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ABSTRACT

This paper introduces topology finding of patterns for shell structures such as beam grids for gridshells or voussoir
tessellations for vaults, among others. The authors refer to topology finding, by analogy and in complement to
form finding, as the design of the connectivity of these patterns in order to follow architectural, structural and
construction requirements. This paper presents a computational approach relying on a specific design space and
data structures based on singularity meshes, which encode the information about the singularities in patterns.
The designed patterns are structured, i.e. with a low number of singularities, can include high-valency pole
points, and respect alignment to surfaces, curves and points. A feature-based exploration approach is introduced
with a generation procedure for singularity meshes following the boundaries of a surface as well as point and
curve features, using a topological skeleton or medial axis. These features can stem from statics heuristics, whose
efficiency is assessed in a case study. A rule-based editing approach for singularity meshes supplements feature-
based topology finding, using a grammar of strip rules as parameters to further explore the singularity design
space. This conceptual design approach and its algorithms are an aid for topological exploration of patterns for

shell-like structures by architects and engineers.

1. Introduction
1.1. Context

Shell structures span efficiently large areas thanks to their double
curvature that provides geometrical stiffness. These structures are dis-
cretised in a pattern, which integrates the load-bearing and the clad-
ding systems to be fabricated and assembled. Beam networks for grid-
shells, voussoir tessellations for vaults, cable layouts for cable nets and
beam networks for nexorades are such examples of patterns for shells,
as shown in Fig. 1. The topology and geometry of these patterns in-
fluence and are influenced by many project aspects such as aesthetics,
statics, fabrication, assembly, as well as sustainability and cost.

1.2. Designing patterns

Design strategies tackle the topology and geometry of patterns for
shell-like structures in different manners.

1.2.1. Form finding
Form finding explores the geometry of a pattern to achieve diverse
criteria, using strategies such as force-based methods (Force Density

Method [5], Dynamic Relaxation [6], Thrust Network Analysis [7],
Update Reference Strategy [8], etc.) and fabrication-based methods
(Scale-Trans Surfaces [9], Marionette Meshes [10], etc.). However, the
pattern has a predefined topology, which constrains the form-found
geometries to the same geometrical design space, which heavily de-
pends on the experience of the designer with regard to the choice of
topology.

1.2.2. Form optimisation

Form optimisation of the shape of the shell can be performed on the
coordinates of the vertices of a surface or a mesh with a predefined
topology [11,12].

1.2.3. Field integration

Some design strategies generate the topology of the pattern as well.
More specifically, vector- or cross-field integration methods generate
the geometry as well as the topology of the pattern, whose singularities
correspond to the ones of the field. These integration procedures can be
applied to the principal stress directions for mechanical efficiency
[13,14] or to the principal curvature directions for fabrication prop-
erties [15].
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(a) Beam grid of the Ephemeral Cathedral in
Créteil, France [1] (Photo credits: thinkshell.fr)

(b) Voussoir tessellation of the Armadillo Vault in
Venice, Italy [2] (Photo credits: Iwan Baan)

(c) Cable layout of the prototype for the NEST
HiLo roof in Ditbendorf, Switzerland [3]

(Photo credits: Naida Iljazovic)

(d) Beam network of a shell-nexorade hybrid at
Ecole des Ponts, Champs-sur-Marne, France [4]
(Photo credits: Romain Mesnil)

Fig. 1. Examples of patterns for shell-like structures.

1.2.4. Topology optimisation

Topology optimisation generates both the geometry and the to-
pology of the pattern [16]. The resulting designs are highly optimised
regarding mechanics but not necessarily feasible regarding construction
considerations, as discussed by Borgart [17].

Although the last approaches do not constitute exploration strate-
gies for the designer, such methods can be used as a collaboration
means between architects and engineers for integrated design [18].

1.3. Research statement

In practice, architects and engineers resort to heuristics to draw a
topology for a pattern, in a tedious project-specific procedure without
automation process [19]. Although common practice in other industries
like computer graphics, topological mesh modelling is not well spread
in architecture, engineering and construction, and existing methods are
not designed for this specific domain. Yet, the topology of a pattern
matters because it sets the bounds of the available geometrical design
space, within the more general design space. This geometrical space,
which represents all the possible geometries for a given topology, may
not contain efficient or even feasible designs. For this reason, designers
need conceptual and practical tools for topology finding to deepen the
design space, to allow them to efficiently explore the topology of pat-
terns for structural design at the early stages of the project, as already
investigated for other architectural and structural concepts [20-22].
Topology finding empowers the existing geometrical design and opti-
misation algorithms to achieve efficient structures.

1.4. Contributions

This paper introduces topology finding of patterns for shell-like
structures. A focus is set on the singularities in structured quad-based
patterns, via the exploration of singularity meshes, which encode the
information about the singularities in the pattern, including high-
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valency pole points. The presented algorithms allow to generate pat-
terns that are structured, i.e. with a small number of singularities,
justified by the implications of designing unstructured patterns on
aesthetics, statics and construction [23]. Furthermore, they are aligned
with features like surface boundaries, points and curves, which can
stem from different aspects, like a column or a fold to integrate in the
pattern in order to follow statics-aware heuristics.

Section 2 defines the approach with the design space and data
structures for the exploration of singularity meshes. Section 3 develops
feature-based topology finding with a skeleton-based generation pro-
cedure for singularity meshes via the shape's topological skeleton. The
integration of point and curve features is validated as statics-aware
heuristics in a case study. Section 4 presents a rule-based editing
strategy for singularity meshes using a strip grammar to explore dif-
ferent topologies that still include the desired features.

This research is implemented in compas_pattern [24] as a Python
package of COMPAS [25], an open-source Python-based computational
framework for collaboration and research in architecture, engineering
and digital fabrication.

2. Approach

This section shows how the design spaces and the related data are
structured to tackle the design of patterns with a focus on their singu-
larities.
2.1. Design space structure

The design spaces related to patterns can be structured as in Fig. 2,
with the ones related to topology (the singularities, the density and the
general connectivity of the pattern) upstream from the one related to

geometry.

