. The fan’s domain is a subset of the domain
obtained with the cross diagram. Hence, the cross force flow will likely
form under the support displacements studied. The analysis with the λ-
parametrisation (see Section 7.3.2) was also executed for this problem, but
the topologies obtained were all subsets from the cross diagram, i.e., within
the blue domain.

The domain obtained with the cross diagram has 17 vertices, meaning that
the 36 settlements studied resulted in 17 unique networks. Four of them are
presented in Figure 9.13 noted as (a)–(d). The angle range for which this
displacement occurs is also highlighted.

Point (a) corresponds to the outwards solution from Figure 9.10, this net-
work is the solution for α ∈ [−30°, 60°].

Point (b) is the minimum overall vertical reaction force and occurs for α =
270°. The thrust network obtained is tilted, increasing the vertical reactions
in the opposite diagonal, resulting in cracks in the intrados of the diagonal
pulled.

Point (c) reports the maximum horizontal thrust and occurs for α ∈
[150°, 240°]. The network obtained corresponds to a mechanism for which
the diagonal support is pushed inwards, suggesting cracks on the web’s ex-
trados near the displaced support and in the intrados near the keystone.
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Figure 9.13: Stability domain for the cross vault studied under a rotational
support displacement. Highlight on selected solutions from this diagram,
corresponding to (a) minimum Tmin and (c) maximum Tmax thrusts, and (b)
minimum Vmin and (d) maximum Vmax vertical reactions. The settlement
applied ū(α) is reported for each state highlighted.

Point (d) is the maximum overall vertical reaction force and arises for a dis-
placement of the supports upwards α = 90°. The resulting network suggests
cracks in the extrados near the displaced support and in the intrados of the
opposite webs.

For part of this domain, the mechanisms are active, i.e., occurs with the

201



Chapter 9. Understanding the effects of foundation settlements

supports pushing the vault, which is rare. To check if the displacement is
active or passive, it suffices to look at the objective function’s value. When
W̃c > 0 (resp. W̃c < 0), the displacement is passive (resp. active), i.e.,
displacements (a), (b) (resp. (c), (d)), in Figure 9.13.

Therefore, this section shows that the complementary energy investigation
can be combined with the metrics provided by the stability domain from
Chapter 7. This combination offers a novel and powerful way to investigate
the admissible equilibrium domain for vaulted masonry structures subjected
to general foundation displacements.

The following section combines the energy criterion with the application of
horizontal loads.

9.4 Combined effect of settlements and hori-
zontal loads

This section revisits the pavillion vault from Section 9.2.4 to show the cou-
pled effects of horizontal loads and foundation settlements.

The pavillion vault is evaluated under the same foundation line displacement
ū2 applied in Section 9.2.4, but now simultaneously subjected to a horizontal
external load pext

h [2n× 1].

The horizontal external load is applied to the network’s vertices in the
x−direction. For each vertex, the load applied to the x−direction has the
same magnitude as its lumped self-weight. This horizontal external load is
multiplied by the horizontal load multiplier λh = 30%.

Horizontal load multipliers are often used to approximate the effect of earth-
quakes in masonry vaults (DeJong, 2009). By combining settlements and
horizontal loads, e.g., the leaning of supporting walls during an earthquake
can be modelled. One could associate this displacement ū2 imposed here,
e.g., to the leaning of a not-properly supported wall during an earthquake.

The minimum complementary energy solution for the pavillion vault prob-
lem with λh = 0.30 is depicted in Figure 9.14. The objective function value
is W̃c/W = 28.9%. The thrust network obtained is tilted against the hor-
izontal loads, as shown in the main section (Figure 9.14S). Furthermore,
the loads flow orthogonally to ū2 and to the corners, alleviating the thrust
acting on the displaced support.
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G S

Figure 9.14: Results obtained for the pavillion vault subjected to line
support outward displacement ū2 and horizontal load with a multiplier
λh = 30% for an applied horizontal external load pext

h . Left: Perspec-
tive and right: main sectional view.

This solution not only shows that the pavillion vault studied can withstand
the horizontal loads applied, but it also enables an exploration of the domain
of admissible solutions for particular movements of the supports. This gives
a full range of possibilities to engineers facing complex problems in which
the foundation might displace under the action of external loads. For this
problem, further optimisation and variation of the form diagram topology
could be envisaged to model the reduction of the thrust over the settled
supports. Another way to exploit the present solution is using the observed
crack pattern to inform displacement-based methods that could then predict
the mechanism evolution of the structure over a continuous spreading of the
supports.

