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Abstract 
This paper presents a method for constructing global force polyhedra with target face areas. Although 
the geometric construction and transformations of global force polyhedra and the generation of the 
corresponding form diagram have been demonstrated before, the initial design explorations using 
polyhedral reciprocal diagrams have been based strictly on geometric manipulations devoid of any 
means to explicitly control the face areas of force polyhedra, or equivalently the force magnitudes in the 
structure. As a result, polyhedral reciprocal diagrams have largely remained a shape exploration tool for 
spatial structures without the ability to incorporate quantitative, force-based constraints. The presented 
method significantly improves the designer’s ability to control the face areas during the construction of 
global force polyhedra, and extends polyhedral reciprocal diagrams as a viable tool during early stages 
of design not just for unconstrained form-finding explorations, but also for addressing more explicit and 
quantitative boundary condition criteria. 

Keywords: 3D graphic statics, reciprocal polyhedral diagrams, global force polyhedron, polyhedral 
reconstruction, boundary conditions  

1. Introduction
The geometrical construction of a resultant force and the establishment of global equilibrium with 
respect to the boundary conditions is one of the most fundamental principles of graphic statics. In 2D 
graphic statics, boundary conditions (i.e. external loads and support locations) are typically addressed 
using trial funicular construction, and the procedures of this technique are well documented in numerous 
publications (Bow [7], Cremona [8], Wolfe [21], Allen and Zalewski [6]). Akbarzadeh et al. [3] provided 
a three-dimensional equivalent of the trial funicular method for constructing the global force polyhedron 
(GFP). By translating well established concepts and procedural techniques from 2D to 3D graphic 
statics, it was shown how a GFP can be constructed for a given set of boundary conditions. However, 
this method is strictly dependent on geometric procedures, which results in two key limitations.  

First, the method has been applied only to determinate systems of forces (i.e. tetrahedron). In general, 
the method can be used to construct only one specific GFP (up to a scaling factor) for the corresponding 
system of forces, and it is unclear how the magnitudes of the reaction forces can be controlled and 
logically distributed. 

Second, procedural geometric construction of the GFP means that any change in the boundary conditions 
requires a complete reconstruction of the polyhedral geometry. Although the step-by-step procedure is 
necessary and important for teaching the principles of polyhedral reciprocal diagrams, repeated 
reconstruction is cumbersome and inconvenient during early stages of design when the boundary 
conditions may not yet be finalised and multiple scenarios must still be investigated. 
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By using an iterative geometric solver, the construction of the GFP can be automated to negate the need 
for constant redraw while maintaining a flexible datastructure. Building upon the previous 
implementations (Ikeuchi [12], Little [16], Moni[18]) that introduced various methods for computing 
the geometry of polyhedra from its face areas and orientations, the method presented in this paper 
significantly expands the capacity of reciprocal polyhedral diagrams to address more quantitative, force-
driven boundary constraints in an interactive environment where various constraints can be easily 
imposed.  

In Section 2, we give a brief overview of the theoretical background of polyhedral reconstruction from 
prescribed face areas and orientations, in addition to a condensed description of the iterative solving 
algorithm. In Section 3, we present a simple loading scenario that has more than three supports, and how 
the geometry of the GFP can be freely manipulated depending on various support constraints.  

2. Polyhedral reconstruction from face areas and orientations  

2.1. Theoretical background 
Polyhedral reconstruction is a well-researched topic in numerous fields such as computer vision, 
combinatorics and computational geometry. Various properties of polyhedra (i.e. vertex locations, edge 
lengths, face geometry, face orientations, face areas, dihedral angles, etc.) in combination with some 
additional metric can be used to reconstruct the geometry of polyhedra (Demaine and O’Rourke [9]). 
The method that is most relevant to 3D graphic statics, is the reconstruction of polyhedra from face areas 
and orientations (or equivalently, the magnitudes and directions of the forces, respectively). 

This method originates from Minkowski’s theorem on the existence of a unique polyhedron with 
prescribed face orientations and areas [17]. Alexandrov’s version of the theorem [5] is recited below, 
with slightly modified notations to stay consistent with previous publications on 3D graphic statics by 
the authors. 