1. The pattern singularity space encodes the data related to the
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Fig. 2. Design space structure of a pattern's singularities, density, connectivity and geometry, where each design space is defined by the design choices in the

upstream spaces.

singularities of the pattern with singularity meshes in the form of
coarse pseudo-quad meshes (see Sections 2.2 and 2.3.1);

. The pattern density space encodes the data related to the density of
the pattern in the form of quad meshes, with optional pseudo-quads
for poles. It is based on the selected singularity mesh and setting the
density parameters per quad face strip (see Section 2.3.2);

. The pattern connectivity space encodes the data related to the general
connectivity of the pattern in the form of general meshes. It is based
on the selected density mesh and defining global and/or local to-
pological modifications (see Section 2.3.3);

. The pattern geometry space encodes the data related to the geometry
of the pattern in the form of general meshes as well. It is based on
the selected connectivity mesh and modifying the coordinates of the
vertices (see Section 2.3.4).

With this hierarchy, the singularity design pace is the most up-
stream, therefore, the most influential one, as it sets the limits of the
downstream design spaces.

The pattern data structure needed to explore these design spaces is
detailed in the next section.

2.2. Data structure

The data structure used to explore the topology of a pattern relies on
the singularity mesh as a coarse pseudo-quad mesh, a specific type of
mesh, as shown in Fig. 3:

1. Meshes can be defined with a list of vertices as point coordinates for
geometry, and a list of faces as lists of vertex keys for topology, from
which a more efficient half-edge mesh data structure can be com-
puted [38], as implemented in COMPAS;

. Quad meshes are meshes in which all faces are quads, as lists of
exactly four vertex keys, which allows definition of quad face strips
as lists of edges that are facing each other across the quad faces;

3. Coarse quad meshes are quad meshes with a density parameter

defined for each strip for densification into a child quad mesh,
whose vertex, face and edge elements inherit the attributes of the
parent elements, such as to which strip in the coarse quad mesh
corresponds a poly-edge in the quad mesh;

. Pseudo-quad meshes are quad meshes with some pseudo-quad faces
that are geometrically like triangles but topologically like quads,
with a double vertex at the location of the pole encoded as a list of
face vertices in the type [a, b, c, c] instead of [a, b, c, d];

. Coarse pseudo-quad meshes are the combination of coarse quad
meshes and pseudo-quad meshes.

The coarse pseudo-quad mesh of the singularity mesh defines the
relationship between the singularities and the poles of the pattern. The
strip density parameters define the pseudo-quad mesh of the density
mesh. Applying topological modifications result in the general mesh of
the connectivity mesh, whose vertices can be moved to explore the
geometry of the pattern.

This approach relates to mesh modelling environments with their
low-poly meshes and subdivision algorithms, which got into structural
design for their lightness compared to directly modelling a dense mesh
[26-28].

The next section provides specific details for the exploration of the
different design spaces.

2.3. Design spaces

Different parameters and constraints control the exploration of the
different design spaces.

2.3.1. Singularity design space

Approaches to explore the singularity design space are presented in
Sections 3 and 4. The specific complexity of the singularity space is
discussed.

The surfaces representing the shell-like structures in Fig. 1 are
classified as compact two-manifolds [29], which permits to
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coarse quad mesh

mesh quad mesh

pseudo-quad mesh

topologically characterise their mesh representations by their Euler's
characteristic X, computed as:

X=V—-—E+F, D

where V is the number of vertices, E the number of edges and F the
number of faces of the mesh. The Euler's characteristic of such surfaces
is actually independent from its mesh representation and can be di-
rectly computed as:

X=2-2g—N, 2

where g is the number of handles - or genus — and N the number of
boundaries, in the case of an orientable surface. The Euler's char-
acteristic sets a constraint on the choice of singularities in the mesh via
the Poincaré-Hopf theorem:
X= i,

VeV (3)
where V is the set of all the vertices and i, the index of a vertex v. The

index of a singularity relates to the deviation it induces in the or-
ientation of the faces:

=Y do,

m )

where d6 is the signed anticlockwise angular deviation of the quad faces
during an anticlockwise loop around the vertex v, as illustrated in Fig. 4
for two negative singularities.

These vertex indices can be directly computed in quad meshes from
the valency n,:

i= g — Ny

vE T (5)
where ng is the regular valency, equal to 4 and 3 for a non-boundary
and a boundary vertex, respectively.

In pseudo-quad meshes, the index of non-boundary and boundary
poles are independent of their valency and are equal to 1 and 1/2, re-
spectively, as shown in Fig. 5a and b. The index of a partial pole in a
quad mesh, which is adjacent to both pseudo-quads and quads, is

(b) —1/4-index boundary

singularity

(a) —1/2-index

singularity

Fig. 4. Computing vertex indices in a quad mesh with the direction deviation
(in red) during a loop (in orange) around the vertex. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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Fig. 3. From the data structure of general meshes to
the one of coarse pseudo-quad meshes for singularity
meshes. Meshes are represented in black and their
densified meshes in grey, boundaries in red, strips in
blue, density parameters in capital letters and poles
as filled dots. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)

pole

(c) O-index partial pole (d) +1/2-index partial

pole

Fig. 5. Computing indices of poles and partial poles in pseudo-quad meshes.

computed as a non-pole vertex using Eq. (5) after collapsing the pseudo-
quads, as in Fig. 5c and d.

While applying topological modifications to a mesh, the Poincaré-
Hopf theorem still applies and can be differentiated as:
0= Y b= D, i+ D, A,

vev, vel_ vev* 6)
where V. is the set of added vertices, V_ the set of deleted vertices, V"
the set of modified vertices and Ai, is the variation of the index.

The singularity design space of coarse pseudo-quad meshes is rich,
even restricted to a shape with a given Euler's characteristic, but
complex: topological modifications applied to the singularities have to
be considered globally because of the relation between them, on the
contrary to local modifications of a vertex coordinates. Therefore, this
design space necessitates specific exploration approaches.

Nevertheless, thinking in terms of singularity indices directly in-
forms the designer what topological modifications are possible ac-
cording to the differential Poincaré-Hopf theorem in Eq. (6). For in-
stance, a 6-valent singularity of index — 1/2 and a 3-valent singularity
of index + 1/4 can be merged in a 5-valent singularity of index — 1/4,
because the sum of the indices is preserved.

