
Chapter 4 
Thrust Network Analysis for Masonry 
Assessment 

Ricardo Maia Avelino, Tom Van Mele, and Philippe Block 

Abstract This chapter presents Thrust Network Analysis (TNA), a lower-bound 
limit-analysis-based method to assess vaulted masonry structures. With TNA, admis-
sible equilibrium states corresponding to compressive force networks within the 
structural geometry can be studied. A novel multi-objective optimisation framework 
is described, which enables finding particular admissible equilibrium solutions in 3D 
structures subjected to general loading and support displacements. The equilibrium 
solutions searched include the minimum and maximum horizontal thrust states, the 
minimum vault thickness, maximum vertical and horizontal collapse loads, and com-
patible internal stress states following support movements. A complete picture of the 
structure’s stability level is obtained by combining these states, and the location where 
cracks arise at limit states is also highlighted. The method can be applied based on the 
surveyed geometric data of the structure’s envelope, being well-suitable for practi-
cal engineering problems. Analysis of shallow cross vaults and a surveyed cathedral 
demonstrate the method’s applicability and its relevance to assessing vaulted masonry 
structures. 

4.1 Introduction 

Masonry structures form a large part of the world’s built heritage and serve as housing 
for millions worldwide. Moved by the pressing need for a more sustainable built 
environment and heritage protection, research on the analysis and preservation of 
existing masonry buildings has grown recently (Angelillo et al., 2021; Funari et al., 
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2021; Mehrotra et al., 2023). Novel analysis tools and methods have been conceived 
to determine their level of stability and resistance against the actions of exceptional 
actions such as seismic and wind loads (D’Altri et al., 2019; Tralli et al., 2014). 

From a mechanics point of view, the highly nonlinear, discrete and unilateral 
behaviour of masonry structures precludes the use of general analysis tools without 
proper consideration of either material properties or specific modelling of the inter-
nal joints (Aita et al., 2015; Huerta, 2008; Shin et al., 2016). Consequently, different 
approaches have been adopted for the structural analysis of masonry, such as the 
Discrete Element Method (DEM) (Cundall, 1971; Lemos, 2007, 2019), nonlinear 
Finite Element Method (FEM) (Lourenço and Rots, 1997; Milani et al., 2008; Parisi  
et al., 2019; Smoljanović et al., 2013) and Limit Analysis (LA) based approaches 
(Heyman, 1966, 1995). This contribution focuses on the latter, which offers a frame-
work for computing collapse loads or collapse mechanisms in structures supported 
by geometry-based information, i.e., without relying on mechanical properties, such 
as compressive strength and stiffness, which are often unknown or unknowable. 

Limit Analysis is a branch of plastic analysis which searches for limit states in the 
structure instead of computing the elastic deformations throughout the material. It 
was initially applied to the design of steel frames (Baker et al., 1956; Prager, 1959) and 
extended to masonry by Heyman (1966) by assuming infinite compressive strength, 
null tensile capacity and no-sliding failure. Two approaches can be adopted to apply 
LA: lower-bound approaches, based on the Safe Theorem (Block and Ochsendorf, 
2002; Fraddosio et al., 2019; Heyman, 1969), and upper-bound approaches (Chiozzi 
et al., 2017; Grillanda et al., 2019). 

By applying the Safe Theorem to masonry, admissible stress states are charac-
terised as compressive force paths within the structural geometry and in equilibrium 
with externally applied loads. For two-dimensional structures, these compressive 
force path result in the so-called thrust lines, applied to arches (Moseley, 1843), 
sliced domes (Poleni, 1748) and vaults (Ungewitter, 1890), and commonly applied 
in combination with graphic statics (e.g., Wolfe, 1921). Currently, this technique 
is known as Thrust Line Analysis (TLA), and it has been extended to a few three-
dimensional problems, such as the dome under symmetric loading cases (Aita et al., 
2019; Zessin et al., 2010), vaults (Smars, 2000) and spiral staircases (Angelillo et al., 
2021). TLA is also the core of 2D masonry analysis tools such as LimitState (Lim-
itState Ltd, 2020) and Archie-M (Obvis, 2016). 

Nevertheless, extending lower-bound methods to fully three-dimensional struc-
tures is challenging due to the increased degree of indeterminacy and the complex 
geometry of masonry vaults (Huerta, 2008). Therefore, various lower-bound equilib-
rium formulations have recently been developed to assess three-dimensional masonry 
structures. These strategies can be divided into continuous and discrete approaches. 

