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Advances in Thrust Network Analysis. 
Constrained equilibrium assessment of masonry vaulted structures

1. Introduction

The assessment of unreinforced masonry structures requires special-
ised tools that are not widely available (Tralli, Alessandri, Milani, 2014). 
Structural modelling of masonry should take into account the unilateral 
behaviour of the material, related to its high compressive and low tensile 
strength. Besides, the collapse of masonry structures is usually a result of 
lack of stability rather than insufficient material strength (Huerta, 2001; 
Ochsendorf, 2002). For that reason, general-purpose analysis tools which 
focus on computing the current internal stresses can not be directly ap-
plied to the masonry without detailed considerations (Shin et al., 2016).
As an alternative, Heyman (1966, 1995) showed that Limit Analysis can be 
applied to masonry structures given that three assumptions are respect-
ed: the material has no tensile strength, infinite compressive strength, and 
sliding does not occur. Within this framework, the collapse or limit states 
are searched. In particular, the safe, or lower-bound theorem of limit anal-
ysis applies. The theorem states that if at least one admissible stress state 
can be found, the structure is safe in its current state. When applying the 
safe theorem to masonry, admissible stress states correspond to compres-
sion-only force paths or thrust lines in equilibrium with the applied loads 
and contained within the geometry of the structure, i.e., between intra- 
and extrados.
The search for compressive, internal force paths in masonry has been his-
torically applied to arches (Moseley, 1843), sliced domes (Poleni, 1748) 
and vaults (Ungewitter, 1890), and commonly applied in combination with 
graphic statics (e.g., Wolfe, 1921). Since these techniques are justified by 
the safe theorem, they result in a lower-bound (and safe) estimation of 
the actual capacity of the structure. Currently, this technique is known as 
Thrust Line Analysis (TLA) and it remains a contemporary tool for the as-
sessment of two-dimensional, or sliced 3D structures (Smars, 2000; Zessin, 
Lau, Ochsendorf, 2010; Angelillo, Olivieri, DeJong, 2021) and the core of 
masonry analysis tools (e.g., Limit State: RING, 2021). 
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Given the independence of major mechanical parameters, lower-bound 
methods are an important tool for the structural assessment of historic 
structures, relying exclusively on geometrical data from the intrados and 
the extrados (Huerta, 2001).
Nevertheless, the extension of lower-bound methods to three dimen-
sions is challenging due to the increased degree of indeterminacy of the 
three-dimensional equilibrium. The slicing technique (Huerta, 2008) can 
not explore fully three-dimensional force flows that arise in spatial ma-
sonry structures. In recent years, various lower-bound equilibrium formu-
lations have been developed to cope with the assessment of three-dimen-
sional masonry structures. These strategies can be divided into continuous 
and discrete approaches.
Continuous approaches search for compressive membranes within the ge-
ometry of the structure. Heyman (1977) shows that purely applying shell 
analysis (Calladine, 1983) taking the middle surface of masonry structures 
often results in tensile membrane stresses, which require an adaptation 
of the methodology by, e.g., considering sections or slices. Another de-
scription of this problem, based on continuum mechanics, takes as vari-
able both: the internal stresses of the membranes and their geometry. The 
equilibrium equations are solved by assuming a Pucher formulation and 
considering the potential stress (or Airy) functions to describe the internal 
distribution of the stresses (Fraternali et al. 2002). With such an approach, 
the vertical equilibrium is described by a second-order differential equa-
tion. To solve the differential equation, different approaches have been 
developed. In Fraternali (2010) and Angelillo, Babilio, Fortunato (2013), an 
approximation of the relevant functions is done in polyhedral domains; in 
Fraddosio, Lepore, Piccioni (2020), a polygonal approximation is used in an 
equally spaced point grid; in Miki, Igarashi, Block (2015) NURBS surfaces 
are used and in Baratta, Corbi (2010) analytical solutions are obtained for 
simple geometries.
On the other hand, discrete methods can be applied avoiding the compu-
tation of differential equations offering a flexible formulation that allows 
considering a wider range of discontinuities in loading, geometry, and 
boundary conditions. O’Dwyer (1999) proposed a method considering the 
internal forces in the masonry as a network carrying only compressive, 
axial forces. Different load cases and flow of forces can be quickly investi-
gated, and the final solution allows to verify and modify the equilibrium 
by directly changing the internal axial forces at the edges of the network. 
Nevertheless, in O’Dwyer (1999), no strategy is applied to deal with the 
indeterminacy of the projected layout of forces. 
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Following the work of O’Dwyer (1999), Block and Ochsendorf (2007) for-
malised Thrust Network Analysis (TNA) as a method to compute the in-
ternal forces as a network of thrusts based on graphic statics. With such 
an approach, the spatial equilibrium of networks can be executed inter-
actively by connecting the magnitude of the internal forces with a force 
diagram analogous to the force polygons in graphic statics (Block, 2009). 
Further developments of TNA included the framing of the problem as a 
constrained application of the Force Density Method (Schek, 1973); the 
introduction of the concept of independent edges, which allow for effi-
ciently searching equilibrium states for thrust networks with a fixed pro-
jection (Block, Lachuer, 2014; Van Mele, Block, 2014); and, allowing this 
equilibrium exploration as a search of admissible solutions through opti-
misation processes (Block, 2009; Van Mele et al., 2014; Block, Lachauer, 
2014). Recent developments extended this framework to determine the 
level of stability of three-dimensional masonry structures based on the 
sequential solving of a series of optimisation problems with different ob-
jective functions (Maia Avelino et al., 2021) and to consider internal states
arising for prescribed foundation settlements (Maia Avelino et al., 2022).
This paper gives an overview of the major concepts behind Thrust Net-
work Analysis in the context of masonry assessment. It summarises the 
recent advances in the method that allow it to be used to search for ad-
missible stress states in three-dimensional masonry structures with ge-
neric geometry and output relevant feedback about the level of stability 
of the structure.
The paper is organised as follows: Section 2 presents the graphic statics 
based formulation of TNA. Section 3 presents a numerical formulation 
of TNA suitable for constrained optimisation. Section 4 formulates con-
strained nonlinear optimisation problems with TNA that are relevant to 
assess masonry structures. In Section 5, applications to three-dimensional 
masonry structures are presented. Finally, in Section 6, the conclusion and 
outlook of the method are described. 