2.3.2. Density design space

The strips of quad faces are the key structure in quad meshes, as
used in some modelling approaches [30,31]. As illustrated in Fig. 6, the
corresponding strip data is collected as lists of edges as follows:

1. start with the complete list of quad mesh edges;
2. pop one edge from the list (Fig. 6a);
3. collect the edge across the adjacent quad faces and repeat in each
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Fig. 6. Collecting the strip data as lists of edges across the quad mesh faces. The
boundaries are highlighted in red and the strips are represented as dashed blue
lines. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

direction until the boundaries are met in the case of open strips
(Fig. 6b), or until it forms a loop in the case of closed strips;

4. mark the collected edges as one strip and remove them from the list
of edges;

5. repeat from step 2 until the initial list of edges is empty (Fig. 6¢).

Each strip corresponds to one independent density parameter in the
singularity mesh, which is the subdivision of the strip edges for the
density mesh. The strip density parameters form the densification de-
grees of freedom, are strictly positive integers and can all be different,
opposed to a Catmull-Clark subdivision procedure with a unique global
density parameter [32]. The density parameters d; can be chosen by the
user via the length of the strip edges, aided by automated computation
based on a target length [, as:

d; = [f 1)/ 1], )

where f is a function applied to the lengths of the edges of the strip i,
like the average, the minimum or the maximum. In practice, the
average is used for all the examples in this paper.

Once each strip density parameter is set, each quad face in the
coarse quad mesh is meshed. The geometry follows the hyperbolic
paraboloid S that linearly interpolates the four face vertices:

Y (u,v) €[0,1P, Su,v) =1 — u)-(1 —v)-A+u(l-v)B

+ (1 —uwvD + uv-C ®

where A, B, C and D are the four ordered vertex coordinates of the face.
The surface is discretised in a mesh with the U and V density parameters
corresponding to the strips which include the facing edges (A — B) and
(D — ©), and the facing edges (B — C) and (A — D), respectively.

These meshes are then joined and their boundary vertices welded
together to form the quad mesh of the density mesh.

2.3.3. Connectivity design space

Based on the density quad mesh, any modification can be applied to
form the actual connectivity of the pattern.

Connectivity editing can include local edge operations, like add,
delete, swap, split, or trimming to fit a landscape, when boundary
alignment is not necessary [33,34], for instance.

More specifically, one or multiple Conway operators [35] can be
used to apply global modifications and allow exploration of different
pattern symmetries with equivalent singularities, structuredness and
feature-alignment, while not being constrained to quad patterns.
Conway operators have already been explored in structural design for
the optimisation of space frame structures [36,37].

As illustrated in Fig. 7, the seed quad mesh can yield a doubly-tri-
angulated pattern with the Conway kis operator, a dual diagonal pat-
tern with the Conway ambo operator or a pentagonal pattern with the
Conway gyro operator, for instance, with equivalent vertex or face
singularities, highlighted in pink.
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2.3.4. Geometry design space

During exploration of the pattern geometry, any geometrical pro-
cessing can be performed, related to form finding or form optimisation,
based on the vertex coordinates as parameters. More specifically,
smoothing or relaxation algorithms can be used to regularise the geo-
metry after topological processing.

After setting the actual connectivity of a pattern during a geometry-
blind process, relaxation can improve its geometrical quality using
Laplacian smoothing [38,39], before further processing. For a given
number of iterations or until convergence below a given threshold
value, each vertex of the pattern is moved towards the centroid of its
adjacent vertices at:

Vi =Vi+ (1= d)(V; — W), 9)

where V; is the final position of the vertex, V; its initial position, V; the
centroid of its adjacent vertices with optional weights, and d a user-
defined damping value between 0 and 1 for stability, classically set to
0.5. The values per vertex are computed at each iteration and the vertex
coordinates updated simultaneously at the end of the iteration to avoid
the bias of starting from one random vertex.

Additionally, constraints are set on the vertices to project them back
on surfaces, curves and points after each iteration, to fit a target shape
and optional point and curve features. These constraints are stored at
the level of the singularity mesh parent elements and then inherited by
the child vertices of the other meshes.

This switch from topological to geometrical spaces can be a real
challenge, as a highly distorted mesh with overlapping or collapsed
elements is harder to geometrically process. Nevertheless, early geo-
metrical regularisation with Laplacian smoothing of the singularity
mesh can prevent these problems later.

To reduce additional smoothing computation induced by density
modification of the singularity mesh faces, re-densification can be
performed following the existing geometry to almost fit the smoothing
constraints, as illustrated in Fig. 8.

Based on the presented design space and data structures for pat-
terns, the focus is set on the exploration of the singularity design space.

The next section presents feature-based topology finding using a
skeleton-based generation procedure of a singularity mesh for an input
surface, based on its topological skeleton, with optional point and curve
features, which can stem from statics-aware heuristics.

3. Feature-based exploration

A topology-finding algorithm for feature-based exploration is in-
troduced. The singularity mesh is generated based on a topological
skeleton of the relevant features such as a surface's boundaries, as well
as points and curves on the surface. These features can be modified to
generate and explore different topologies. The main steps of the pro-
cedure are presented in Fig. 9 to generate a pattern from the mentioned
features. Starting with an input straight or curved surface, with optional
point and curve features (Fig. 9a), its topological skeleton or medial
axis (Fig. 9b), introduced by Blum [40], is generated and modified to
yield a singularity mesh that includes the singular points of the medial
axis (Fig. 9c), which are also featured in the corresponding pattern
(Fig. 9d).

3.1. Core feature: surface

The input surface, here the geometry of the courtyard roof of the
British Museum in London, England, analytically defined by Williams
[41], is mapped to the plan following its UV-parameterisation. Other
surface or mesh mapping strategies can change the planar map and
induce different results. If the boundaries of the surface are seen as the
core feature, the mapping strategy should not distort their geometry too
much to faithfully integrate them in the topology.
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(a) Seed
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(c) Ambo

(d) Gyro

Fig. 7. Exploring quad-based pattern symmetries with equivalent vertex or face singularities highlighted in pink by applying different Conway operators on a seed
quad mesh. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.1.1. Algorithm

As shown in Fig. 10, the planar map is procedurally decomposed in
four-sided patches based on the medial axis, which consists of a set of
curves called medial branches that serve as dimensional reduction of
the shape, which are connected together at singular points.

The boundaries of the planar map are subdivided into a set of points
that serve as vertices for Delaunay triangulation with deletion of the
faces lying outside the boundaries, as shown in Fig. 10a. The dis-
cretisation parameter of each curve d; should be tailored to capture the
relevant curvature changes without inducing unnecessary heavy com-
putation. A d,.q. value as a percentage of the scale, the scale being the
length of the bounding box diagonal D of the planar map, and a dpn
value as a minimum number of subdivision are combined:

di = min(dscalea dmin)s (10)

with values of 5 for dp,;, and 1% to 5% of D for d,.q. yielding good
results in practice.