Continuous approaches model the internal forces of the structure as a continuous 
membrane with the equilibrium equations solved by assuming a Pucher formulation 
and considering the potential stress (or Airy) functions to describe the internal dis-
tribution of the stresses (Angelillo et al., 2013; Fraddosio et al., 2020; Fraternali, 
2010).
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Discrete approaches consider a singular internal stress field discretised by a net-
work (O’Dwyer, 1999; Block and Ochesendorf, 2007). The compressive forces are 
modelled as axial forces along the network’s edges, and loads are applied to its ver-
tices. The equilibrium equations are linearised with discrete approaches, and geo-
metric irregularities, concentrated loads, and openings can be directly investigated. 

A discrete network approach was proposed initially in O’Dwyer (1999). In Block 
and Ochesendorf (2007), this approach was combined with graphic statics (Cul-
mann, 1875), with the introduction of Thrust Network Analysis (TNA). With TNA, 
the spatial equilibrium of the networks is explored by the reciprocal relations of 
form and force diagrams analogous to the force polygons in graphic statics (Block, 
2009). The problem can also be formulated based on the Force Density Method 
(Schek, 1974) in which the force densities at the edges of the network are vari-
ables of the equilibrium equations. Using this formulation, TNA has been coupled 
with optimisation procedures and applied to masonry assessment problems (Block 
and Lachauer, 2014; Bruggi, 2020; Maia Avelino et al., 2021a, 2022a). In Block 
and Lachauer (2014), networks with fixed horizontal projections are considered for 
which the degrees of freedom of the network can be explicitly defined with the inde-
pendent edges (Van Mele and Block, 2014). This formulation has been applied to 
find the minimum and maximum thrust states (Bruggi, 2020), compute the structure’s 
Geometric Safety Factor (GSF) (Maia Avelino et al., 2021a), and find specific inter-
nal stress states arising after differential foundation displacements (Maia Avelino 
et al., 2022a). Other researchers have also considered problems with disconnected 
networks (Fantin and Ciblac, 2016; Nodargi and Bisegna, 2022), which enlarge the 
solution space but require additional friction checks on the interface of the nodes. 

This book chapter revisits the TNA formulation used to find admissible equilib-
rium states in masonry structures. It presents a modular multi-objective optimisation 
formulation (Maia Avelino, 2023), which enables finding multiple admissible equi-
librium states with a unique approach. This modular framework can be applied to 
determine the structural safety levels and the structural response to external actions 
such as support displacements and vertical and horizontal live loads. 

This paper is organised as follows: Sect. 4.2 presents TNA and the numerical for-
mulation applied to explore the geometry of thrust networks, Sect. 4.3 presents the 
constrained optimisation framework to find particular equilibrium solutions, Sect. 4.4 
shows applications of the method to vaulted masonry structures, and Sect. 4.5 con-
cludes this paper by summarising the results presented and pointing to further 
research. 

4.2 Thrust Network Analysis 

This section describes a numerical formulation to find thrust networks. The main 
elements of TNA are defined in Sect. 4.2.1. The equilibrium equations for finding 
the geometry of the network based on its internal force densities are described in 
Sect. 4.2.2. The particular case of networks fixed in the plan is discussed in Sect. 4.2.3,
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Fig. 4.1 Thrust Network (G) with its horizontal projection, the form diagram (┌). Equilibrium Pi 
of node i subjected to the vertical applied load pi is highlighted. The horizontal projection of Pi is 
the closed polygon P∗

i . Summing the polygons, the network’s force diagram (┌∗) is obtained 

and strategies to handle the degrees of freedom in these cases are presented in 
Sect. 4.2.4. 

4.2.1 Main Elements 

This section defines the main elements of Thrust Network Analysis (TNA), after 
(Block, 2009), which are illustrated in Fig. 4.1. 

A thrust network (G) is a directed and connected spatial graph in which the edges 
of G represent the spatial compressive resultants (or thrusts) within the structure. 

The form diagram (┌) is a planar graph constructed from the projection of G. The 
form diagram stores the network’s topology, connectivity, and planar coordinates. 
Each vertex i in the form diagram with coordinates (xi , yi ) maps to a vertex in the 
thrust network with elevation zi . Similarly, each edge ei in the form diagram maps 
to an edge in the thrust network carrying axial force fi . 

Boundary conditions and loads are applied to the nodes of the network. For exam-
ple, Fig. 4.1 highlights the support points in the form diagram with a red dot, where 
reaction forces R j arise. An external vertical load pi applied to node i is also high-
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lighted. The equilibrium of the node can be verified through the construction of 
closed polygons of force vectors Pi indicated in Fig. 4.1. 