If 𝐧𝐧�0, … , 𝐧𝐧�m are non-coplanar unit vectors and 𝐴𝐴0, … , 𝐴𝐴m are positive numbers such that 
 

� 𝐴𝐴j ∙
m

j=0
𝐧𝐧�j = 0 , (1) 

then there exists a closed convex polyhedron whose faces have outward normals 𝐧𝐧�j and 
areas 𝐴𝐴j. 

The proof for this theorem can be found in numerous texts in the literature (Grünbaum [10], Alexandrov 
[5], O’Rourke [19]), and therefore need not be reiterated here. Grünbaum’s interpretation of equation 
(1) is phrased in terms of “fully equilibrated” vectors (Grünbaum, p. 332 [10]), which is directly 
compatible with the principles of graphic statics [1]. Although it can be mathematically proven that a 
unique polyhedron exists with prescribed face orientations and areas, the geometric construction 
procedure was never explicitly mentioned or developed.  

A construction method for Rankine 3D reciprocal diagrams using conic sections and Poncelet duality 
has been recently introduced, demonstrating clear geometric relationships between n-dimensional 
reciprocal diagrams and their dual (n+1)-dimensional Airy stress functions (Konstantatou and McRobie 
[13]). However, this technique is primarily concerned with computing and visualising the geometry of 
the reciprocal polyhedra, and the ability to control the face areas of polyhedra remains unaddressed.  
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2.3. Computational Setup 
This section provides a short background on previous implementations of polyhedral reconstruction 
from face areas and orientations, and the descriptions of the computational setup and procedure of the 
presented method. 

2.3.1. Previous work 
It is not until the 1980s that this problem was able to be addressed with adequate computational and 
numerical optimisation tools. Ikeuchi [12] first introduced a reconstruction method by using a 
constrained minimisation procedure. Little [16] improved this method  by proposing an iterative 
minimisation solver using the Extended Gaussian Image (EGI) [11], followed by Moni’s [18] 
introduction  of the zero-area faces to address potential cross-adjacencies, and Xu and Suk’s [22] use of 
hierarchical EGI to reconstruct concave polyhedra. In these implementations, the methods used were 
validated through simple examples, but the complexity and diversity of polyhedra that can be 
reconstructed was not demonstrated through any large sampling of convincing examples.  

Lachand-Robert and Oudet [13] combined numerical and geometrical algorithms to develop a variant 
of a convex hull method that could reconstruct a polyhedron with 1000 given face orientations and areas. 
A powerful numerical solver is necessary for processing a large data set, but it has limited usefulness 
within the context of structural design using polyhedral reciprocal diagrams, where the user’s ability to 
customize and interact with the method is far more important. 

2.3.2. Setup and solving procedure 
In essence, the iterative solving algorithm takes a set of forces (some or all magnitudes are prescribed) 
and reconstructs the polyhedron through an iterative geometric solver. First step of the algorithm 
constructs the EGI from the magnitudes and orientations of the forces. With each node of the EGI 
representing a face of the polyhedron (Figure 1c), arcs can be drawn on the unit sphere of the EGI to 
determine the main face adjacencies or connectivities. If any of these arcs are intersecting, the 
intersection point represents the location of a fictitious face with a target area of zero, which eventually 
collapses to an edge or vertex of the polyhedron [18]. The purpose of these zero-area faces is to facilitate 
the iterative solver by keeping track of all possible adjacencies in the datastructure regardless of the 
geometrical configuration of the polyhedron at the current iteration. 

For example, in Figure 1e, vertex 6 of the EGI represents a point of cross-adjacency, where any 
combination of the faces 1, 2, 3, and 4 may be adjacent to one another depending on their target areas. 
Once all the zero-area faces have been found and located, a unit polyhedron can be easily constructed 
which has the dual datastructure of the EGI. Finally, the algorithm takes this unit polyhedron and scales 
each face independently from one another towards its prescribed target area, while updating both the 
EGI and the geometry of the polyhedron after each iteration. The algorithm terminates when a desired 
level of tolerance is reached. 