2. Graphic statics based approach

This section presents a graphic statics based approach to TNA (2.1) that
is analogous to the equilibrium problems in graphic statics. Following, an 
iterative algorithm to solve the equilibrium in this framework is formulat-
ed (2.2).
 



   314 Studia Ligustica 16

Ricardo Maia Avelino, Tom Van Mele, Philippe Block

2.1. On the equilibrium of projected networks 

Graphic Statics is a well-known method to find the equilibrium of two-di-
mensional structures. The relationship between the structure’s geometry 
and its internal forces is described by the reciprocal relation between two 
diagrams (Culmann, 1875; Wolfe, 1921), the form and force diagrams. The 
former describes the geometrical configuration of the (axial) internal forc-
es, and the latter represents their equilibrium. A closed polygon in the 
force diagram represents the equilibrium of a node in the form diagram. 
Graphic statics offers an intuitive evaluation of the structural equilibrium.
It was used as a main structural calculation tool in the late 19th and early 
20th century. For masonry analysis, graphic statics offers a straightforward 
way to find a thrust line within the geometry of a structure. Figure 1 shows 
an admissible compressive equilibrium solution, or thrust line (G), found 
for the semi-circular arch (Λ). The equilibrium in each node of the thrust 
line relates to the equilibrium of a portion (e.g., a block) subjected to its 
weight wi. The force diagram (Γ*) represents the sum of all closed poly-
gons representing the local equilibria in the nodes of the thrust line. In 
the force diagram, the length of each segment relates to the force carried 
in the corresponding segment in the thrust line. By modifying the force 
diagram, e.g., by moving the pole point (o) and choosing the coordinates 
of one of the nodes of the form diagram, the internal (and reaction) forces 
and the shape of the thrust line can be changed, and different equilibrium 
solutions explored.
The graphic formulation of TNA offers a 2.5D extension of 2D graphic stat-
ics (Block, Ochsendorf, 2007). In this formulation, the loading case is as-
sumed to be parallel, which often occurs in masonry structures, e.g., the 
gravity loads and horizontal force multipliers. When all loads are parallel, 
the spatial thrust network can be projected onto a plane perpendicular to 
the loads resulting in a two-dimensional graphic statics problem in which 
the applied loads vanish. 
For the gravity loading case, the projection of the thrust network (G) re-
sults in the planar form diagram (Γ) for which the horizontal equilibrium 
can be described graphically with the construction of the force diagram 
(Γ*), respecting the same well-known two-dimensional graphic statics 
procedures. In this case, Γ* represents the equilibrium of the horizontal 
components of the forces, i.e., the (horizontal) thrusts of G. If we formalise 
these concepts in TNA, the horizontal equilibrium is verified when the di-
agrams are reciprocal, which implies that:
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a.	 All corresponding edges in the form and force diagrams are parallel.
b.	 The length of an edge in the force diagram is proportional to the 

axial force, carried by its corresponding edge in the form diagram.
c.	 Each node in the form diagram is represented by a closed polygon 

in the force diagram.

Figure 2 shows a thrust network (G) whose horizontal equilibrium can be 
described graphically by their reciprocal form and the force diagrams. This 
thrust network models a possible distribution of the internal forces in a 
masonry cap (Λ), i.e., each vertically applied load relates to the weight of 
a portion (e.g., a block) of the structure and the position of the vertices 
match the vertical projection of the centroids. The thrust network (G) is 
admissible as all forces are compressive and the network fits within the 
geometry of Λ. As in the 2D problem, modifying the geometry of the force 
diagram while respecting reciprocity with the form diagram leads to differ-
ent equilibrium solutions for that form diagram.
The form diagram represents the horizontal layout of the thrusts, i.e., and 
a map of the force flow within the structure. In the context of masonry 
assessment, the form diagram is chosen (or generated) by the engineer 
based on intuition or experience on likely force paths within the structure, 
usually following its main geometric features, such as principal curvature 
or creases. 
With this approach, the equilibrium of a node in G can be divided into  
horizontal and vertical components. For node i, shown in figure 3, the hor-
izontal and vertical equilibria are described by the following equations:

[1.1-1.2]

where fji
H and fji

V describe the horizontal and vertical components of an 
edge’s (axial) force connecting nodes j and i, and pi is the load lumped in 
the node.
With the decoupling of horizontal and vertical equilibrium, there are mul-
tiple ways in which these equations can be treated and solved. In the fol-
lowing section, we discuss an interactive, graphic way to solve the horizon-
tal equilibrium in Equation 1.1.
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2.2. Interactive graphic equilibrium 