The force diagram (┌∗) is a graphical representation of the horizontal equilibrium 
of G. When all loads are parallel, the spatial equilibrium of a node i can be projected 
onto a plane perpendicular to the loads resulting in a two-dimensional graphic stat-
ics problem. In Fig. 4.1, the projected equilibrium of node i is the closed polygon 
P∗ 
i where the vertical applied load pi vanishes. The horizontal equilibrium is then 

resolved with the horizontal components of the thrusts ( f ∗ 
i ). The form (┌) and force 

(┌∗) diagrams are reciprocal, such that their corresponding edges ei , e∗ 
i are parallel, 

and the length of e∗ 
i is proportional to the horizontal force f 

∗ 
i . 

The geometry of thrust networks can be explored by searching and modifying the 
reciprocal form and force diagrams, as proposed in Block et al. (2019), Rippmann 
et al. (2012) using a parallelisation algorithm. Recently, new computational tools 
have been developed to provide interactive access to this process, such as RhinoVault 
(Block Research Group, 2021; Rippmann, 2016). This pipeline has been adopted to 
the conceptual design stage of several shell prototypes and projects, e.g., the Striatus 
Bridge (Bhooshan et al., 2022) and Armadillo Vault (Block et al., 2018). 

Nevertheless, fitting this network within a (usually tight) structural envelope 
is required for masonry assessment, which requires robust optimisation strategies 
and suitable problem parametrisation. Furthermore, the graphic-statics-based TNA 
framework is limited to vertical loading cases, so horizontal forces can not be applied. 
The following section presents a numerical description of the network’s equilibrium 
based on force densities which enables general loading cases and is suitable for 
numerical optimisation. 

4.2.2 Equilibrium Equations 

This section presents the equilibrium formulation in general force networks based 
on force densities (Schek, 1974). 

A network composed of m edges and n vertices is considered, with nb supported 
vertices and ni free vertices, such that n = ni + nb. The nodal positions of the network 
are cast in the vectors x, y, z [n × 1], and the applied forces in each direction are 
collected in px, py, pz [n × 1]. The equilibrium variables are the force densities q 
[m × 1] defined for each edge as the ratio between its axial force fi and its length li . 

The equilibrium equations can be written by introducing the connectivity matrix 
C [m × n] (see Schek, 1974) and defining the coordinate difference matrices 
U = diag(Cx), V = diag(Cy), W = diag(Cz). The  3ni linear internal equilibrium 
equations become
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CT 
i Uq = px,i, (4.1a) 

CT 
i Vq = py,i, (4.1b) 

CT 
i Wq = pz,i, (4.1c) 

where, Ci [m × ni] and px,i, py,i, pz,i, [ni × 1] are slices of the connectivity matrix 
and applied loads in the ni free nodes. 

At the supported boundaries, the emerging reaction forces Ri = [Rx,i ; Ry,i ; Rz,i ] 
can be retrieved from the reaction components Rx, Ry, Rz [nb × 1] calculated as 

Rx = CT 
b Uq − px,b, (4.2a) 

Ry = CT 
b Vq − py,b, (4.2b) 

Rz = CT 
b Wq − pz,b. (4.2c) 

where Cb [m × nb], and px,b, py,b, pz,b [nb × 1] are slices of the connectivity matrix 
and applied loads in the nb supported nodes. 

With this formulation, the infinite space of equilibrium networks for a given 
topology (or connectivity) can be explored in terms of the position of the supports 
xb, yb, zb and values of the force densities in the edges of the network q, resulting in 
3nb + m parameters. 

A subspace of this equilibrium is explored with TNA, considering the cases where 
the horizontal projection of the network, i.e., the form diagram, is fixed, as introduced 
in Block and Lachauer (2014). The following section presents the consequence of 
this assumptions. 

4.2.3 The Case of a Fixed Form Diagram 

By considering the form diagram fixed in the analysis, the planar coordinates of the 
network x, y are known, and the horizontal equilibrium equations (4.1a) and (4.1b) 
can be rearranged, introducing the horizontal equilibrium matrix E [2ni × m] and 
the vector of applied horizontal forces in the internal nodes ph,i [2ni × 1], 

Eq = ph,i, with: E =
[
CT 

i U 
CT 

i V

]
, ph,i =

[
px,i 
py,i

]
. (4.3) 

Assuming that the form diagram is fixed imposes additional constraints to the 
vector of force densities, such that its components can not be chosen freely. Indeed, 
the number of force densities that can be chosen freely in Eq. 4.3 corresponds to the 
number k of degrees of freedom (DOF), or the degree of statical indeterminacy, of 
the network.
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As shown in Van Mele and Block (2014), the number of DOF is equal to the 
rank deficiency of the matrix E. The free parameters are denoted independent force 
densities, and they relate to specific independent edges in the network. The indepen-
dent force densities qid [k × 1] are then used to describe the force densities q in the 
network through the linear transformation 

q = Bqid + d, with: B =
[−E† 

dEid 

Ik

]
, d =

[
E† 
dph,i 
0

]
, (4.4) 

where Ed [2ni × (m − k)] and Eid [2ni × k] are slices of E related to the dependent 
and independent edges, respectively, E† 

d is the generalised inverse or Moore-Penrose 
pseudo-inverse of Ed, and Ik is the identity matrix of size k. 