The summary of the iterative solving algorithm is graphically illustrated in Figure 1. 
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Figure 1: Polyhedral reconstruction procedure from prescribed force magnitudes and directions (or polyhedral 
face areas and orientations, respectively): a) spatial forces in equilibrium; b) “spike” representation of the 

Extended Gaussian Image (EGI); c) spherical representation of the EGI; d) EGI with arcs representing the face 
adjacencies; e) EGI with inclusion of detected cross-adjacencies; f) the unit polyhedron with the zero-area face 

highlighted in orange ; and g) the final polyhedral geometry. 
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3. Example 
This section presents two types of examples for a simple loading scenario, where various boundary 
condition constraints result in different geometries of the GFP. The first set of examples will use fixed 
face orientations, and the second set of examples will use fixed prescribed areas as input constraints. 

3.1. The setup 
Consider the loading scenario in Figure 2. There are three applied point loads, and five pinned supports, 
which thus represents a static indeterminacy of degree two. The magnitudes, orientations and the 
locations of the applied loads (forces 1, 2 and 3) are fixed and are not allowed to change in any of the 
examples. In order to easily compare the changing locations of the supports, the supports are coplanar 
in all of the examples (i.e. a shell structure with its supports on a flat surface), and their positions can be 
either fixed or unconstrained on that plane. Each applied load will represent one unit force, and the 
magnitudes of the forces at the supports are assigned and measured proportionally to this unit force. For 
each example, a table showing which constraints were used as input is shown. An empty slot in the table 
means no constraint was assigned. In the form diagram, for each example, force vectors are shown with 
dots at 0.5 increments for visual reference.  

 

Figure 2: a) The loading scenario, with three non-vertical point loads and five pin supports (the hidden lines are 
shown for clarity and legibility only, and do not necessarily imply any specific structural topology); b) the EGI 
of the loading scenario; and c) the unit polyhedron with zero-area faces shown in orange, and the applied load 

faces shown in green. 

3.2. Fixed face orientations 
In the first set of examples, all face orientations are constrained to remain the same. In addition to the 
orientation constraints, assigning specific target areas for all faces will potentially result in an over-
constrained scenario where the forces may not sum to zero and therefore a polyhedron may not exist 
that satisfies the input constraints. Therefore, only some of the faces are given specific target areas. 
Because the face orientations are constrained, only the magnitudes of the forces at the supports can 
change; the support locations do not change in these examples. 

In the example in Figure 3a, all faces corresponding to the support reaction forces were given a target 
area of 1. However, the converged solution does not result in a polyhedron with the correct face areas, 
suggesting that indeed the inputs caused the problem to be over-constrained, and either the target area 
or the orientation criteria for some of the faces need to be unconstrained. In Figure 3b and c, fewer faces 
are given prescribed areas, and the solution converges much more accurately as expected. 
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3.3. Prescribed target areas 
In some structural design applications, the magnitude of the reaction force at a support may be more 
important than its location or orientation. In the second set of examples in Figure 4, the orientation of 
the reaction forces at the supports are allowed to change freely. Unlike the examples in Figure 3, all 
support faces can be assigned target areas, and the correct orientations of the faces will be found that 
satisfies the target area constraints. In these examples, the resulting polyhedron satisfies the target area 
constraints, but the supports are relocated to new positions.  

4. Conclusion 
This paper illustrated how the boundary condition constraints can be addressed during the construction 
of the GFP. With a GFP that satisfies force-based constraints and criteria, it can be reintegrated with 
previously demonstrated form-finding explorations using polyhedral reciprocal diagrams to address 
more realistic structural design problems. The examples presented in this paper demonstrates that 
applications of 3D graphic statics can be extended beyond mere shape explorations to address more 
force-driven boundary condition constraints and more quantitative and practical structural design 
criteria.  