9.5 Summary
This chapter applied the methodology developed in this dissertation to de-
termine the effects of foundation settlements in masonry structures. When
the settlements arise, the internal equilibrium state of the solution changes.
This change can be modelled by coupling the minimisation of the comple-
mentary energy with the constrained optimisation framework from Chap-
ter 5. This combination offers a new range of possibilities for engineers
seeking to model settlements in masonry, which are common because of
their high self-weight, long-term effects, or applied external loads.

Several problems in common masonry typologies have been analysed. The
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results suggest the location where cracks might arise. The points where
the network touches the intra- or extrados indicate unilateral cracks in the
model. These unilateral cracks are seen, e.g., in the arch. Further cracks
arise at portions where the network’s compressive forces vanish, indicating
possible “wrinkle” fractures, or smeared cracks, as in the dome. For 3D
problems, an indication of crack lines is provided by connecting neighbour-
ing vertices touching sectional limits.

In this chapter, the minimum complementary energy solutions have been
combined with the stability domain concept. Doing so enables a measure
of the stability, or fragility, for a given set of foundation displacements,
enabling a comparison among different models and force flows.

Finally, this chapter also described the combined effects of applying hori-
zontal loads and subjecting the structure to foundation displacements. It
shows the range of applications of the method, able to analyse multiple
relevant assessment problems in masonry structures.

This chapter closes the results of this dissertation. A summary of the main
contributions to this work is presented on the following pages.
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Chapter 10

Conclusions

This chapter summarises the contributions of the work, lists its main lim-
itations, and provides an outlook for future research in the field. A final
reflection is also provided, highlighting the impact of the present work.

10.1 Contributions
This section lists the main contributions of this work following the research
objectives from Chapter 3.

10.1.1 Robust search of admissible stress states
This work developed Thrust Network Optimisation (TNO), a modular
multi-objective optimisation framework that enables the search of admis-
sible stress states in masonry structures. This framework equips Thrust
Network Analysis (TNA) (Block, 2009) with the procedures necessary to
find specific equilibrium states relevant to practical assessment scenarios.

This search is encoded in a nonlinear constrained optimisation problem
(NLP) described analytically in this dissertation. By extending TNA with a
robust optimisation procedure, TNO becomes a novel flexible lower-bound
assessment tool. The tool is especially suitable for practical applications
due to its independence of mechanical parameters and specific structural
stereotomy. The analysis requires only the structural envelope of the ma-
sonry and an assumed force pattern as inputs. This input is well adapted
to the data available in typical assessment projects, which often come from
geometric surveying.
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Among the specific equilibrium states that can be obtained with TNO are
the determination of the minimum and maximum horizontal thrusts, the
maximisation of the structure’s Geometric Safety Factor (GSF), the compu-
tation of maximum horizontal and vertical collapse loads, and the search for
equilibrium states compatible with foundation displacements. The frame-
work developed enables all these analyses with a single approach.

The analyses in TNO are executed considering a fixed horizontal projection
of the equilibrium networks, i.e., a fixed form diagram. Fixing the form
diagram reduces the indeterminacy of the problem, resulting in an efficient
formulation of the NLP. It comes, nevertheless, with the cost that the dia-
gram must be carefully selected.

A new algorithm to automatically identify the diagram’s degrees of free-
dom has been developed for the fixed topology approach. It is based on
the computation of sequential Singular Value Decomposition (SVD) of the
problem’s equilibrium matrix. This procedure is general and enables the
analysis with different topologies.

The lack of such a robust, flexible optimisation framework has prevented
TNA from being applied in practical masonry assessment scenarios. Build-
ing on TNA’s simplicity and acceptability as a discrete equilibrium-based
lower-bound method, the contributions in this dissertation bring it one step
closer to being a relevant assessment tool for engineering practice.

10.1.2 Exploring and quantifying force patterns

Given the discrete equilibrium formulation, the solutions obtained with
TNA depend on the form diagram’s geometry, topology, and support con-
dition. Finding suitable form diagrams is especially challenging when as-
sessing existing structures. In these cases, the diagram should follow the
structure’s specific geometric and mechanic features, such as ribs, creases,
curvature, openings, boundary conditions, externally applied loads, and set-
tlements.