Three types of faces must be distinguished depending on the number
of adjacent faces: faces with two neighbours are regular faces, with
three neighbours singular faces, and with one neighbour corner faces.

Additionally, three types of points must be distinguished: singular
points S are the circumcentres of the singular faces, boundary points B
are the vertices of the singular faces, and corner points C are the two-
valent boundary vertices.

The medial axis is constituted by the branches connecting the cir-
cumcentres of the adjacent Delaunay faces, as shown in Fig. 10b. The
medial axis results in the S-S branches, connecting S points, and the S-C
branches, connecting S points and C points.

The medial axis is then modified to achieve a set of four-sided
patches. The topological operations applied here are similar to the ones
in the work of Rigby [42], to yield coarser quad meshes than other
skeleton-based block decomposition approaches [43]. These topological
operations only depend on the connectivity of the Delaunay mesh:
pruning to remove the S-C branches (Fig. 10c), grafting to add the S-B

geometry informed 1
densification
—_

branches (Fig. 10d), closing to add the B-B and B-C branches (Fig. 10e).
This decomposition yields four-sided patches which are all composed of
one S-S element, two S-B elements and one B-B element, except for the
corner patches which are composed of two S-B elements and two B-C
elements.

The adjacency of the patches is extracted to define the coarse quad
mesh of the singularity mesh, as shown in Fig. 10f, and in Fig. 11 on
benchmark examples. The planar singularity mesh is finally mapped
back onto the input, planar or curved, surface.

Further processing to form a pattern can include densification based
on a target length combined with constrained relaxation on the input
shape, as described in Sections 2.3.2 and 2.3.4, respectively. Another
mesh modelling approach involves geometrical exploration of the sin-
gularity mesh combined with a Catmull-Clark subdivision procedure, as
illustrated in Fig. 12, after skeleton-based generation of a singularity
mesh for a planar surface with multiple openings.

3.1.2. Corrections

Some additional corrections are needed on the set of patches during
the decomposition algorithm to ensure the validity and the quality of
the singularity mesh in capturing features, even though these correc-
tions reduce the coarseness of the resulting singularity meshes, as some
elements could be removed without loosing any data about the singu-
larities, but loosing features, like openings or kinks.

In the following descriptive figures, the meshes are represented by
continuous lines and the surface boundaries by dashed curves.

Some straight faces differ a lot and can be even flipped compared to
their curved patch, resulting in strong distortions or overlaps of the
elements in the singularity mesh, thus a loss of readability in spite of
topological validity, as shown in Fig. 13a. If so, such patches are sub-
divided, as shown in Fig. 13b. The number of subdivisions is computed
based on the total rotation of a medial branch between two S points as:

CO/?s

tra,

\ N n
P i Mooy '€d
densification | \ Ol‘h/ng

Fig. 8. Taking into account geometry during densification for lighter constrained smoothing. The mesh are represented in black and the target boundaries in red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Skeleton-based generation of a singularity mesh and a
pattern on an input shape based on the singularities of its
medial axis. The input surface is marked in red, the Delaunay
triangulation in dark grey, the topological skeleton in pink,
the singularity mesh in black, the density mesh in light grey
and the pattern in black. (For interpretation of the references
to color in this figure legend, the reader is referred to the web
version of this article.)

(a) Input (b) Medial axis (c) Singularity

mesh

(a) Key points (b) Medial axis (c) Pruning

(d) Pattern

:\-\4‘;&)]«,

®
NI

(e) Closing

(d) Grafting (f) Coarse mesh

Fig. 10. Skeleton-based generation procedure of a singularity mesh based on the medial axis. The input surface is marked in red, the Delaunay triangulation in grey
with the key points labelled in black, the modified topological skeleton in pink and the singularity mesh in black. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

(a) Topological skeletons

i

&
| R
ity

(b) Singularity meshes

Fig. 11. Benchmark surfaces for skeleton-based generation of singularity meshes. Boundaries in red, Delaunay meshes in grey, skeletons in pink and singularity
meshes in black. Parameters: dsq = 0.02D, dpin = 10, Okink = 7/8, Ospa = 7t/2. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

1

where 0; for the vertex V; is the angle between the adjacent edges E;_1 ;
and E; ;.1 and Oy, is the critical angle value for which one subdivision
must occur. A recommended value 6,4 of 7/2 yields good results, as
used in the benchmark examples in Fig. 11.

A subdivision criterion 6,4 equal or smaller than 5t/2 also avoids
boundary collapses. Otherwise, some boundaries could be subdivided
by two vertices or less and disappear in the singularity mesh, as show in

13, 6l

p:

subd

1)

Fig. 14a, and corrected in Fig. 14b.

Some boundary concavities — or inward kinks — are not marked by
the medial axis, and are lost in the singularity mesh, as shown in
Fig. 15a. If so, the patches are subdivided, as shown in Fig. 15b. The
concavities are detected among the boundary vertices of the Delaunay
mesh that are not two-valent corner points C by comparing the local
angle with the average of the adjacent angles:

6 —

w > Bk,

12
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(a) Input surface (b) Singularity mesh

(c) Geometrical exploration

(d) Pattern

Fig. 12. Mesh modelling starting with a planar surface for skeleton-based generation of a singularity mesh, which can be geometrically modified to form a curved
pattern using a Catmull-Clark subdivision procedure. Boundaries in red, singularity mesh in black and mesh in grey. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

(a) Before correction (b) After correction

Fig. 13. Correcting distorted faces by subdividing patches. Mesh in black with
boundaries in red and input surface as dashed red curves. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

(a) Before correction

(b) After correction

Fig. 14. Correcting collapsed boundaries by subdividing patches. Mesh in black
with boundaries in red and input surface as dashed red curves. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

a %

(a) Before correction

(b) After correction

Fig. 15. Correcting missed concavities by subdividing patches. Mesh in black
with boundaries in red and input surface as dashed red curves. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

where 0; at vertex V; is the angle between the adjacent edges E;_; ; and
E;i+1 and Oy is the critical angle value set to define the kink. A re-
commended value 6O of /8 yields good results, as used in the
benchmark surfaces in Fig. 11.