Topics for future work may include: addressing parallel loads or resolving multiple coplanar faces; 
extending the algorithm to reconstructions of concave polyhedra, which represents a GFP for a structure 
where both pinned and roller supports can be present; and improving the computational efficiency of 
the algorithm for cases with a disproportionally large number of zero-area faces. 
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Figure 3: Examples where the orientation of the support faces are not allowed to change.   
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Figure 4: Examples where the orientations of the support faces are free to change, and target areas can be 
assigned for all faces. 
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Abstract

This paper presents a method for constructing global force polyhedra with target face areas. Although the geometric construction and transformations of global force polyhedra and the generation of the corresponding form diagram have been demonstrated before, the initial design explorations using polyhedral reciprocal diagrams have been based strictly on geometric manipulations devoid of any means to explicitly control the face areas of force polyhedra, or equivalently the force magnitudes in the structure. As a result, polyhedral reciprocal diagrams have largely remained a shape exploration tool for spatial structures without the ability to incorporate quantitative, force-based constraints. The presented method significantly improves the designer’s ability to control the face areas during the construction of global force polyhedra, and extends polyhedral reciprocal diagrams as a viable tool during early stages of design not just for unconstrained form-finding explorations, but also for addressing more explicit and  quantitative boundary condition criteria.

Keywords: 3D graphic statics, reciprocal polyhedral diagrams, global force polyhedron, polyhedral reconstruction, boundary conditions 

1. Introduction

The geometrical construction of a resultant force and the establishment of global equilibrium with respect to the boundary conditions is one of the most fundamental principles of graphic statics. In 2D graphic statics, boundary conditions (i.e. external loads and support locations) are typically addressed using trial funicular construction, and the procedures of this technique are well documented in numerous publications (Bow [7], Cremona [8], Wolfe [21], Allen and Zalewski [6]). Akbarzadeh et al. [3] provided a three-dimensional equivalent of the trial funicular method for constructing the global force polyhedron (GFP). By translating well established concepts and procedural techniques from 2D to 3D graphic statics, it was shown how a GFP can be constructed for a given set of boundary conditions. However, this method is strictly dependent on geometric procedures, which results in two key limitations. 

First, the method has been applied only to determinate systems of forces (i.e. tetrahedron). In general, the method can be used to construct only one specific GFP (up to a scaling factor) for the corresponding system of forces, and it is unclear how the magnitudes of the reaction forces can be controlled and logically distributed.

Second, procedural geometric construction of the GFP means that any change in the boundary conditions requires a complete reconstruction of the polyhedral geometry. Although the step-by-step procedure is necessary and important for teaching the principles of polyhedral reciprocal diagrams, repeated reconstruction is cumbersome and inconvenient during early stages of design when the boundary conditions may not yet be finalised and multiple scenarios must still be investigated.

By using an iterative geometric solver, the construction of the GFP can be automated to negate the need for constant redraw while maintaining a flexible datastructure. Building upon the previous implementations (Ikeuchi [12], Little [16], Moni[18]) that introduced various methods for computing the geometry of polyhedra from its face areas and orientations, the method presented in this paper significantly expands the capacity of reciprocal polyhedral diagrams to address more quantitative, force-driven boundary constraints in an interactive environment where various constraints can be easily imposed. 

In Section 2, we give a brief overview of the theoretical background of polyhedral reconstruction from prescribed face areas and orientations, in addition to a condensed description of the iterative solving algorithm. In Section 3, we present a simple loading scenario that has more than three supports, and how the geometry of the GFP can be freely manipulated depending on various support constraints. 

2. Polyhedral reconstruction from face areas and orientations 

2.1. Theoretical background

Polyhedral reconstruction is a well-researched topic in numerous fields such as computer vision, combinatorics and computational geometry. Various properties of polyhedra (i.e. vertex locations, edge lengths, face geometry, face orientations, face areas, dihedral angles, etc.) in combination with some additional metric can be used to reconstruct the geometry of polyhedra (Demaine and O’Rourke [9]). The method that is most relevant to 3D graphic statics, is the reconstruction of polyhedra from face areas and orientations (or equivalently, the magnitudes and directions of the forces, respectively).

