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Summary 
This paper introduces a powerful computational design and analysis method for shells, based on 
funicular networks. Based on Thrust Network Analysis, an optimization approach is presented, 
which finds the closest fit, compression-only solution to an arbitrary input surface for given 
network topologies,. This research offers new possibilities for the design of efficient, but exciting 
shells which start to visually blur the forms which have been associated to compression-only and 
freeform shell. Furthermore, this method provides the foundation for a fully three-dimensional 
equilibrium analysis method for historic masonry vaults with complex geometries. The paper gives 
new insight in the force dependencies in 3D funicular networks, which serve as a basis for the 
nonlinear solving procedure presented.  Through several examples, the power of this novel research 
is demonstrated.  
Keywords: Compression-only shells, freeform surface structures, structural optimization, Thrust 
Network Analysis, Force Density Method. 

1. Introduction 
Compression-only shells have efficient structural forms which minimize material use and render the 
use of reinforcement obsolete or severely reduce it. Historically, physical design techniques such as 
hanging cable nets (Antoni Gaudi, Frei Otto) or cloths (Heinz Isler) have been used as powerful, but 
time and cost intensive form finding approaches for compression shells. Different computational 
approaches have been presented, in order to ease the design process of such three-dimensional 
funicular networks [1,2]. 
In general, three-dimensional funicular systems are indeterminate to a high degree, i.e. a given set 
of applied loads generates several solutions. A unique solution can be enforced by assigning force 
densities to the network [3]. Recently, Thrust Network Analysis (TNA) has been introduced as a 
method, to control the force densities directly in order to fully exploit all degrees of indeterminacy 
in design and analysis [4,5]. Using the concept of reciprocal diagrams [6], the force densities, hence 
the shape can be controlled explicitly, and thus be used for direct design explorations. This forward 
design approach provides new insights in the structural behaviour of funicular systems, and enables 
a  formal  richness  in  design,  far  beyond  typical  inverted  “hanging”  forms  [7].  But  it is not easy to 
steer the shape of the funicular network in the direction of a desired form by the means of the 
reciprocal diagram without experience.    
This paper describes a numerical method that allows the efficient application of the concepts of 
TNA to design and analysis of compression-only shells and vaults. The direct method of TNA is 
embedded into a parameter search, in order to find the closest-fit compression solution of a network 
with a given planar projection, for a given surface and given vertical loading. The main applications 
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for this method are the design rationalization of a given shape or the assessment of the safety of 
historic masonry vaults.   
The structure of this paper is as follows. Section 2 briefly summarizes the theoretical background of 
the approach, especially the relation between the reciprocal diagram and force densities. Section 3 
describes the method and its computational setup in detail. Section 4 finally shows examples that 
demonstrate the power of the presented approach, not only for the design of free form shells, but 
also for the equilibrium analysis of historical unreinforced masonry vaulted structures with complex 
geometries. 

2. Controlling force densities 
Three-dimensional funicular networks generally 
have a high degree of indeterminacy; forces can be 
redirected and attracted in the different directions in 
space allowed in the topology. This was clearly 
shown by [4] by means of horizontal reciprocal 
force diagrams for the case of vertical loading only. 
These reciprocal force diagrams represent the in-
plane equilibrium of the form diagram, i.e. the 
horizontal projection of the 3D funicular network. 
The existence of different force diagrams for the 
same form diagram correspond to different internal 
force distributions, and hence different compression-
only solution for the same set of vertical loads (Fig. 
1). 
Reciprocal diagrams furthermore visualize 
geometrically how local changes influence global 
internal force equilibrium (Fig. 2). This intuitive 
reading of the indeterminacy comes from the 
understanding of the reciprocal constraints of 
parallelity between form and force diagram [5,6]. 
Translated to the Force Density framework [3], this 
means that allowed reciprocal diagrams represent 
combinations of force densities q which maintain 
equilibrium in compression-only, while keeping the 
horizontal projection of the network fixed. The 
direct relation between the force densities q and the 
geometry of the reciprocal diagrams, lH

*, is the 
following 

 
 (1) 
 

with l and s the branch lengths and axial forces of 
the equilibrium network, lH and sH  their respective 
horizontal components, and lH

* the reciprocal branch 
lengths.   
From Eq. 1, it is clear that not all force densities q 
can be chosen freely, as not all reciprocal branch 
lengths are independent (because of the reciprocal 
constraints). This can be seen from inspection of Fig. 
2; only a specific set of reciprocal branch lengths -
and thus equivalently force densities- can be chosen 
independently without violating the reciprocal 
constraints –or equivalently (horizontal) equilibrium. 

 
Fig. 2: The dependency of the force densities in 
the form diagram (left) can be understood 
through visual inspection of the reciprocal 
diagram (right). 

 
Fig. 1: Redistribution of the internal forces, 
controlled by reciprocal force diagrams [5]. 
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The intuitive understanding of force density dependency, as visualized in Fig. 2, can be formalized 
for networks of any topology. It is again the reciprocal diagram which provides the insight, but 
using another geometric analogy. The geometrically allowed variations of the reciprocal, i.e. those 
that keep its branches parallel to the respective branches of the form diagram, are related to the 
inextensible mechanisms of the reciprocal diagram, considered as a 2D pin-jointed, bar-node 
structure which is properly restrained, i.e. externally determinate. These mechanisms can be 
identified using a matrix analysis procedure which uses Gauss Jordan Elimination (GJE) [8]. Here, 
this procedure thus directly defines a possible set of branches whose force densities qindep, or 
equivalently (horizontal) thrusts sH (= lH

*), can be chosen independently.  