After such variable reduction, the elevation of the free nodes in the network zi is 
a function of qid and zb, resulting in 

zi (qid, zb) = D−1 
i

(
pz,i − Dbzb

)
, (4.5) 

where Di = CT 
i QCi [ni × ni], Db = CT 

i QCb [ni × nb] and Q = diag(q) [m × m]. 
With this approach, the number of variables of the problem reduces to nb + k. 

Equation 4.5 will be used to compute the free nodal elevations enabling the constraint 
optimisation framework described in Sect. 4.3. 

4.2.4 Independent Edges in Form Diagrams 

As presented in Sect. 4.2.3, the number of independent force densities k that can be 
chosen freely in Eq. 4.3 correspond to the dimension of the nullspace of E computed 
as 

k = m − rank(E). (4.6) 

Therefore, finding a set of independent edges in the network is equivalent to 
finding one base of the nullspace of E. A sequential Singular Value Decomposition 
(SVD) approach is applied, as described in Maia Avelino et al. (2021a), to find a base 
of k linearly independent columns of the nullspace E that relate to k independent 
edges in the network. As discussed in Liew et al. (2019), these groups are not unique 
and can not be selected randomly for non-triangulated topologies. 

The result of this process is illustrated in four networks in Fig. 4.2, where one of 
the infinite possible groups of independent edges for each topology is depicted with 
k < m. 

In Fig. 4.2, (a) the orthogonal form diagram with nd = 6 divisions has m = 60 
edges and k = 10 independent edges, (b) the radial diagram with three hoops and 12 
meridians has m = 84 and k = 13, (c) the cross diagram with nd = 6 divisions has 
m = 96 and k = 8, and (d) the three-sided diagram presents m = 42 and k = 4.
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Fig. 4.2 Independent edges highlighted in blue for different topologies: a an orthogonal grid, b a 
radial arrangement, c a cross diagram, and d a three-sided diagram 

Fig. 4.3 Indivudual effect of increasing the force magnitude of the independent edges on the cross 
form diagram. Modified thrust network (Gi ) and force diagrams (┌∗

i ) are shown, highlighting the 
i th independent modified
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The infinite space of equilibrium networks having a fixed horizontal projection can 
be explored using this formulation by combining the effect of each independent edge 
in the final geometry. For example, Fig. 4.3 shows the effect of increasing the force 
in the i th independent edge in the thrust network geometry (Gi ) for the cross form 
diagram (Fig. 4.2c). The corresponding force diagram (┌∗ 

i ) is depicted for each (Gi ). 
In ┌∗ 

i , the force increase is evident by the stretch of the i th reciprocal independent 
edge, highlighted in orange (see Fig. 4.3). 

The following section introduces the search of admissible thrust networks as a 
constrained nonlinear optimisation problem assuming the parametrisation in inde-
pendent edges. 

4.3 Constrained Equilibrium 

This section computes admissible thrust networks through a constrained nonlinear 
optimisation framework that takes the general form below: 

minimise
x̃ 

fobj(x̃) (4.7a) 

subject to gi (x̃) ≥ 0, for i = [1, . . .  nc], (4.7b) 

where the nc inequality constraints translate the limit analysis assumptions for admis-
sible networks, as listed in Sect. 4.3.1. Different objective functions fobj are imple-
mented, as defined in Sect. 4.3.2. The optimisation variables x̃ correspond to the 
independent force densities qid and the support elevations zb (see Sect. 4.2.3) fol-
lowed by occasional auxiliary variables depending on the selected objective (see 
Sect. 4.3.2). 

4.3.1 Constraints from Limit Analysis 

As described in Heyman (1966), limit analysis can be applied to masonry structures 
given that infinite compressive and null tensile strength are assumed, and no sliding 
failure can occur. In continuum mechanics, these assumptions are generalised in 
applying the normal, rigid, no-tension material (NRNT) described in Angelillo et al. 
(2018). For the present formulation, these assumptions translate into no-tensile axial 
forces at the network edges and in constraining the network to remain within the 
structural section. The former enforces negative axial force densities qi in the edges 
(Eq. 4.8a). The latter is implemented by constraining the nodal elevations zi to lay 
between the elevations of intrados zLB i and extrados zUB i (Eq. 4.8b).
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Fig. 4.4 Examples of different objective functions on a semicircular arch: a minimum thrust, b 
maximum thrust, c minimum thickness tmin, d maximum vertical load multiplier λv associated to 
an external vertical load pext z , e maximum horizontal load multiplier λh associated to an external 
horizontal load pext h and (f) minimum complementary energy for boundary displacement u ¯

qi ≤ 0 for i = [1, . . . ,  m], (4.8a) 

zLB i ≤ zi ≤ zUB i for i = [1, . . . ,  n]. (4.8b) 

Additional constraints can be applied, i.e. by limiting the extension of the reaction 
forces to cross the extrados, as detailed in Maia Avelino et al. (2021a), which is 
required to model problems such as domes and buttressed vaults. 