This method originates from Minkowski’s theorem on the existence of a unique polyhedron with prescribed face orientations and areas [17]. Alexandrov’s version of the theorem [5] is recited below, with slightly modified notations to stay consistent with previous publications on 3D graphic statics by the authors.

If , … ,  are non-coplanar unit vectors and , … ,  are positive numbers such that

		

		,

		(1)





then there exists a closed convex polyhedron whose faces have outward normals  and areas .

The proof for this theorem can be found in numerous texts in the literature (Grünbaum [10], Alexandrov [5], O’Rourke [19]), and therefore need not be reiterated here. Grünbaum’s interpretation of equation (1) is phrased in terms of “fully equilibrated” vectors (Grünbaum, p. 332 [10]), which is directly compatible with the principles of graphic statics [1]. Although it can be mathematically proven that a unique polyhedron exists with prescribed face orientations and areas, the geometric construction procedure was never explicitly mentioned or developed. 

A construction method for Rankine 3D reciprocal diagrams using conic sections and Poncelet duality has been recently introduced, demonstrating clear geometric relationships between n-dimensional reciprocal diagrams and their dual (n+1)-dimensional Airy stress functions (Konstantatou and McRobie [13]). However, this technique is primarily concerned with computing and visualising the geometry of the reciprocal polyhedra, and the ability to control the face areas of polyhedra remains unaddressed. 



2.3. Computational Setup

This section provides a short background on previous implementations of polyhedral reconstruction from face areas and orientations, and the descriptions of the computational setup and procedure of the presented method.

2.3.1. Previous work

It is not until the 1980s that this problem was able to be addressed with adequate computational and numerical optimisation tools. Ikeuchi [12] first introduced a reconstruction method by using a constrained minimisation procedure. Little [16] improved this method  by proposing an iterative minimisation solver using the Extended Gaussian Image (EGI) [11], followed by Moni’s [18] introduction  of the zero-area faces to address potential cross-adjacencies, and Xu and Suk’s [22] use of hierarchical EGI to reconstruct concave polyhedra. In these implementations, the methods used were validated through simple examples, but the complexity and diversity of polyhedra that can be reconstructed was not demonstrated through any large sampling of convincing examples. 

Lachand-Robert and Oudet [13] combined numerical and geometrical algorithms to develop a variant of a convex hull method that could reconstruct a polyhedron with 1000 given face orientations and areas. A powerful numerical solver is necessary for processing a large data set, but it has limited usefulness within the context of structural design using polyhedral reciprocal diagrams, where the user’s ability to customize and interact with the method is far more important.

2.3.2. Setup and solving procedure

In essence, the iterative solving algorithm takes a set of forces (some or all magnitudes are prescribed) and reconstructs the polyhedron through an iterative geometric solver. First step of the algorithm constructs the EGI from the magnitudes and orientations of the forces. With each node of the EGI representing a face of the polyhedron (Figure 1c), arcs can be drawn on the unit sphere of the EGI to determine the main face adjacencies or connectivities. If any of these arcs are intersecting, the intersection point represents the location of a fictitious face with a target area of zero, which eventually collapses to an edge or vertex of the polyhedron [18]. The purpose of these zero-area faces is to facilitate the iterative solver by keeping track of all possible adjacencies in the datastructure regardless of the geometrical configuration of the polyhedron at the current iteration.

For example, in Figure 1e, vertex 6 of the EGI represents a point of cross-adjacency, where any combination of the faces 1, 2, 3, and 4 may be adjacent to one another depending on their target areas. Once all the zero-area faces have been found and located, a unit polyhedron can be easily constructed which has the dual datastructure of the EGI. Finally, the algorithm takes this unit polyhedron and scales each face independently from one another towards its prescribed target area, while updating both the EGI and the geometry of the polyhedron after each iteration. The algorithm terminates when a desired level of tolerance is reached.