The previous corrections are applied at the level of the curved
patches, as they relate to the geometry of the medial branches. The
following corrections are applied at the level of the straight faces, as
they relate to the topology. Some faces can be triangles in the singu-
larity mesh, resulting either from two S points or two B points at the
same location, as shown in Fig. 16a. If so, a zero-length fourth edge is
inserted at the location of the superimposed points to form a topological
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(a) Before correction

(b) After correction

Fig. 16. Correcting triangular faces by inserting a zero-length fourth edge.
Mesh in black with boundaries in red and input surface as dashed red curves.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

quad, as shown in Fig. 16b.

3.2. Additional features

Additionally to the surface, important features represented as points
or curves on the surface can be integrated in the feature-based topology
finding by taking them into account in the medial-axis generation.
These features can generate pole points to support statics considera-
tions.

3.2.1. Pole points

As featured in the isostatic ribbed floors of Pier Luigi Nervi for the
Gatti Wool factory in Rome, Italy [44], and of Hans-Dieter Hecker for
the lecture hall of the zoological department of the University of Frei-
burg, Germany [45], principal stresses converge towards columns and
walls, often featured by poles in the pattern, a specific type of singu-
larities with a high valency that increases with the density. Therefore,
poles attract forces but are harder to materialise. The designer has to
choose whether to resort to them or not, and adjust their valency, as
illustrated by the courtyard roofs of the Dutch Maritime Museum [46]
in Amsterdam, the Netherlands, and of the British Museum [41], which
share similar support conditions allowing thrust only at their corners:
the former features poles, the latter does not. However, accommodating
boundary and support conditions as for the Rhon-Klinikum cable net in
Bad Neustadt, Germany with many mast supports [47] to include as
pole points in order to locally have radial patterns in the cable net is not
straightforward when designing a pattern without procedure.

Moreover, poles in force patterns such as thrust networks [7] can
provide an appropriately high number of loads paths at the location of
concentrated loads and improve the results of funicular form fitting of
target shapes [48]. Furthermore, load paths in thrust networks should
also be aligned to curve features stemming from geometrical dis-
continuities like folds [49].

Therefore, additional features represented by points and curves are
to be integrated in the design of patterns, to be able to follow such
heuristics. These features can stem from discontinuities related to sta-
tics (point/line loads/supports), as well as geometry (peaks or folds). A
case study validates the relevance of these statics-aware heuristics in
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Fig. 17. Skeleton-based generation of a pattern integrating
point features and poles represented as filled dots. The input is
marked in red, the Delaunay triangulation in dark grey, the
topological skeleton in pink, the singularity mesh in black, the
density mesh in light grey and the pattern in black. (For in-
terpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(a) Input (b) Medial axis (c) Singularity mesh

Section 3.2.4. Additionally, these features can be used to influence the
topology of the pattern by exploring different singularity meshes.

3.2.2. Point features

Point features are included in the input for skeleton-based genera-
tion as points on the surface, as shown in Fig. 17a. These points are
added to the set of vertices for the Delaunay triangulation for genera-
tion of the medial axis, which includes new singular areas adjacent to
the point features, as shown in Fig. 17b. Following the same algorithm,
the resulting singularity mesh yields pseudo-quad faces around the
point features, as shown in Fig. 17c, resulting in a pattern with poles, as
shown in Fig. 17d.

Boundary point features do not directly modify the singularity
mesh, since boundary points are already part of the Delaunay trian-
gulation, as in Fig. 18a, and additional steps must be included. First,
edges are added if the boundary point feature is not marked by a vertex
in the singularity mesh, as shown in Fig. 18b. Second, all the quad faces
adjacent to the point feature are split into two pseudo-quads [50] to
create the boundary pole, as shown in Fig. 18c.

Revisiting the pattern of the Rhon Klinikum cable net with the
presented method yields the planar pattern without poles in Fig. 19a,
characterised by structuredness and boundary alignment. Mast supports
are integrated as point features to yield the planar pattern with poles in
Fig. 19b. The pattern is converted into a form diagram to perform fu-
nicular form finding of cable nets with an adapted Thrust Network
Analysis [51], using RhinoVAULT [52]. The form diagram in Fig. 19¢
and the force diagram in Fig. 19d present clear visual identification of
their reciprocal features, such as the hoop cables and the boundary
cables, a key aspect for this graphical method to explore forms via
different force equilibria. The form-found cable net corresponding to
these two diagrams is shown in Fig. 19e.

3.2.3. Curve features

Including curve features allows to orientate a pattern along specific
directions, for instance along a wall support or a crease to be shaped
during form finding, which have to be represented as a continuous set
of edges. More generally, curve features can be used to explore different
pattern topologies.

They are included in the input as curves on the surface, as shown in
Fig. 20a. These curves are subdivided into a set of points that are also
added to the set of vertices for the constrained Delaunay triangulation,

(a) Initial
generation

(b) Feature
integration

(c) Pole
creation

Fig. 18. Adding poles at point features on the boundary, marked as a filled dot.
Input surface as dashed red curves, singularity mesh in black and density mesh
in grey. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(d) Pattern

where the edges from the curve features are set as constraints [53], as
shown in Fig. 20b. The Delaunay mesh displays thereby new singular
faces adjacent to the curve features. Additionally, topological cuts are
made in the Delaunay mesh along the curve features to consider them
as boundaries. Otherwise, some of the faces along these edges would
have three adjacent faces, and be considered as singular faces, instead
of regular faces and yield unwanted medial branches crossing the curve
feature edges. The resulting singularity mesh in Fig. 20c presents
pseudo-quad faces at the curve feature extremities, which yield partial
pole points that are adjacent to both pseudo-quad and quad faces in the
pattern in Fig. 20d.

However, these poles do not systematically occur, as shown in
Fig. 21 where some extremities yield a two-valent singularity in a
pattern that still respects curve feature alignment and edge path con-
centration. Nevertheless, the designer can choose to enforce or remove
these partial poles, automatically or not, as presented in Section 4.1.2.1
using strip grammar rules. In the case of curve features spanning from
boundary to boundary, no poles occur, as shown in Fig. 22, unless
boundary point features are included at the curve feature extremities.

Moreover, the topological cuts in the Delaunay meshes along the
curve features can induce discrepancies which are compensated in a
new step by adding edges across the curve features in the singularity
mesh, represented as dashed lines in Figs. 21c and 22c. This procedure
is detailed in Section 4.2.2.