4.3.2 Objective Functions 

Different objective functions ( fobj) are coupled to the optimisation problem in 
Eqs. 4.7. Figure 4.4 illustrates the different objective functions on a semi-circular 
arch. 

In Fig. 4.4, the points in which the thrust line touches the extrados (resp. intrados) 
are marked in green (resp. blue). They indicate the location where cracks are expected 
in the solution. When the thrust touches the intrados (resp. extrados), a crack will 
form in the extrados (resp. intrados). 

The objective functions implemented and illustrated in Fig. 4.4 are defined math-
ematically in the following subsections below. 
(a) Minimum horizontal thrust: Minimises the horizontal component of the emerg-
ing reactions Rx, Ry, such that the objective function becomes
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fmin = 
nb∑
i=1 

R2 
x,i + R2 

y,i 

/
. (4.9) 

(b) Maximum horizontal thrust: Maximises the horizontal component of the 
emerging reactions Rx, Ry, which is equivalent to minimising the opposite of fmin, 
resulting in 

fmax = −  
nb∑
i=1 

R2 
x,i + R2 

y,i 

/
. (4.10) 

(c) Minimum structural thickness: Minimises the additional variable t > 0 repre-
senting the structural thickness in the vault computed orthogonally to the masonry’s 
middle surface as 

fthk = t. (4.11) 

Consequently, the additional variable will influence the bounds of the intrados 
and extrados, modifying the constraint Eq. 4.8b, which will take the form of 

zLB i (t) ≤ zi ≤ zUB i (t) for i = [1, . . . ,  n]. (4.8b) 

(d) Maximum vertical load multiplier: Maximises the vertical load multiplier (λv ≥ 
0) for a given vertical applied load case pext z . The objective function becomes 

fv = −λv. (4.12) 

The external load and multiplier are then added to the computation of the nodal 
network elevations in Eq. 4.5, resulting in 

zi (qid, zb, λv) = D−1 
i

(
(pz,i + λvpext z,i ) − Dbzb

)
. (4.5) 

(e) Maximum horizontal load multiplier: Maximises the horizontal load multiplier 
(λh ≥ 0) for a given horizontal external load case pext h , such that the objective function 
becomes simply 

fh = −λh. (4.13) 

As a collateral effect, adding this variable modifies the horizontal equilibrium of 
the structure (Eq. 4.3), now computed as 

q(qid, λh) = Bqid + λhE
† 
d

[
pext h,i 
0

]
. (4.3) 

Furthermore, as discussed in Bruggi (2020), the application of horizontal loads 
at fixed form diagrams requires that the loads can be transferred appropriately to the 
supports, which can be verified mathematically by ensuring that the rank of E is not 
modified by stacking the horizontal load case pext h,i .
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(f) Minimum complementary energy: Minimises the complementary energy Wc 

for a general foundation settlement u ¯ [nb × 3] which is equal to minimising the 
opposite work of the reaction forces (Iannuzzo et al., 2020). The objective function 
becomes 

fc = Wc = −  
nb∑
i 

Ri · ūi . (4.14) 

These different objective functions can be added to the optimisation framework 
in Eq. 4.7. One application for each objective is illustrated in Sect. 4.4. 

4.3.3 Solving Strategies and Starting Points 

The optimisation problem is solved using interior point methods, using the open-
source solver IPOPT (Wächter and Biegler, 2006). All analyses presented in this 
chapter have been conducted with the Python-package compas_tno (Maia Avelino, 
2022). compas_tno formulates the constrained optimisation problem (Eq. 4.7), calls 
the solver, and post-process the final results back into the new geometry of the 
network. 

The starting point of the analysis is the compression-only load-path optimisation 
described in Liew et al. (2018). This problem corresponds to a convex problem 
described in Maia Avelino (2023). The result of this pre-conditioning optimisation 
is a compression-only network that does not yet fit the bounds of the structure. By 
applying the constraints defined in Sect. 4.3.1, an admissible network is retrieved if 
the problem is feasible. 

The Jacobian matrix and gradients of the constraints and objective functions are 
defined analytically and passed to IPOPT during the solving process. Jacobian con-
struction and different gradient functions are defined in Maia Avelino (2023). 