In this work, analysing different asymmetrical form diagrams is possible, and
general masonry geometries can be considered. Regarding the modifications
of the form diagram for a given problem, heuristics have been developed to
adapt the pattern to the geometric features and loading cases.

More importantly, this work enables the comparison of multiple diagrams for
the same problem by introducing quantitative measures, such as maximising
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their GSF, maximising applied loads, or comparing the size of their stability
domains.

The results from this dissertation reinforce that infinite equilibrium states
develop in masonry structures depending, e.g., on the loads to which they
are subjected or the foundation displacements applied to them. This change
in the internal force flow often entails a new internal force distribution re-
quiring an update in the form diagram. While an exploration of the infinite
(and discrete) space of topologies is beyond the scope of this thesis, the
procedure for evaluating the stability level combined with the pattern ex-
ploration is a novel and powerful tool to visualise and compare different
patterns.

10.1.3 Computing the level of stability

This work contributes to quantifying the level of stability for vaulted ma-
sonry structures. As discussed, finding one admissible stress state informs
whether or not the structure is safe, but it does not provide information
about its level of stability. For practical assessment scenarios, determining
the latter is crucial.

Even if this concept from limit analysis is well-known, its application to
general three-dimensional masonry structures has been limited. This work
contributes by analysing general vaulted structures by drawing their stabil-
ity domain and computing their GSF.

Through the analysis using the stability domain, a new perspective is pro-
vided on the classical debate about the force flow in Gothic vaults, as in
the overview in Huerta (2009), after Abraham (1934). The loads in Gothic
cross vaults are in constant change, following, e.g., foundation settlements
induced by the surrounding elements or additional imposed loads, and can
not be assumed fixed for a given geometry.

The introduction of the stability domain in this thesis represents not only
a novel way to visualise and quantify the level of stability but provokes a
reflection on the admissible equilibrium space that the lower-bound analysis
can not yet capture. Other researchers can further explore the proposed sta-
bility domain to demonstrate how novel methods compare with the present
work and the literature in general. Incidentally, the stability domains from
the analysis at Chapter 7 initially published in Maia Avelino, Iannuzzo,
Van Mele and Block (2021c) have been revisited and enlarged in Nodargi
and Bisegna (2022).
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10.1.4 Estimating collapse loads in masonry

This work has also contributed to computing a lower bound of the vertical
and horizontal collapse loads in vaulted masonry structures with applica-
tions to a hemispheric dome and vaults.

Beyond determining a conservative approximation of the collapse loads, the
analysis with TNO detects the locations where cracks are more likely to
form in the structure. By revealing the crack locations in the models, these
can be compared against observed cracks in the structure occurring after
additional externally applied loads are introduced, e.g., after a repurposing
or a retrofit of an ancient existing building.

Moreover, this dissertation provides a mathematical formulation to max-
imise non-proportional horizontal load multipliers. These analyses are es-
pecially challenging for the current fixed diagram approach that needs to be
updated so the loads can travel to the supports. Nevertheless, in Chapter 8,
solutions are achieved by introducing pragmatic modifications to the form
diagram, such as adding diagonals and sliding the nodes horizontally. These
initial results are promising since horizontal multipliers can model simpli-
fied action of earthquakes in masonry structures (DeJong, 2009), which is a
topic of utmost importance for heritage conservation in seismic areas (Fu-
nari, Mehrotra and Lourenço, 2021).

10.1.5 Investigating foundation settlements

This work has developed a framework to relate general foundation settle-
ments to possible three-dimensional crack pattern locations in the structure.
Due to masonry’s discrete nature and unilateral behaviour, cracks appear
following foundation displacements. Cracks are indicated in the models
by the points in which the thrust network touches intrados and extrados
(unilateral cracks) and by portions of the structure, where forces vanish,
indicating smeared cracks.

This work introduces an energy-based criterion that minimises the comple-
mentary energy in thrust networks for a given foundation displacement. By
searching among the infinite admissible stress states, the ones compatible
with specific settlements, the locations where cracks are most likely to form
following these movements are revealed. The outcome helps to understand
the mechanical behaviour of the vaulted masonry structures without the
need to previously define the possible crack lines as it would be necessary
when adopting upper-bound approaches.
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10.1.6 Collaborative open-source implementation

Beyond providing the mathematical formulation and algorithmic description
of the procedures included in TNO, the methodology of this dissertation has
been implemented in an open-source Python package named compas_tno.