These curves can be set as constraints during smoothing, as in
Fig. 20d, or not, as in Figs. 21d and 22d, if they are only meant as
guiding features from the designer.

As shown in Figs. 20 to 22, additional curves can be used within the
skeleton-based decomposition algorithm as a means for feature-based
topology finding to explore the topology of patterns. These features can
stem from the a design intent, intuition or heuristic, as illustrated in the
following case study.

3.2.4. Heuristics

Point and curve features have been introduced in order to comply
intuitively to requirements on the structural patterns. These heuristics
are assessed with a short case study revisiting the British Museum roof
and comparing designs with different topologies.

The actual shape [41] is used to map the generated patterns. Only
quad mesh patterns are compared, therefore the actual triangulated
pattern is not considered. Engineering and construction details are
found in Sischka et al. [54]. Thrust is only permitted at the four corners,
as the shell is supported along its boundary by sliding bearings to avoid
applying thrust on the existing building. The additional stiffening sys-
tems are discarded to focus on the difference of structural behaviour
due to the topology of the patterns and their singularities.

The four tested patterns are shown in Fig. 23. Four singularity
meshes are generated using feature-based topology finding to assess
their efficiency for the given statics system. These quad mesh patterns
stem from:

(a) the singularity mesh based only on the surface (Fig. 23a);
(b) the singularity mesh based on the surface with four curve features,
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(c) Form diagram

(d) Force diagram (rotated by 90°)

(e) Form-found cable net

Fig. 19. Revisiting the topology of the pattern of the Rhon Klinikum cable net
in Bad Neustadt, Germany [47] by including poles through point features at the
location of the mast supports.

to provide direct edge/force paths towards the thrust corners along
the longest span, following a designer's intuition (Fig. 23c);

(c) the singularity mesh based on the surface with four point features,
to concentrate edge/force paths to the thrust corners, based on the
project's context (Fig. 23b);

(d) the singularity mesh based on the surface with both the curve and
point features (Fig. 23d).
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The density is set with a target length of 1.5m, similar to the real
project [54], resulting in 5049 to 6049 beams, to be compared with the
4878 of the actual triangulated pattern. The quad mesh pattern is re-
laxed on the surface using Laplacian smoothing with constraints to re-
project boundary vertices on the boundaries with fixed corners.

Based on the Eurocodes, the tested load cases are:

the structural self-weight G;
a downwards dead load G’
[541;

e a downwards projected live load Q = 1.5kN/m? for snow loads,
without taking into account geometry factors;

0.6 kN/m? for a 24 mm thick glazing

and the relevant load combinations are:

o the Serviceability Limit State (SLS): 1.0(G + G’) + 1.0Q;
the Ultimate Limit State (ULS): 1.35(G + G’) + 1.5Q.

The beams of the actual structure have a box cross section with a
width of 80 mm and a height varying from 80 mm to 200 mm, oriented
with the surface normal. For this case study, the S355 steel beams all
have the same cross section to favour designs with a homogeneous force
flow. The beams must be stiffer, as the quad mesh is not triangulated:
they have a width of 250 mm, and an assumed wall thickness of 20 mm.
The height of the beams is minimised to reduce the structural weight,
while complying with the following structural requirements:

e a maximal SLS deflection of 140 mm, corresponding to the maximal
span over 200, though the deflection of the actual structure is
compensated with a pre-deformation [54];

e a maximal ULS stress utilisation of 100%;

e a minimal ULS first load buckling factor of 4, as for the actual
structure [54].

The pre-deformation as well as the imperfections, based on the first
buckling mode with a maximal value of 140 mm [54], are not taken
into account. The poor support conditions favour the bending beha-
viour of the shell rather than its membrane behaviour, and therefore
buckling is not expected to be the critical requirement.

A second order mechanical analysis is performed using the Finite
Element Analysis tool Karamba [55], with the results displayed in
Table 1.

The structural performance is assessed as the ratio of the structural
mass over the projected area of the shell. As expected, the buckling
requirement is secondary, and deflection is the decisive requirement.
Except for the topology with the curve features, for which utilisation is
the decisive requirement because of the stress concentrations in the
hoops close to the corners, not featured in the other topologies. The
unique cross-section requirement penalises this topology and makes it
the least efficient one. The most efficient design is the one including
both point and curve features, with 62% of the weight of the design
without features. This topology is close to an optimum for the given
constraints as it uses 99% of the stiffness limit, 88% of strength one and
89% of the stability one. Moreover, including only the poles yields the
second most efficient design, with 66% of the weight of the topology
without features.

In this example, taking into account the support conditions via
heuristics such as point and curve features when designing the topology
of the pattern improved the mechanical behaviour of the structural
pattern, especially thanks to poles at the location of concentrated
forces.

3.3. Shape topology extension

The presented skeleton-based algorithm applies only to orientable
surfaces with zero handles g and at least one boundary N (g =0, N =
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Fig. 20. Skeleton-based generation of a pattern integrating
curve features with pole extremities. The input surface is
marked in red, the Delaunay triangulation in dark grey, the
topological skeleton in pink, the singularity mesh in black, the
density mesh in light grey and the pattern in black. (For in-
terpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 21. Skeleton-based generation of a pattern integrating
curve features with hybrid extremities. The input surface is
marked in red, the Delaunay triangulation in dark grey, the
topological skeleton in pink, the singularity mesh in black, the
density mesh in light grey and the pattern in black. (For in-
terpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 22. Skeleton-based generation of a pattern integrating
boundary-to-boundary curve features without pole ex-
tremities. The input surface is marked in red, the Delaunay
triangulation in dark grey, the topological skeleton in pink,
the singularity mesh in black, the density mesh in light grey
and the pattern in black. (For interpretation of the references
to color in this figure legend, the reader is referred to the web
version of this article.)

(a) Standard

(b) With curve features

(c) With point features

(d) With both features

Fig. 23. Four patterns for the British Museum roof with different topologies, to assess the relevance of heuristic point and curve features, shown in red. For
readability, the displayed density is reduced from a target length of 1.5m to 5m. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 1

Comparison of the structural performance after sizing optimisation of the de-

signs with different topologies in Fig. 23.