4.4 Applications 

This Section shows applications of the modular multi-objective optimisation frame-
work described in vaulted masonry structures. Section 4.4.1 defines the geometry of 
a shallow cross vault that will be used throughout Sects. 4.4.2–4.4.6, where different 
assessment problems are tackled by setting different objective functions in the frame-
work. Finally, Sect. 4.4.7 discussed the application of the method from a geometry 
extracted from point clouds.



4 Thrust Network Analysis for Masonry Assessment 177

4.4.1 Vault Geometry 

A square shallow cross vault is considered based on the parametric study from 
Maia Avelino et al. (2021b). The geometry is defined by the vault’s base length 
(l0), (central) radius (R), springing angle (β) and thickness (t). The ratio r/ l0 gen-
erates pointed (r/ l0 > 0.5) or rounded cross vaults (r/ l0 = 0.5), and based on the 
springing angle β, shallower cross vaults can be considered. Whenever β >  0, the  
effective span (s) marks the distance among the springs. The thickness of the structure 
is referred to by the adimensional t/s. The parameters of the model are highlighted 
in Fig. 4.5a. Figure 4.5b shows the cross vault selected for this study with r/ l0 = 0.5, 
β = 30◦, t = 0.5 m  and s = 10.0 m. 

A density of ρ = 20 kN/m3 is assumed for the masonry, resulting in a total 
self-weight of the structure equals W = 1088 kN. The form diagram selected in the 
following analysis is the cross orthogonal topology presented in Fig. 4.2c with a level 
of discretisation nd = 16, representing 16 divisions of the diagonal. 

4.4.2 Computing the Extremes of Thrust 

This section analyses the vaulted geometry defined in Sect. 4.4.1, finding its mini-
mum and maximum horizontal thrust states. The horizontal thrust is transferred only 
through the corners of the vault, such that no thrust is transmitted along its open 
edges. 

To obtain the minimum thrust solution, the optimisation in Eq. 4.7 is solved by 
selecting fmin as the objective function (Eq. 4.9). The solution is depicted in Fig. 4.6a. 
In the plots, the thickness of the edges in the thrust network is proportional to the 
force carried such that edges having zero force are not shown. Furthermore, the points 
where the network touches the extrados of the vault are highlighted in green, and the 
points where it touches the intrados are highlighted in blue. At the minimum thrust 
state, the deepest network is obtained. The network touches the extrados along the 

Fig. 4.5 a Parameters used to define the cross vault. b Cross vault obtained with t/s = 0.05, 
r/ l0 = 0.5 and β = 30◦



178 R. Maia Avelino et al.

midspan of the vault, indicating cracks in the intrados of the structure. The value 
of overall thrust-over-weight obtained is Tmin/W = 0.97, resulting in a horizontal 
thrust exerted of Tmin = 1055 kN for this problem. 

Conversely, the maximum thrust state is found by taking as the objective function 
fmax (Eq. 4.10). The solution is depicted in Fig. 4.6b. The network assumes its shal-
lowest geometry touching the intrados along the midspan, indicating a crack appear-
ing in the extrados of the cross vault. As a result, the value of the thrust-over-weight 
is Tmax/ W = 1.57, resulting in a horizontal thrust exerted of Tmax = 1708 kN. 

4.4.3 Stability Domain 

This section computed the Geometric Safety Factor (GSF) and the stability domain 
of the shallow cross vault described in Sect. 4.4.1, measuring the level of stability in 
the structure. After Heyman (1969), the GSF is computed as the ratio between the 
actual structural thickness (t0) and the minimum thickness of the structure (tmin). 

Fig. 4.6 a Minimum thrust solution for the shallow vault with T /W = 0.97; b Maximum thrust 
solution for the shallow vault with T /W = 1.57. Points where the network touches the intrados 
(zLB i ) and extrados (zUB j ) are highlighted in blue and green, respectively
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To obtain the GSF, the constrained optimisation problem in Eq. 4.7 is solved with 
the minimum thickness fthk objective (Eq. 4.11). The minimum thickness value of 
tmin = 0.151 m is obtained, resulting in the network and tightened structural envelope 
depicted in Fig. 4.7. The GSF is computed, resulting in GSF = t0/tmin = 3.3. From  
Heyman (1969), masonry is considered to present a sufficient safety level if the 
thrust line (or network) is found within the middle third of the structural section 
(i.e., GSF ≥ 3.0). From this benchmark, we can assume that this shallow vault with 
t0/s = 0.05 is safe. 