We introduce the following nomenclature, the form diagram Γ is com-
posed of m edges and n nodes with planar coordinates stored in the vec-
tors x, y. Each edge eij connects vertices i and j with a length lij and force fij. 
The elements of the force diagram Γ* are marked by an asterix (*), such 
that the diagram has m* edges and n* nodes. Each edge eij* of the force 
diagram has length lij*. The thrust network (G) corresponds to the vertical 
lift of Γ, where the vertical nodal coordinates are stored in the vector z.
To find reciprocal form and force diagrams, a parallelisation algorithm 
has been proposed in Rippmann, Lachauer, Block (2012) and is described 
herein. It starts with a form diagram and its dual diagram, so not yet a 
force diagram representing a possible equilibrium for it, and updates the 
vertex positions of both diagrams to match the target orientation of its 
corresponding edges, such that at the end of the process the diagrams 
are reciprocal. To obtain a force diagram, the algorithm starts from the 
centroidal dual topology of the form diagram. Details about the automatic 
generation of the centroidal dual topology are given in Rippmann, Lachau-
er, Block (2012). 
To find an initial state of equilibrium, target vectors tij are imposed to the 
edges of the form and force diagrams to parallelise the corresponding 
edges. Not only the force diagram can be aligned with the original form 
diagram but a weighting factor γ = {0, ...,1} can be introduced, which in-
creases or decreases the influence of the form diagram to define the tar-
get directions to be used in the parallelisation. The target vector tij for each 
pair of corresponding edges eij and eij* is then computed as follows:

[2] 

where êij and êij* are the normalised directions of edges eij and eij*. 
With the target direction and vectors, the solver iterates over all nodes of 
the form and force diagrams and calculates an updated vertex positions 
Pi and/or Pi*. The procedure is applied analogously to both diagrams and 
is described here to update the force diagram.
Let Ei represent the group of edges eij* connected to a vertex vi* of the 
force diagram with target vector tij computed for a given Γ, and target 
length lij*. The updated position Pi* of this node is computed by:

									                [3]
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where n(Ei) is the number of neighbors of vertex vi*.
This iterative approach is applied to all nodes of the form and force dia-
grams until the stopping criteria is reached, i.e. corresponding edges have 
the same direction within a chosen maximum deviation angle αMAX. This 
interactive approach also indirectly imposes that the networks are sub-
jected to compressive-only forces as for these cases Γ* must be composed 
of non-overlapping, convex spaces (Rippmann, Lachauer, Block, 2012).
With this algorithm, interactively exploring equilibrium interactively is 
possible by stretching or moving nodes in the force diagram, after which 
the iterative solver finds the new reciprocal state as close as possible to 
the modification considering the weighting factor γ. 
Once horizontal equilibrium is achieved, the horizontal forces (fji

H) in the 
form diagram are taken as the lengths of the force diagram (lji

*) multiplied 
by a scaling factor 1/r:

[4]

Therefore, by stretching members of the force diagram, the force lengths 
lij* are increased and so are the forces in the corresponding edges of the 
form diagram fji

H. Figure 4 shows four different equilibria obtained by 
re-distributing the horizontal thrusts in an orthogonal grid supported along 
its boundary. An equally distributed configuration is shown in figure 4a. In 
figures 4b-d, the forces are increased in the edges highlighted, attracting 
forces that result in shallow arches, or creases in the thrust networks (G).
Following the computation of a possible horizontal equilibrium through 
parallelisation, the vertical equilibrium is solved as a separate step. It cor-
responds to performing a lifting of the horizontally equilibrated network. 
Assuming the obtained horizontal forces (Equation 5), the vertical equilib-
rium (1.2) can be rewritten as:

[5]

which, after substituting the horizontal forces (4), can be rearranged as: 

		
[7]								                            [6]
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which is a linear function in terms of the height of the nodes (zi) and the 
scaling factor. This scaling factor allows for searching for globally deeper 
or shallower thrust networks for a given horizontal equilibrium distribu-
tion, as shown in figure 5. 
This framework has been applied to the design of new compressive vault-
ed structures. Manually stretching and moving nodes in the force diagrams 
bring intuitive and direct visual feedback to the horizontal distribution of 
forces and resulting thrust networks. 
To make this intuitive forward TNA-based form-finding approach available, 
RhinoVault, a plug-in for the CAD software Rhinoceros, was developed 
(Rippmann, Lachauer, Block, 2012; Rippmann, 2016). Also, a Python-based 
code implementation of TNA has been made available as the compas_tna 
package (Van Mele, 2020), built on the open-source computational frame-
work COMPAS (Van Mele et al., 2017). Recently, RhinoVault 2, an imple-
mentation of the TNA package as a robust updated version of RhinoVault, 
has been released (Block Research Group, 2020).
However, when it comes to masonry assessment, the search for admis-
sible networks needs to be automated since it relates to finding partic-
ular solutions that are contained within (usually tight) upper and lower 
geometric bounds. Manual manipulation of the diagrams to achieve such 
particular geometric solutions is tedious, if not impossible, so this search 
must be executed by means of optimisation. To cope with this automation, 
a numerical formulation of TNA is proposed based on Block (2019) and 
Block, Lachauer (2014), which will be described in the following section.