Metric (a) ) © @
Number of edges [-] 5915 5049 5743 6049
Beam height [mm] 430 590 220 180
Projected surface weight [kg/m?] 317 371 210 195
Max. SLS deflection [mm] 138 95 138 138
Max. ULS utilisation [-] 83% 99% 74% 88%
First ULS buckling load factor [-] 23.6 34.6 7.8 4.5

1), to allow seamless planar mapping for the Delaunay triangulation.
Edge network thickening approaches [56] can generate coarse quad

meshes for high-genus skeletal surfaces.

Yet, the presented algorithm can be extended to generate shapes

with any topology (g = 0, N = 0), as shown in Fig. 24. This approach is
relevant for high-genus surfaces that can be defined via a medial sur-
face, as for the ICD/ITKE Research Pavilion 2015-16 [57]:

1.

an open null-genus topology (g = 0, N=a = 1) is generated fol-

lowing the presented algorithm (Fig. 24a);

. the topology is thickened to obtain a closed non-null-genus topology
(g=a—-1 = 0, N = 0) after offsetting it and adding faces to join
the boundaries together (Fig. 24b);

. the topology becomes an open non-null-genus (g=a—-1 = 0,

N =b = 0) by perforating some of its faces (Fig. 24c).
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(a) Open null-genus topology
from the medial axis of an input surface

(b) Closed non-null-genus topology

after thickening

(c) Open non-null genus topology
after perforating faces

(d) Open non-null genus pattern
after further mesh modelling

Fig. 24. Extension to general orientable compact manifold topologies with
multiple handles and boundaries (in red): the generated pattern has a topology
with 6 handles and 11 boundaries. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 26. Strip (in blue) with or without poles. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)

3.4. Algorithm performance

These topology-finding algorithms are meant to be used at an early
design stage for the exploration of a large variety of designs. Therefore,
the computation time of the algorithms should be fast enough for ef-
ficient application, whether for fluid user-machine interactivity or for
automated or partially-automated generation of numerous designs.

The computation time of the singularity mesh of the pattern in
Fig. 23a takes between 100 and 800 ms with the same results for dif-
ferent Delaunay meshes with 50 to 483 faces, resulting from subdivision
values between 8% and 0.8% of the length of the bounding box diag-
onal. For comparison, on the same machine, the structural analysis of
the corresponding gridshell with 5915 beam elements took about
350 ms for an elastic linear analysis and 2300 ms for a buckling analysis
of the first mode taking into account the axial forces in the geometrical
stiffness matrix, on an average of 5 computations. The developed to-
pology-finding algorithm takes less time than the structural analysis
performed by a commercial software plugin, making it suitable for
engineering design applications.

Skeleton-based generation of the singularities of a pattern provides
an initial topology in the singularity design space. Even though the
singularities can be modified indirectly using curve features, more ex-
plicit and controlled topological exploration of the design space can be
performed by combining feature-based topology finding with rule-
based exploration by applying grammar rules on the lower level of the
singularity mesh elements, and more specifically on its strips.

4. Rule-based exploration

The singularity design space is a topological space without metric to
organise it, on the contrary to a geometrical space like the one related
to the shape of the pattern, which can be explored using the vertex
coordinates as continuous-valued parameters. Nonetheless, topological
spaces can be explored via grammars of rules that perform topological
operations, instead of modifying values.

Shape grammars, introduced by Stiny and Gips [58], evolved into
functional grammars and then into structural grammars to include non-
geometrical data related to structures [59-62]. Regarding shell-like
structures, Shea and Cagan introduce a grammar used for optimisation
of triangulated meshes of geodesic domes using shape annealing [63].

Grammar rules for singularity meshes must apply specifically to
(coarse) pseudo-quad meshes, to constrain exploration to the singu-
larity design space, as performed by existing quad mesh simplification
operations, like deletion or rotation, but on dense and unstructured
quad meshes [64-67]. This grammar must allow both an increase and a
decrease in the complexity of the singularity meshes, and include pole
editing via pseudo-quads. This section introduces thus a grammar based
on the addition and deletion of strips, for user- and algorithm-guided

Fig. 25. Add/delete an open strip (in blue). (For interpretation
of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 27. Add/delete a closed strip (in blue).

(For interpretation of the references to color
in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 28. Add/delete a self-crossing strip (in blue).

article.)
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Fig. 29. Add/delete a self-overlapping strip (in blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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(a) Hybrid
extremities

(b) Poles after
adding strips

(c) No poles after
deleting strips

Fig. 30. Editing the extremities of curve features (in red) by adding or re-
moving poles. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

exploration of the singularity design space.
4.1. Lowest-level strip grammar

The fundamental grammar is composed of two opposite atomic rules
that apply at the lowest level possible on the natural element descrip-
tion of quad meshes: ‘ add strip’ and ‘ delete strip’. Poles are optionally
included through pseudo-quad faces at the strip extremities to extend to
pseudo-quad meshes. These rules ensure:

e to perform exploration constrained to the space of singularity

meshes, unlike rules such as adding and deleting edges which can
generate any polygonal mesh;

e to achieve any singularity mesh, unlike high-level rules, such as the
ones in [68] that apply too specific modifications.

These rules can be applied to all orientable quad meshes with any
shape topology (g = O,N = 0) and used as parameters for the singu-
larity design space to perform algorithmic search.

4.1.1. Grammar rule algorithm
The two opposite rules are:

e ‘add strip’, which inserts a strip along a poly-edge;
e ‘delete strip’, which collapses a strip into a poly-edge.

The algorithm is illustrated in Fig. 25 in the case of an open
boundary-to-boundary strip or poly-edge. The input to add a strip is the
poly-edge [A, B, C, D]. Starting from a poly-edge extremity, each edge is
unzipped by inserting a pseudo-quad face with its double vertex to-
wards the downstream edges, which converts the previous pseudo-quad
into a quad, with an exception for the last edge that directly generates a
quad. If an extremity of the strip is on the boundary, it can be converted
into poles or not, as in Fig. 26, but an extremity lying outside the
boundary has to be a pole. The zero-length edges from pseudo-quads
can be included in poly-edges along which to add strips. Deleting a strip
follows the reversed steps of adding a strip.

Additional specific operations are necessary to be able to add/delete
strips in any configuration.

To add a closed strip from the poly-edge [A, B, C, D, A] in Fig. 27,
the extremity from the last edge (D-A) connects to the one from the first
edge (A-B).