Beyond computing the GSF, an additional measure of stability can be obtained by 
looking at the structure’s stability domain (Maia Avelino et al., 2021a, 2021b). This 
domain serves as a measure of the infinite space of admissible stress states arising 
at the structure. It is obtained by computing the minimum and maximum horizontal 
thrusts (as in Sect. 4.4.2) for decreasing thicknesses of the structure until the minimal 
thickness tmin. The stability domain for the cross vault analysed is depicted in Fig. 4.8. 

Indeed, the area among the maximum and minimum thrust lines stores all possible 
internal states for the structure that can be evaluated with a given form diagram. As 

Fig. 4.7 Minimum thickness solution for the shallow vault with thickness tmin = 0.151 m resulting 
in a GSF of 3.3 

Fig. 4.8 Stability domain obtained for the shallow cross vault plotting the normalised thrust-over-
weights (T /W ) for decreasing normalised structural thicknesses (t/s)
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Fig. 4.9 Results for optimising a concentrated vertical load applied to the middle of the web for 
an orthogonal form diagram added with a direct force path to the supports. The maximum vertical 
load multiplier is λmax 

v = 121.8 resulting in a load-over-total-weight of Pmax/W =11.2% 

discussed in Maia Avelino et al. (2021b), Nodargi and Bisegna (2022), different form 
diagrams can be compared to enlarge this stability domain and obtain a larger GSF. 

4.4.4 Maximum Vertical Load Multiplier 

The maximisation of a concentrated vertical load is studied in this Section. The 
cross vault is subjected to an off-centred unitary pointed load pext z [n × 1] applied in 
the middle of the structural web (xp, yp) = (5.0, 2.5). The auxiliary variable λv ≥ 0 
representing the vertical load multiplier is considered to model this problem. For 
the present problem, pext z has zero entries to all but the position related to the vertex 
(xp, yp), which has entry −1.0 representing an additional load pointing downwards. 

To account for the additional load, the form diagram used in Sects. 4.4.2–4.4.3 is 
modified by adding a direct path from the point of load application (xp, yp) to the 
adjacent supports. 

The optimisation is performed to minimise Eq. 4.12. It results in a maximum 
applied load multiplier λmax 

v = 121.8, i.e., a maximum applied load Pmax = 121.8kN, 
resulting in a load-over-total-weight of Pmax/W = 11.2%. The thrust network 
obtained and the force diagram are depicted in Fig. 4.9. The concentrated load flows 
to the supports through the added lines. Looking at the sectional view, the point 
where the load is applied is discontinuous, and the network touches the extrados 
(green dot).
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Fig. 4.10 Diagram modification by applying a tapered curved profile to the nodes of the form 
diagram to enable the application of horizontal loads with Δ = 5% of the span 

4.4.5 Maximum Horizontal Load Multiplier 

This section presents the problem of computing the maximum horizontal load mul-
tiplier at the shallow cross vault. The vector defining the loading case pext h assigns 
a force in the x-direction at every node with the same magnitude as the lumped 
self-weight ( pz,i ) applied to that node. An additional variable λh ≥ 0 is considered 
to represent the horizontal load multiplier, i.e. a fraction of the vertical load applied 
horizontally. 

The form diagram used for the analysis is modified with a curved profile and 
maximum magnitude equal to Δ = 5% of the span. This sliding transformation can 
be seen as the equivalent of tilting the planar diagram to respond to the horizontal 
loads. This transformation is depicted in Fig. 4.10. 

The optimisation problem is solved again using the objective function in Eq. 4.13. 
The maximum value obtained for this problem is λmax 

h = 0.179, meaning that 
the maximum horizontal-load-over-weight applied to the cross vault is equal to 
Pmax/W = 17.9%. The solution is depicted in Fig. 4.11. 

This problem is relevant to modelling, e.g., the static equivalent of seismic forces 
in masonry vaults (Dejong, 2009). It also corresponds to tilting the vault by a giving 
rotation angle such that a fraction of the weight is applied horizontally (Zessin, 2012). 
The maximum horizontal load multiplier obtained depends on the form diagram 
chosen and the sliding magnitude Δ applied. Hence, further modifications and new 
topologies should be coupled to this problem, considering alternative internal force 
distributions. 

4.4.6 Internal State Under Support Displacements 

This section discusses the problem of subjecting the vault to a support settlement. By 
minimising the complementary energy (Eq. 4.14) of the structure subjected to a given 
support displacement ū, a stress state can be found compatible with u ¯ (Angelillo,
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Fig. 4.11 Results for maximising the horizontal load multiplier λmax 
h = 0.179, resulting in a nor-

malised horizontal force Pmax/W = 17.9% applied to the cross vault with a horizontal slide of the 
nodes of the pattern equal to Δ/s = 5% 

Fig. 4.12 Thrust network (G) obtained for the optimisation minimising the complementary energy 
subjected to a unit diagonal settlement in the highlighted support ū. The objective function value is 
Wc = 266.9 kNm  

2014; Iannuzzo et al., 2018, 2020). The shallow cross vault is subjected to a unitary 
outward diagonal displacement applied to one of the vault’s support u ¯ (see Fig. 4.12). 
The thrust network obtained and extreme points touching intrados and extrados are 
depicted in Fig. 4.12. 