3. Numerical TNA formulation

A more robust numerical control of the equilibrium can be achieved by re-
lating the use of form and force diagrams in TNA to the equilibrium of gen-
eral networks through the use of the force density method (FDM) (Schek, 
1974). This is shown in detail in Block (2009) and Block, Lachauer (2014) 
and will be summarised in Section 3.1. More specifically, TNA can be seen 
as a special case of FDM in which the horizontal projection of the equilib-
rium solutions, i.e. the form diagram, is constrained to remain fixed. 
To restrict the problem to a fixed planar diagram, the degrees of freedom 
in the pattern must be identified, adding constraints to the full set of force 
densities, as described in Section 3.2.
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3.1. Constrained force density formulation 

To rewrite Equation 6 in matrix format, we introduce the connectivity ma-
trix C [mxn], which describes the connectivity of an oriented network:

[7]

As shown in Equation 6, considering the quotient of the force and the 
length of the edge in the network linearises the vertical nodal position of 
the networks. This quotient is also known as the force density of an edge 
qij, defined and connected to the initial variables as follows:

[8]

Using the general FDM description, external loads can be applied to any 
direction through the vectors px, py, pz [nx1], which are partitioned in px,i 

and px,b referring to the ni free and nb fixed, or constrained nodes in the 
network (analogously in y- and z- directions). Similarly, the connectivity 
matrix can be sliced in Ci [mxni] and Cb [mxnb]. Using this definition and 
introducing the coordinate difference matrices U=diag(Cx), V=diag(Cy), 
W=diag(Cz) [mxm] the equilibrium equations in the free nodes can be re-
written for x-, y-, and z- direction as:

[9.1-9.3]

Finally, the coordinates of a network with given applied loads can be com-
puted in terms of the positions of the fixed vertices xb, yb, zb [nbx1] and of 
the force densities in all edges q. 

[10.1-10.3]

where Q=diag(q).
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Therefore, by using this general approach, all coordinates in a network 
can be controlled by modifying the force densities and the positions of the 
support vertices of the network.
However, controlling the specific position of the network using all q as 
parameters is a hard problem. The clarity imposed by the definition of 
the form diagram is lost in such general application; particular features 
such as creases, crack lines, and load-point applications can no longer be 
considered. Furthermore, dense diagrams might easily present more than 
1000 edges, increasing the number of parameters of an optimisation. In 
the next section, a strategy for decoupling the horizontal and vertical equi-
librium is presented and explored by defining the degrees of freedom of 
form diagrams fixed in plan.

3.2. Degrees of freedom of a network with fixed projection 

To reduce the degrees of freedom of Equation 10 and to keep the form 
diagram fixed, a linear relationship is introduced to the force densities in 
the network. Assuming that x, y and U, V are known, the horizontal equi-
librium equations 9.1 and 9.2 can be combined introducing the horizon-
tal equilibrium matrix E [2nixm]. Similarly, the applied horizontal external 
forces are combined in the vector ph,i resulting in the following expression:

[11]

Finding a set of force densities satisfying Equation 11 means finding a dis-
tribution of horizontal forces in the fixed pattern. Furthermore, if we con-
strain all force densities to be negative, this solution will be compression 
only (Section 4).
The number of force densities that can be chosen freely in Equation 11 
corresponds to the number of degrees of freedom (DOFs) of the fixed 
form diagram. This number is equal to the rank deficiency of the matrix E 
(Van Mele et al., 2014). These are known as independent force densities 
qid and can be found through sequential singular-value decomposition as 
shown in Maia Avelino et al. (2021). Once the independent edges are de-
termined, the set of dependent force densities can be computed with:

								                          [12]
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where Ed and Ei are slices of E related to the dependent and independent 
edges, respectively, and Ed

† corresponds to the generalised inverse or 
Moore-Penrose pseudoinverse of Ed. Once qd is computed from qid, the 
vector of force densities q in the system is retrieved through the linear 
transformation

[13]

where Ik is the identity matrix of size k. After such variable reduction, the 
vertical coordinates of the network are now function of qid and zb:

[14]

An initial approximation of the vertical loads (pz,i) can be computed at the 
beginning of the process. After the definition of the form diagram in plan, 
projected tributary areas per vertex can be directly obtained from it.
It is worth noting that this formulation can cope with horizontal external 
loads in the vector ph,i as long as the form diagram is able to transfer the 
loads to the supports, which requires that the rank of E is not increased by 
concatenating ph,i  as a column (Bruggi, 2020).
For the cases where no horizontal loads are applied, a force diagram can 
always be retrieved from the in-equilibrium force densities (Van Mele et 
al. 2012). In fact, the degrees of freedom of the pattern corresponds to 
the possible modifications in the force diagram that will preserve the ori-
entations of the edges of the form diagram (Block, 2019; Block, Lachauer, 
2014). Figure 6 shows such manipulations for the orthogonal form dia-
gram used in the previous examples [fig. 4] with one set of independent 
edges highlighted in blue. For this diagram, the selection of the indepen-
dent edges and their effects on the resulting internal force pattern is triv-
ial: each continuous line must have one independent edge and thus an 
independent thrust value. Figure 6 shows the modifications necessary to 
obtain Γ1* [fig. 4b] and Γ2* [fig. 4c], where the (horizontal) force in the 
independent edge controlling the central continuous arch in the structure 
is increased by a factor of 4.0.
In general cases, especially for triangulated patterns, finding these inde-
pendent edges and understanding their effect in the global horizontal 
equilibrium is not trivial. Figure 7 shows a set of independent edges for 
the corner-supported form diagram Γ. Next to it, an individual increase in 
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the force magnitude for each independent edge is applied, and the force 
diagram Γi* and thrust network Gi obtained are depicted. The infinite 
combination of the individual effect of all independent edge represent the 
possible (horizontal) equilibrium states for the form diagram Γ, resulting in 
different thrust networks G.
The main advantage of the numerical formulation presented in this section 
is that the problem is now reduced in terms of variables - the independent 
edges (qid) and the heights of the fixed vertices (zb) - which is especial-
ly suitable for the optimisation algorithms presented in Section 4. In this 
formulation, the horizontal equilibrium in Equation 13 is decoupled from 
the vertical but they are computed simultaneously. Therefore, all possible 
horizontal equilibria are considered when searching for different networks 
within geometric bounds. As a consequence, the presented numerical ap-
proach enables to explore the full equilibrium space of the problem.