The summary of the iterative solving algorithm is graphically illustrated in Figure 1.
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		[bookmark: _Ref189394285]Figure 1: Polyhedral reconstruction procedure from prescribed force magnitudes and directions (or polyhedral face areas and orientations, respectively): a) spatial forces in equilibrium; b) “spike” representation of the Extended Gaussian Image (EGI); c) spherical representation of the EGI; d) EGI with arcs representing the face adjacencies; e) EGI with inclusion of detected cross-adjacencies; f) the unit polyhedron with the zero-area face highlighted in orange ; and g) the final polyhedral geometry.





3. Example

This section presents two types of examples for a simple loading scenario, where various boundary condition constraints result in different geometries of the GFP. The first set of examples will use fixed face orientations, and the second set of examples will use fixed prescribed areas as input constraints.

3.1. The setup

[bookmark: _GoBack]Consider the loading scenario in Figure 2. There are three applied point loads, and five pinned supports, which thus represents a static indeterminacy of degree two. The magnitudes, orientations and the locations of the applied loads (forces 1, 2 and 3) are fixed and are not allowed to change in any of the examples. In order to easily compare the changing locations of the supports, the supports are coplanar in all of the examples (i.e. a shell structure with its supports on a flat surface), and their positions can be either fixed or unconstrained on that plane. Each applied load will represent one unit force, and the magnitudes of the forces at the supports are assigned and measured proportionally to this unit force. For each example, a table showing which constraints were used as input is shown. An empty slot in the table means no constraint was assigned. In the form diagram, for each example, force vectors are shown with dots at 0.5 increments for visual reference. 
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		[bookmark: _Ref481290618]Figure 2: a) The loading scenario, with three non-vertical point loads and five pin supports (the hidden lines are shown for clarity and legibility only, and do not necessarily imply any specific structural topology); b) the EGI of the loading scenario; and c) the unit polyhedron with zero-area faces shown in orange, and the applied load faces shown in green.





3.2. Fixed face orientations

In the first set of examples, all face orientations are constrained to remain the same. In addition to the orientation constraints, assigning specific target areas for all faces will potentially result in an over-constrained scenario where the forces may not sum to zero and therefore a polyhedron may not exist that satisfies the input constraints. Therefore, only some of the faces are given specific target areas. Because the face orientations are constrained, only the magnitudes of the forces at the supports can change; the support locations do not change in these examples.

In the example in Figure 3a, all faces corresponding to the support reaction forces were given a target area of 1. However, the converged solution does not result in a polyhedron with the correct face areas, suggesting that indeed the inputs caused the problem to be over-constrained, and either the target area or the orientation criteria for some of the faces need to be unconstrained. In Figure 3b and c, fewer faces are given prescribed areas, and the solution converges much more accurately as expected.

3.3. Prescribed target areas

In some structural design applications, the magnitude of the reaction force at a support may be more important than its location or orientation. In the second set of examples in Figure 4, the orientation of the reaction forces at the supports are allowed to change freely. Unlike the examples in Figure 3, all support faces can be assigned target areas, and the correct orientations of the faces will be found that satisfies the target area constraints. In these examples, the resulting polyhedron satisfies the target area constraints, but the supports are relocated to new positions. 

4. Conclusion

This paper illustrated how the boundary condition constraints can be addressed during the construction of the GFP. With a GFP that satisfies force-based constraints and criteria, it can be reintegrated with previously demonstrated form-finding explorations using polyhedral reciprocal diagrams to address more realistic structural design problems. The examples presented in this paper demonstrates that applications of 3D graphic statics can be extended beyond mere shape explorations to address more force-driven boundary condition constraints and more quantitative and practical structural design criteria. 

Topics for future work may include: addressing parallel loads or resolving multiple coplanar faces; extending the algorithm to reconstructions of concave polyhedra, which represents a GFP for a structure where both pinned and roller supports can be present; and improving the computational efficiency of the algorithm for cases with a disproportionally large number of zero-area faces.
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		[bookmark: _Ref481291096]Figure 3: Examples where the orientation of the support faces are not allowed to change.  
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		[bookmark: _Ref481306011]Figure 4: Examples where the orientations of the support faces are free to change, and target areas can be assigned for all faces.
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