The optimal complementary energy value is Wc = 266.9 kNm  i.e., Wc/W = 
20.4%. The outward diagonal displacement reflects a spreading of the webs crossing 
the pulled diagonal. This spreading reflects into two crack lines crossing that diagonal, 
obtained by connecting adjacent vertices touching the extrados (green). Qualitatively, 
the crack lines in the webs described follow the crack pattern obtained in cross vaults 
with Discrete Element Modelling (DEM) in McInerney and DeJong (2015). 

Minimising the complementary energy shows how cracks are induced at the onset 
of support displacements. Future work can rely on TNO analysis to study the inverse 
problem of determining the foundation displacements that resulted in the cracked 
configuration observed in general vaulted masonry structures. The crack location
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can then be used to inform reinforcing strategies if necessary (De Santis et al., 2019; 
Fugger et al., 2022). 

4.4.7 Towards the Application of TNA in Surveyed Buildings 

This final section highlights the potential of applying the TNA framework directly 
to the scanned geometries of surveyed buildings. The case of St. Angelo Church in 
Anagni, Italy (Maia Avelino et al., 2022b) is revisited and summarised in Fig. 4.13. 
Given TNA’s simple input requirement, the analysis can be performed based on the 
geometry acquired, and the pipeline for the analysis is described herein. 

The geometry is acquired through photogrammetry or laser scanning surveys, and 
the vault’s intrados and extrados surfaces are extracted to generate the optimisation 
constraints (see Eqs. 4.8). Finding a suitable form diagram for an existing, distorted, 
highly constrained structural envelope is challenging. Currently, the patterning of 
such diagrams follows the designer’s experience following the structure’s geomet-
ric features, curvature, openings and cracks. In Fig. 4.13b, five different diagram 

Fig. 4.13 Pipeline for the TNA stability analysis from geometry obtained from scanned data. Case 
study at the St. Angelo Church, in Anagni, Italy
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topologies are used to investigate the structure’s stability domain. The domain is 
computed considering the envelope of these diagrams as shown in Fig. 4.13c. The 
stability domain obtained is a lower bound of the structure’s actual space of allow-
able stresses. Further form diagrams can be added to the analysis to expand such 
domains. A series of limit states can also be computed, e.g., the minimum (Tmin) and 
maximum (Tmax) thrust states, the minimum thickness (tmin) and collapse load cases 
(Pmax). 

The modular multi-objective framework presented in this book chapter enables 
these analyses that could be readily applied to isolated vaults of scanned heritage 
buildings. Future research will focus on improving or automating the definition of 
form diagrams to the analyses and considering the global structural stability of the 
building, taking into account its laterally supporting structure and the interaction 
between adjacent vaulted elements in the structure. 

4.5 Conclusions 

This chapter reviews Thrust Network Analysis (TNA) approaches for masonry struc-
tures based on limit analysis. TNA enables finding admissible stress states in masonry 
structures by formulating suitable constrained optimisation problems. Admissible 
stress states in masonry structures correspond to compressive networks within the 
structure’s geometry. 

A novel modular multi-objective optimisation framework is presented in this 
chapter, which enables finding multiple particular solutions in masonry structures 
with a single approach. Among these solutions are the minimum and maximum hor-
izontal thrusts, the minimum structural thickness (or maximum Geometric Safety 
Factor), the maximum vertical and horizontal collapse loads, and the effect of foun-
dation settlements. These particular solutions are obtained by considering different 
objective functions. By combining these states, a complete picture of the level of 
stability of the structure can be obtained. Furthermore, it can give information about 
crack patterns after applying additional loads or support movements. 

Finally, recent activity on lower-bound equilibrium methods, including continu-
ous and discrete methods, such as TNA, and the development of novel open-source 
computational tools based on these methods has the potential to impact the field 
by increasing the number of assessment tools available to analyse heritage masonry 
structures. 

Nevertheless, multiple challenges and open questions remain, such as how to 
overcome the specificity of the form diagram and provide engineers with adapted or 
automatically generated diagrams for the analysis or how to extend the analysis to 
the building scale, obtaining global structural safety factors. Future work should also 
ease working with scanned data obtained from existing buildings to leverage TNA’s 
simple geometry-based input and enhance its applications in practical assessment 
scenarios.
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