4. Searching for admissible stress states

This section presents the latest research on TNA in which the problem 
of searching for admissible stress states is encoded in a nonlinear con-
strained optimisation process. The overall nonlinear programming (NLP) 
problem and different objective functions are discussed in Section 4.1. In 
Section 4.2, a method to compute the level of stability of a masonry vault 
is presented.

4.1. A nonlinear optimisation framework

Finding networks with specific geometric configurations is a hard numeri-
cal problem because the heights of the network are nonlinear with respect 
to the independent force densities (qid) per Equation 14. The general prob-
lem that needs to be solved for the assessment of masonry structures, is 
presented below for a generic objective function fobj:

[15.1]

[15.2]

[15.3]

[15.4]
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in which the variables are the independent force densities qid and the 
heights of the supports zb. The force densities in all edges are comput-
ed per Equation 15.2. Equation 15.3 imposes the compression-only con-
straints to all force densities of the network, which are constrained to be 
negative. Equation 15.4 imposes that the vertical heights of the network 
are contained within the envelope of the masonry described through the 
upper and lower bound heights, zi

UB and zi
LB, at each vertex i. Addition-

al constraints and variables can be coupled to this modular optimisation 
framework.
The optimisation problem described in Equation 15 can be solved with 
general NLP solvers, such as interior point optimisation (IPOPT) (Wächter, 
Biegler, 2006), Method of moving asymptotes (MMA) (Svanberg, 1987), 
and Sequential Least Squares Programming (SLSQP) (Kraft, 1988). The de-
rivatives and gradients have been computed analytically in (Van Mele et 
al., 2014; Bruggi, 2020; Maia Avelino et al., 2021).
Different works in the literature have assumed distincts objective functions 
to the general optimisation framework. In Block, Lachauer (2014) and Van 
Mele et al. (2014), the objective function selected is the “best fit”. This 
objective minimises the vertical least-square distances of the network’s 
vertices to given target heights. In these works, the explicit constraints on 
the bounds (Equation 15.4) are not considered. 
In subsequent works (Bruggi, 2020; Maia Avelino et al., 2021), the bounds 
on intrados and extrados are explicitly considered and multiple objective 
functions are considered. In Maia Avelino et al. (2021), three objective 
functions are considered: minimising and maximising the horizontal reac-
tions and offsetting the starting envelope to find the minimum thickness 
for the structure. These objective functions are used to assess the level 
of stability through the construction of the stability domain, as will be ex-
plained in Section 4.2.
It is worth noting that in Block and Lachauer (2014), Bruggi (2020) and 
Maia Avelino et al. (2021) no assumption is made on the distribution of 
the horizontal forces of the network. The horizontal equilibrium is com-
puted automatically, so without the need to enforce bounds to the thrusts 
as in O’Dwyer (1999) or Marmo, Rossati (2017).
Most recently, in Maia Avelino et al. (2022), the complementary energy 
of the network is minimised for a given vector of virtual displacements 
applied to the supports, which is adequate to model the behaviour of ma-
sonry structures subjected to differential foundation settlements. 
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Further objective functions are also possible, e.g., maximising a horizon-
tal multiplier of the applied loads can be incorporated into the present 
workflow. This is the static equivalent for computing a horizontal action 
such as an earthquake, which can be simplified to a horizontal load equal 
to a fraction of the structure’ self-weight (Milani et al., 2016; Nodargi, 
Bisegna, 2021).
Figure 8 illustrates different objective functions relevant for the assess-
ment of vaulted masonry structures applied to a semi-circular arch, these 
that can be coupled to the optimisation problem in Equation 15. Table 1 
shows the objective function for each case and a description. This list is 
non-exhaustive and further work might expand it including new relevant 
objective function implementations. 

Table 1: Different objective functions that can be implemented in TNA.

4.2. Computing the level of stability

In a practical assessment scenario, assessing the level of stability of the 
structure is pressing. It implies answering how far the structure is from 
the collapse state, or how stable it is in its current configuration. However, 
finding one admissible stress state (as in the dome cap of figure 2) informs 
that the structure in its configuration is safe. Still, it does not provide infor-
mation about the level of stability. 
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Furthermore, most of the optimisation objectives described in Table 1 
alone can not give a quantity indicating the safety, i.e. the level of stability. 
A measure to compute the closeness to collapse on masonry structures 
was proposed in Heyman (1968, 1995) as the geometric safety factor (GSF). 
The GSF is defined as the ratio of the current thickness of the structure 
and its minimum thickness, i.e. the minimum thickness of the structure for 
which it is still stable. In Maia Avelino et al. (2021), the minimisation of the 
thickness is presented for analytic and non-analytic masonry geometries, 
resulting in the value of the GSF.
A more consistent measure of the level of stability is provided by defining 
the size of the space of admissible solutions. A reasonable measure of this 
domain is represented by its extreme (minimum and maximum) thrusts. 
For all but the limit state, the minimum and maximum thrust correspond 
to different stress states and have distinct (horizontal) thrust values. How-
ever, at the limit state, minimum and maximum thrust coincide. In Maia 
Avelino, et al. (2021), the stability domain is traced for reduced values of 
thickness, until the point of collapse. Understanding how the stability do-
main changes as a function of the thickness gives a direct measure of the 
robustness of the structure from its initial state, until the collapse state. 
This robustness can be associated with the structure’s capacity to carry 
additional imposed loads or undergo external settlements. 
By combining these two measures, a picture of the stability and robust-
ness of the structure can be drawn, which is in accordance with the low-
er-bound, or safe theorem, in which the stability domain is approximated 
by the interior, i.e., by the safe side.