This package is freely available (Maia Avelino, 2023), enabling future collab-
oration and the continuous development and improvement of the procedures
described in this thesis by other researchers.

Moreover, sharing the implementation enables it to be used by practition-
ers as a practical analysis tool for masonry structures. The simple and
comprehensive TNA approach has the potential to be quickly adopted in
practice.

The package has been developed independently of any CAD software such
that further developments could create user interfaces for different CAD
applications or even distribute the numerical implementation of the package
as standalone software.

10.2 Limitations

The main limitations of the present approach are listed in this section.

• Lack of a pattern generation strategy:

The results of the analysis are dependent on the pattern selected.
Therefore, alternative diagrams must be sought if the chosen pattern
is not feasible. While heuristic and parametric diagrams have been
used, a pattern generation strategy should still be added to the cur-
rent framework. This generation could be guided by the diagram
comparisons and metrics presented in this work.

• Nonlinear formulation:

The optimisation problem solved in this dissertation is nonlinear.
Therefore, its solvability is prone to variations in the starting point,
scaling problems, and convergence errors. Moreover, the formulation
prevents the problem from scaling up to highly refined meshes, e.g.,
with more than 2000 edges. Nevertheless, strategies to improve the
solvability and avoid pitfalls in the optimisation have been presented.

• Precision on the selection of independent edges:
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The independent edges (or DOF) selection on the form diagrams re-
lates to the nullspace of the equilibrium matrices. Therefore, this
selection is prone to tolerance errors in identifying the null singular
values, which might arise if the matrices are badly conditioned. Fur-
ther studies on varying this precision threshold are needed to improve
and extend the current formulation.

• Disregard of the joints among the blocks:

The approach adopted does not consider the joints among the blocks,
disregarding possibly beneficial effects of friction and interlocking as-
sociated with the structural stereotomy. Instead, the masonry is anal-
ysed as a continuous envelope, which is a more conservative approach.

• Disregard of tensile effects:

By adopting Heyman’s assumptions, no tensile capacity is considered
in masonry. However, in some cases, it might be realistic to assume
a small tensile strength of the material, which would require that the
network goes outside the bounds of the masonry. Such cases are not
studied in this dissertation.

• Limitation to small foundation displacements:

The analysis with foundation settlements is limited to small (differen-
tial) displacements. An update in the geometry would be necessary to
account for large displacements, as the structure would settle into new
equilibrium positions as the supports move. The present approach can
not account for this behaviour.

10.3 Outlook and future investigations
This section outlines possible future investigations arising from the present
research. These future investigations are not only linked to the current
limitations but also to promising developments in parallel fields where in-
tersections can be beneficial.

10.3.1 A new perspective on optimal form diagrams
This dissertation has shown how TNA’s form diagram selection influences
the analysis of diverse problems, i.e., minimum and maximum thrusts, min-
imum thicknesses, and maximum loads. It makes an even stronger state-
ment that there is no “right” pattern for a given geometry, and this pat-
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tern changes according to the load scenario, geometric features, boundary
conditions, etc. Future research on discrete three-dimensional lower-bound
methods should incorporate these findings.

10.3.2 Data-driven methods and pattern generation

Unlike optimising forces within a pattern, exploring its topological space
corresponds to a combinatorial problem, which can not be described in con-
tinuous variables (Oval, 2019). In this context, data-driven methods are
promising alternatives to help explore this combinatorial space and auto-
mate the generation of form diagrams. More importantly, they can learn
the performance of the generated patterns relying on the metrics developed
in this dissertation, i.e., GSF, stability domain, maximum load multipliers,
complementary energy value, and searching for more adequate diagrams.
Research in this direction has been recently performed for structural design
(Saldana Ochoa et al., 2021; Tam et al., 2022).

Furthermore, recent research in auto-differentiation (AD) tools has demon-
strated how AD can be a robust and scalable method to compute derivatives
(or losses) and is available in open-source libraries (Paszke et al., 2019). Re-
cent research in structural engineering has benefited from such a framework
to compute derivatives (Cuvilliers, 2020; Pastrana et al., 2023) sometimes
faster than with analytical approaches. Adding AD to the TNO framework
could ease including new objectives or constraints, dispensing the need to
compute the gradients analytically for each case.