To add a self-crossing strip from the poly-edge [A, B, C, D, E, B, G] in
Fig. 28, the multiply occurring vertex B is updated in the poly-edge
becoming [ ..., C, D, E, B, B’, G] to integrate the edges (E-B), (B-B ") and
(B-G).

To add a self-overlapping strip from the poly-edge [A, B, A] in
Fig. 29, the multiply occurring edge (A-B) is updated in the poly-edge
becoming [ ..., B, A’].
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Fig. 31. Editing skeleton-based singularity meshes using rule-based exploration. The singularity meshes are in black with boundaries in red, the newly added strips
are highlighted in light blue and the to be deleted strips in light red. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

4.1.2. Applications

The rules can be applied in different manners, to generate specific
designs or explore multiple ones combined with feature-based ex-
ploration.

4.1.2.1. Editing curve features extremities. Curve feature extremities can
yield a pole or not using the skeleton-based generation procedure, as in
Fig. 30a, where one of the curve feature extremities is a pole and the
other one a two-valent singularity. Strip rules can be applied to either
add strips with poles from the curve feature extremity to the boundary
via the shortest poly-edges, as in Fig. 30b, or delete the strips with
poles, as in Fig. 30c.

4.1.2.2. Editing skeleton-based singularity meshes. Starting from the
skeleton-based singularity mesh, strip rules can apply specific and
controlled modifications to explore further the singularity design space,
as illustrated in Fig. 31. To preserve point and curve features, deletions
of all the strips integrating them is prohibited.

4.1.2.3. Editing point features. Pole points can be generated using point
features in skeleton-based generation. Nevertheless, pole points can still
be added using strip rules with pseudo-quads at their extremities, on the
boundary or not, as illustrated in Fig. 32. The dual force diagrams used
to explore force equilibria with Thrust Network Analysis and
RhinoVAULT highlight the dual modifications of the strip rules,
which modify the degrees of freedom for funicular form finding. In
this example, the topology of a fully-supported vault is modified by
adding pole point features at the corners and at the centre.

The strip rules are the lowest level of topological operations that
allow to evolve new singularity meshes, and can be used as parameters
for exploration of the singularity design space. However, the designer
may think in terms of more specific and local modifications. The next
section proposes thus to combine the lowest-level strip rules into high-
level ones.

198

4.2. High-level grammar

4.2.1. Extended rules

Strip rules can be combined to develop any high-level rules that
evolve a singularity mesh into another one, as in Fig. 33. Such extended
rules can be stored to form a practical grammar [68]. For the designer,
practical grammars are meant to be efficient, as specific high-level
modifications can be applied faster than multiple low-level modifica-
tions, and flexible, as more rules can be added to the grammar. A
practical rule can be applied locally to a part of the singularity mesh
before propagating these modifications to the mesh.

4.2.2. Propagation

When applying a local high-level rule, such as the one from Fig. 33,
new boundary vertices modify adjacent quad faces that become pen-
tagons or general polygons, as in Fig. 34. A propagation procedure is
necessary to spread the local modifications from these source points.
New edges are added that subdivide the faces adjacent to the sources.
Termination occurs when the source points reach a boundary edge in
the case of open strips, as in Fig. 34a, or meet another source in the case
of closed strips, as in Fig. 34b.

However, if propagation of an asymmetric number of sources must
be spread in a closed strip, singularities must be added, as seen in
Fig. 34c. The patterns developed by Takayama et al. [69] are used to
quadrangulate four-sided polygons with a given number of edge sub-
divisions resulting in a minimal number of singularities. Takayama's
algorithm requires an even number of polygon edges, ensured by sub-
dividing the strips of one of these edges, if necessary.

The same propagation procedure is used for the integration of curve
features in the skeleton-based generation scheme. The unwelding of the
Delaunay mesh along them induces discrepancies, which are used as
propagation sources. More precisely, the sources result from the B
points that lie on the curve feature instead of the boundary.

4.2.3. Simplification

Whereas the two opposite strip rules can compensate each other, a
new simplification rule is necessary to compensate any of the pre-
viously applied high-level rules, independently from the sequence
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Fig. 32. Editing point features sequentially using strip rules with pole ex-
tremities. In the context of Thrust Network Analysis, the modifications in the
primal form diagram and the dual force diagram are highlighted in blue, as
added strips and poly-edges, respectively. Singularity meshes are in black with
boundaries in red, and density meshes and patterns in grey. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

history, to allow non-linear exploration instead of linearly cancelling
the previous steps.

The simplification rule is inspired by the approach of Verma and
Suresh [70] to reduce the number of singularities in quad meshes but
resorts again to the quadrangulated patterns of Takayama et al. [69],
more relevant for coarse quad meshes. As shown in Fig. 35, a closed
poly-edge is selected, the encompassed faces are merged and one of
Takayama's patterns is applied. The polygon is defined by the main
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(a) Open strip

it
-0

(b) Closed strip with symmetric subdivision

(c) Closed strip with asymmetric subdivision

Fig. 34. Propagation procedure from source vertices resulting from local
editing. Boundaries are shown in red and new edges in blue. (For interpretation
of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 35. Local simplification rule of a singularity mesh based on Takayama
et al’s [69] patterns, yielding a minimal number of singularities. Singular
vertices and faces are highlighted in pink. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

vertices in the poly-edge, controlled by the designer to choose among
different topologies.

The presented rule-based approach for topological exploration of
singularity meshes supplements feature-based exploration, with a
lowest-level strip grammar and an extended high-level grammar.

5. Conclusion and future work

This paper tackled topology finding of patterns for shell-like struc-
tures with a focus on singularities in quad-based mesh patterns, com-
plementary to form finding and other geometrical approaches. The
designed patterns are structured, i.e. with a low number of singularities,
and aligned with features like surface boundaries, points and curves.

|- - -

Fig. 33. Combining lowest-level strip rules to develop high-level rules. New strips are highlighted in blue. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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To allow this topological exploration, a specific design space
structure with its data structure and parameters were introduced, based
on singularity meshes as coarse pseudo-quad meshes that encode the
information related to the singularities in the pattern, including high-
valency pole points. A skeleton-based generation procedure for feature-
based exploration of singularity meshes on input surfaces with point
and curve features was presented. These features can heuristically in-
tegrate statics considerations, as illustrated on a case study. A rule-
based exploration means supporting feature-based exploration was
developed with a lowest-level grammar based on strip editing and a
high-level grammar resulting from the combination of strip rules.
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