5. Applications

In this section, recent results obtained using Thrust Network Analysis are 
compiled to showcase the wide range of applications of the method to 
relevant masonry assessment problems. Section 5.1 shows the applica-
tion of TNA for the computation of the stability domain and geometric 
safety factor of a hemispherical dome. Section 5.2 shows how a similar 
approach can be applied to general vaults, comparing different assump-
tions on force flows by evaluating different form diagrams. Finally, Section 
5.3 shows an application of TNA in combination with an energy criteria, 
which might be used for the inverse analysis of structures subjected to 
foundation displacements.
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5.1. Assessment of a hemispherical dome

The first example considers a hemispheric dome which will be described 
by the ratio between its thickness and its central radius t/Rc. The dome is 
assumed to have an initial thickness t0/Rc=0.10 as is depicted in figure 9a. 
We assume the form diagram depicted in figure 9b to perform the TNA 
analysis. This diagram is composed of 20 hoops that are equally spaced in 
plan and 16 meridian segments that link the outer perimeter of the pat-
tern to the centre. The final diagram is composed of 640 edges, for which 
a possible set of 33 independents are highlighted in blue in figure 9b. The 
shape of the thrust network is, therefore, a parameter of the 33 indepen-
dent force densities and 16 vertical support heights, resulting in a total of 
49 variables.
To study the stability of this dome, first, a minimum-thickness analysis is 
performed by computing the optimisation problem of Equation 15, having 
as objective function the direct minimisation of the thickness of the dome 
(Table 1c). The equilibrium result obtained is depicted in figure 9c-9d re-
sulting in a tMIN/Rc=0.041. In figure 9c, the edges of the thrust network that 
carry zero force are not shown, and the edges carrying (compressive) forc-
es have their thickness scaled proportional to the forces carried. Points 
touching intrados and extrados are highlighted in blue and green, respec-
tively.
A qualitative description of the minimum thickness solution shows that 
on the central part of the dome a bi-axial compressive cap is observed 
and a uniaxial stress state forms towards the supports, where the hoop 
forces vanish. Such internal force distribution is aligned with the “orange 
slice” mechanism proposed in Heyman (1988) for an outward (passive) ra-
dial displacement of the supports. The minimum thickness obtained in the 
TNA analysis is also in accordance with the theoretical minimum thickness 
of (tMIN/Rc)theory= 0.042, computed in Heyman (1988), presenting an error 
of less than 2%. 
Comparing this minimum thickness to the initial dome thickness, the GSF 
of the dome can be calculated as 2.44, which allows one to conclude that 
a hemispherical dome with a given thickness over radius t0/Rc = 0.10 is safe 
under its self-weight. 
Further analysis of the stability of the dome can be provided by plotting 
the stability domain for the initial thickness t0/Rc = 0.10. This is done by 
successively computing the minimum and maximum thrusts of the dome 
for decreasing offset thicknesses. 
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Figure 10 shows the result of such a process, where the values of mini-
mum and maximum thrust, normalised by the dome’s weight (T/W), are 
plotted as percentages in blue and red, respectively. The stability domain 
corresponds to the area between the two curves, highlighted in grey. In 
this area, one can find all admissible stress states of the problem for the 
given starting geometry and chosen form diagram. This stability domain 
is nonlinear and shrinks parabolically towards the limit state, giving an 
idea of the drop of stability for reduced values of thickness. 
Points A, B, and C can be extracted from the stability domain; they rep-
resent the maximum and minimum thrusts in the original state and the 
point with minimal thickness (limit state). The maximum and minimum 
thrust-over-weight is equal to 62.6% and 19.9% while the value of thrust 
over weight for the limit state is 24.3%. Further discussion on this exam-
ple and an extended mesh sensitivity study are available in Maia Avelino 
et al. (2021).