10.3.3 Understanding TNA’s conservatism

As stated in the Limitations (10.2), this research limited its scope to con-
nected networks, which do not assume a specific stereotomy to the blocks
in the structure and, therefore, can not capture the effects of friction be-
tween the blocks or even the beneficial interlocking effects known by masons
(Chen and Bagi, 2020). In approaches like Fantin and Ciblac (2016), TNA
is revisited considering the block’s joints which reflected in a disconnected
network (Nodargi and Bisegna, 2022).

Assuming the structure’s stereotomy would reduce the TNA’s conservatism.
For these cases, future research should elaborate on how much more capacity
is gained by assuming a giving stereotomy. The metrics developed in this
work come in handy for this application.
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10.3.4 Framework for inverse analysis

The results obtained in Chapter 9 showed how cracks are induced after sup-
port displacements and how they connect to minimal energy modes. Future
work can rely on TNO analysis to study the inverse problem of determining
the foundation displacements that resulted in the cracked configuration ob-
served. Indeed, such studies are currently limited (Iannuzzo et al., 2018; Ye
et al., 2018) and could be investigated for general vaulted masonry struc-
tures with TNO.

10.3.5 Emerging scanning technologies

The geometry-based input required for the analysis with TNO opens pos-
sibilities for closer integration of structural analysis and surveying (Riveiro
et al., 2016). Emerging technologies such as augmented reality (AR) promise
seamless interaction between real and virtual environments. New possibil-
ities arise for the automatic segmentation of spaces, which could apply to
identifying features and cracks in heritage buildings (El-Hakim et al., 2007)
and obtaining faster and more precise three-dimensional models that could
integrate with the analysis in TNO.

10.3.6 A new approach to design

TNA has already been applied to the design of compressive shell structures
(Rippmann, 2016), including designing through a best-fit approach to a
prescribed geometry representing the overall design intent (Van Mele et al.,
2014). The constrained approaches from TNO offer an effective control over
the structure’s envelope instead of only its target geometry. In this design
scenario, TNO could be used simultaneously as a design and assessment
tool. The designed shell could, e.g., be optimised to enlarge the stability
domain subjected to a limited amount of material.

Nevertheless, given the climate emergency, future design has to shift towards
sustainable, low-carbon initiatives. In this context, discrete funicular floor
applications have emerged for which the mechanical principles of masonry
structures apply (Rippmann et al., 2018; Oval et al., 2023). Therefore, the
tools developed could also be extended to this context, helping to iden-
tify and assess natural crack lines and hinges in the material for plausible
foundation displacements or extreme loads.
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10.4 Final reflections
Masonry structures have been standing for centuries and testified to the
development of our civilisation’s construction techniques. Paradoxically, in
the 21st century, we lack appropriate analysis tools to ensure their structural
safety.

Most of these structures have been conceived with simple equilibrium con-
cepts, from which derive the theory of thrust lines and, more recently, lower-
bound limit analysis and thrust network analysis. However, the lack of de-
velopments in novel equilibrium methods has limited its use to analysis “by
hand” executed for trivial geometries.

The present work has developed Thrust Network Optimisation as a con-
strained optimisation-based framework that contributes to this lack of ap-
propriate tools to model masonry structures. The developments are im-
plemented in a Python-based package named compas_tno, which enables
continuous development and collaboration.

By equipping equilibrium-based methods with robust optimisation proce-
dures, this dissertation has effectively extended the range of applications
of lower-bound limit analysis methods to vaulted masonry structures. It
enables automating multiple assessment outputs in a single approach, some
of which could not be done before for arbitrary geometries.

This dissertation’s findings advocate for exploring the constrained compres-
sive equilibrium space to understand masonry structures. This philosophy
extends to general structures and offers a bridge between the fields of assess-
ment and sustainable structural design. Multiple future research directions
arise from this work. The framework developed can be used to perform
inverse problems in masonry assessment and be integrated with data-driven
and modern scanning techniques.

Preserving and rehabilitating existing buildings is more needed than ever.
In this context, the contributions of this dissertation can have a real impact
by offering reliable, comprehensive, collaborative, and accessible analysis
tools to assess their stability.
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