5.2. Assessment of a gothic masonry vault

The second example deals with a Gothic vault constructed parametrically 
from the cross-sectional parameters defined in figure 11a. The parame-
ters assumed are the base length (l0), central radius (R), springing angle 
(β), the thickness of the vault (t) and the effective span (s). The thickness 
of the vault is computed orthogonally to the middle surface, and the effec-
tive span is obtained from the ratio R/l0 and the springing angle β.
The geometry of a vault obtained with R/l0 = 0.71, t/s = 0.05, and β = 20˚ is 
depicted in figure 11b and will be used in this analysis.
Unlike the first dome example, suggesting a layout for the forces in the 
vault is not straightforward. For that reason, the three patterns of figure 
12 are considered. These patterns represent different force-flow assump-
tions within the structure. Pattern (a) is named orthogonal diagram and 
presents orthogonal segments that converge to main diagonals that trans-
fer the forces to the supports of the vault. Pattern (b) is the fan-like dia-
gram, which directly connects the supports of the structure and its cen-
tral portion (spandrel). In pattern (c), diagonals are added to pattern (a), 
allowing additional possible paths to the supports, and the unsupported 
boundaries are curved inwards. 
For all patterns, only the four corners are set as supports, and the inde-
pendent edges are highlighted in blue [fig. 12].
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The self-weight of the vault is lumped into the vertices of the pattern fol-
lowing a 3D tributary area calculation based on the projection of the pat-
terns onto the middle surface of the vault multiplied by the thickness. For 
each form diagram, the minimum thickness and the stability domain of 
the Gothic vault are computed. The results are depicted in figure 13.
From the analysis of figure 13, we can see that the three different dia-
grams give a slightly different evaluation of the level of stability for the 
vault. The curved diagram [fig. 12c] yields the minimum thickness, i.e., the 
one resulting in the highest GSF of 2.5 and minimum thickness-over-span 
of 0.02. The three-dimensional minimum thickness solution obtained with 
this diagram is depicted in figure 13. The orthogonal and the fan-like di-
agrams result in reduced GSFs, which are (coincidentally) the same for 
both diagrams and equal to 2.1 (minimum thickness-over-span of 0.026). 
Therefore, by studying the stability of this specific Gothic vault conducting 
an analysis with both diagrams would be (equally) too conservative. Yet, 
the minimum overall thrust of the structure is obtained with the orthogo-
nal pattern, which can be associated with the preferred flow of forces for 
an outward (opening) displacement of the vault. 
In conclusion, when assessing structures with TNA, the analysis of multi-
ple diagrams is crucial. Indeed, the structure can assume different force 
flows for different states (i.e., extreme thrusts and minimum thickness). 
This reflects how masonry structures are able to adapt to different sup-
port displacements, which induce different internal stress states, as also 
referred to by other authors as an elastic behaviour (Huerta, 2001). As 
the solutions are always safe, i.e., correspond to a lower-bound of the col-
lapse state, the analysis can be performed with multiple diagrams, and the 
real domain of stability of the vault corresponds to the convex envelope 
of the multiple distinct domains obtained with different diagrams. A com-
plete parametric study of this problem is available in Maia Avelino et al. 
(2021b).

5.3. Compatible stress states for given foundation displacements

The last example shows how TNA can be linked with an energy criteria 
allowing to compute compatible stress states for a given set of (virtual) 
foundation displacements. The example considered is the same hemi-
spheric dome of Section 5.1 with thickness over central ratio t/Rc = 0.10. 
As shown in Section 5.1, the dome is safe under its self-weight. 
However, in practical assessment scenarios, cracks are often observed in 
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supposedly safe structures, which require a proper analysis to avoid un-
necessary closures and interventions (Ianuzzo et al., 2021). These cracks 
appear as a consequence of the unilateral (compression-only) nature of 
unreinforced masonry structures and arise in most cases due to founda-
tion displacements. Measuring the exact magnitude or even identifying 
where the displacement is taking place is challenging. An energy criteria 
can be used to perform an inverse analysis that associates the observed 
crack pattern in the structure with an assumption of the actual displace-
ments that occur at the base, which can be done by minimising the struc-
ture’s complementary energy (Iannuzzo et al., 2021).
The complementary energy of the structure corresponds to the work of 
the reaction forces once a given displacement is imposed to the supports 
of the structure. By computing the minimum complementary energy of 
the structure subjected to a given set of displacements, a stress state can 
be found compatible with the given foundation displacement, which re-
veals the locations where cracks are most likely to form.
The optimisation framework in Equation 15 can be modified to perform 
such analysis by assuming as objective function the complementary en-
ergy for a given foundation displacement map (Table 1e). The foundation 
displacement map imposed in figure 14a corresponds to the spreading of 
the supports of a dome in two halves. The solution is depicted in figures 
14b-d.
The solution obtained shows that for the spreading of the dome in two 
halves, the forces tend to accumulate in the Section B-B, in the middle 
portion orthogonal to the movement. In this Section, the force distribu-
tion assumes a maximum thrust behaviour, as can be seen in figure 14c. 
Along Section A-A, parallel to the movement, there’s a clear depression in 
the centre of the dome [fig. 14d], suggesting the two halves tilting inwards 
and imposing higher pressure onto the arch along Section B-B. Similarly to 
the observation for the minimum-thickness case in Section 5.1, a uniaxial 
stress state forms towards the base of the dome, suggesting meridional 
cracks, while the bi-axial cap remains in place, now following the tilting 
provoked by the support movement [fig. 14c].
In a practical scenario, the crack pattern suggested by the analysis can be 
compared to the cracks observed. The TNA model can then be adjusted so 
additional analyses are performed to investigate the most likely reason for 
observed cracks to form. 
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6. Conclusions

In this overview paper, the formulation of Thrust Network Analysis (TNA) 
is revisited, focusing on its application to assessing unreinforced vaulted 
masonry structures. TNA offers a fast and flexible methodology to com-
pute lower-bound admissible equilibrium solutions for a given masonry 
envelope. The internal forces are discretised and lumped in a network 
with axial-only forces along the edges and external loads and supports 
assigned to the vertices.
First, a graphic formulation of the method is presented for which the con-
nections with ancient graphic statics methods is highlighted. Form and 
force diagrams are introduced, the former representing the projection 
onto the plane of the internal axial forces and the second representing 
the horizontal equilibrium of the former. This graphic-statics-based TNA 
framework is particularly relevant for interactive funicular form explora-
tion in a forward design process.
Then, a numerical and more robust formulation is presented, which allows 
framing TNA in optimisation processes necessary for its application in a 
masonry assessment context. 
The fixed form diagram offers the analyst additional control to model ma-
jor geometrical features and/or structural discontinuities, such as creases, 
cracks or point loads of the masonry structure to assess.
Recent advances in the method are presented in which multiple objective 
functions are possible. These focused on framing the method as a tool 
for masonry assessment by providing a consistent measure of the level 
of stability represented by the computation of the GSF and the stabili-
ty domain. The latter is traced by computing the extreme (minimum and 
maximum) thrust values of the structure ranging from its current state to 
the minimum-thickness state. Further developments coupled TNA with an 
energy criteria, which allow the study of compatible admissible networks 
for given foundation displacements.
Finally, the intense recent activity on lower-bound equilibrium methods, 
including continuous and discrete methods, such as TNA, suggests that 
more research will arise in searching for admissible stress states in ma-
sonry vaulted structures. Multiple challenges and open questions remain, 
such as how to overcome the specificity of the form diagram and pro-
vide engineers with adapted or automatically generated diagrams for the 
analysis. 
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Future work points to connecting the admissible solutions to energy-based 
methods and comparing them with general, rigid-block-based three-di-
mensional tools. 
Moreover, open-source computational tools are being developed based 
on TNA and other lower-bound methods, which will increase the number 
of assessment tools available, benefiting other researchers and practising  
engineers in the field of structural preservation.
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Fig. 1. Two-dimensional thrust line (G) within the semi-circular arch (Λ) highlighting 
the (equilibrium of) block i and reaction forces (R) with vertical (V) and horizontal (T) 
components. The global equilibrium is described by the force diagram (Γ*), which is 
composed by the multiple local equilibria in the nodes of the thrust line’s vertices.

Fig. 2. A Thrust Network (G), its corresponding Form Diagram (Γ), defined as the 
horizontal projection of the thrusts, and the Force Diagram (Γ*), showing the 
equilibrium of the forces in Γ, which are the thrusts of G. The equilibrium of the 
(horizontal) forces applied to the highlighted node A in Γ is represented by the closed 
polygon A* in Γ*.
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Fig. 3. Highlight of a node i in the network with an externally applied vertical load 
pi. The compressive forces (fji, fki, fli) in G can be decomposed in their horizontal (fji

H) 
and vertical (fji

V) components. The projection of the spatial equilibrium in the node 
results in the force diagram (Γ*) in which the vertically applied load pi vanishes.
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Fig. 4. Reciprocal form (Γ) and force (Γ*) diagrams, and the resulting thrust network 
(G) in an orthogonal grid supported along the boundaries subjected to four different 
horizontal force distributions. (a) Equally distributed forces, followed by (b) forces 
increased in the central vertical lines of the form, (c) central, horizontal lines, and 
(d) central, horizontal and vertical lines. Increased horizontal forces, i.e. longer edge 
lengths in the force diagram, result in shallow arches, i.e. creases in the thrust net-
works (G). In G, the thickness of the edges are proportional to the axial force carried.
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Fig. 5. Effect of the scaling factor 1/r in the height of the thrust network’s vertices 
of Figure 4d. The scale factor for G is 1/r = 1, and this factor is decreased for G1 (1/r1 

= 0.6) and G2 (1/r2 = 0.3) resulting in deeper networks keeping the same horizontal 
distribution of the forces (i.e., the force diagram of Figure 4d).

Fig. 6. Form diagram Γ with its independent edges highlighted in blue; its trivial re-
ciprocal force diagram Γ0* in which the forces are equally distributed and the dual 
independent edges are highlighted. Two modifications are performed to Γ0*, mul-
tiplying the length of two independent edges by a factor of 4.0, which result in the 
force diagrams Γ1* and Γ2*.
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Fig. 7. Corner supported form diagram Γ with 8 independent edges (in blue). Initial
force diagram Γ0* and thrust network G0, followed by an individual increase in the
force of each independent edge, showing the effect in the force diagram Γi* and in
the thrust network Gi. 

Fig. 8. Illustration on a semi-circular arch of the objective functions relevant to ma-
sonry assessment that can be explored with Thrust Network Analysis.
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Fig. 9. (a) Perspective of the dome with initial thickness-over-radius t0/Rc=0.10. (b) 
Form diagram used for the assessment of the hemispherical dome with support 
nodes in red and independent edges in blue. (c) Perspective of minimum thickness 
thrust network obtained with tMIN/R=0.041. (d) Main cross section of the dome with 
highlight on points where the network touches intrados (blue) and extrados (green).

Fig. 10. Stability domain with values of normalised thrust-over-weight (T/W) for de-
creasing thicknesses of the dome, starting at t0/Rc = 0.10. Point C highlights the limit 
state, corresponding to a GSF = 2.44. Points A and B highlight the maximum and 
minimum thrusts in the original state.
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Fig. 11. (a) Parameters used to create the Gothic vaults in the study. (b) Perspective 
view of a Gothic vault constructed considering R/l0 = 0.71, t/s = 0.05 and β = 20˚.

Fig. 12. Form diagrams considered for the analysis: (a) orthogonal, (b) fan-like, and (c) 
curved. Highlight on independent edges (blue) and supports (red).



   
343Studia Ligustica 16

Edoardo Benvenuto Prize 2012

Fig. 13. Left: Stability domain for the different form diagrams in figure 12 and the 
convex envelope considered (grey). Right: Minimum thickness solution obtained for 
the curved diagram (tmin/s=0.021).

Fig. 14. (a) Assumed displacement of the supports (Φ). (b) Plan view of the found 
thrust network that minimises the complementary energy associated to Φ, highlight-
ing the points where the thrust touches intrados and extrados. (c) Perspective view, 
and (d) sectional view of the same solution.