3. Optimization Method 
The optimization method presented in this paper uses the matrix formulation of the Force Density 
Method [3] enhanced with new extensions of Thrust Network Analysis (TNA) [5]. 
Based on the new approach for identifying the force dependencies between branches in equilibrium 
networks (see above), an efficient optimization routine has been developed to find the closest 
compression-only network solution to an arbitrary surface.  

3.1 Overview 
The set of independent force densities represent the only necessary, and also the minimal amount, 
parameters to describe and control the 3D equilibrium of a network. The closest-fit problem can 
thus be reduced to finding the set of qindep which minimize the global objective 
 

(2) 
 

with zT the z-coordinates of the nodes of the form diagram projected on the target surface. 
 

Fig. 3 shows the flow diagram of the optimization 
approach which includes some geometrical and 
topological pre-processing steps (Section 3.2) and 
an iterative parameter search (Section 3.3). 

3.2 Pre-processing steps 
As the topology stays unchanged in the nonlinear 
optimization, the computations related to the 
topology of the network can be performed 
separately first.  

3.2.1 Processing input geometry 
The topology of the network is captured with a 
branch-node matrix Cs. From the geometry of the 
network (x,y) and the topology of the network (Cs), 
the reciprocal constraints matrix K is then 
constructed (see 3.3.1). 

3.2.2 Calculating nodal loading 
Since the optimization searches for the closest-fit 
solution to a given target surface, the height field zT, 
obtained from the target surface for the fixed 
projection (x,y), can be used to have a good 
approximation of the 3D tributary area for 
generating the lumped nodal loads. 

 
 
Fig. 3: Flow diagram of the computational 
approach. 
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3.2.3 Identifying independent branches 
With the matrix analysis mentioned above, a possible set of independent branches is identified, 
whose force densities are the k independent parameters of the problem. 

3.3 Parameter search 
The parameter search is conducted using a genetic algorithm (GA) because the problem is discrete 
non-convex, and very spiky. At each iteration, the fitness is calculated implicitly using two fast 
optimization steps, described in the next two subsections. 

3.3.1 Generating balanced force density proportions 
Because the applied loading is vertical, they do not appear in the reciprocal diagram [4]. This means 
that it can be scaled without affecting the components of the applied loading, and thus that the force 
densities can be written as  

 
 (3) 
 

where t have the proportional relation of the force densities, but need to be scaled with the scalar 
(1/r) to render the real values of the force densities q.  

Instead of directly using the qindep as the parameters of the problem, the tindep, together with r, are 
used in order to limit the search space of the GA to tindep = [0,1]. 
The properties of the reciprocal diagram can be used to find all the t corresponding to the inputted 
tindep

(i). The equations representing the reciprocal constraints between the branch vectors of the force 
network u and v and its reciprocal diagram u* and v* can be written in matrix form [5]  

                   
            (4) 

 
with r* = [ u* | v* | t ]t and 

                                    
      

 
                                         (5) 

 
 

in which I2m is the identity matrix of size 2m, C the first ni columns of Cs, with ni the number of 
inner nodes of the form diagram, and U and V the diagonal matrices of u and v respectively. The 
first 2ni rows of K are the dual constraints equations and the last 2m rows of K the parallelity 
constraints equations.  
The dependent tdep, related to the inputted tindep

(i), could be found directly using linear algebra, but a 
non-negative set of tindep

(i) does not guarantee non-negative tdep, which is a necessary condition for a 
convex reciprocal, or alternatively a compression-only solution [5]. In order to avoid this, the 
following linear optimization is introduced 
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This optimization pushes the tindep to be as close to tindep
(i) without the  tdep becoming negative. 

3.3.2 Finding closest-fit solution for given t 
Using the set of t obtained in 3.3.1, the closest-fit compression-only network to the target surface is 
found with the following least-square data fitting problem with linear constraints 

 
  (7) 
 

with p the loading vector, and D = C tTCs where T is the diagonal matrix of t. The optimization 
renders the closest-fit solution z and the overall scale of the reciprocal, 1/r. The force densitites q 
are then directly found using Eq. (3). The cost f of the optimization (7) is furthermore directly the 
fitness evaluated in the GA at that iteration for the tindep

(i).  

3.4 Implementation 
A fully working prototype implementation has been developed in RhinoScript [9] for the import and 
export of the geometry, and in Matlab for the computation, using the following routines from the 
optimization toolbox [10]:  

- ga for the global parameter search, based on genetic algorithms (3.3);  
- linprog for the linear optimization to find a non-negative set of t for a choice of tindep (3.3.1); 

and  
- lsqlin for the least-squares data fitting of the z to the target surface zT. 

4. Results and discussion 
This paper will show examples that demonstrate the power of the presented approach, not only for 
the design of freeform shells, but also for the equilibrium analysis of historical unreinforced 
masonry vaulted structures with complex geometries.  

4.1 Design of freeform, funicular shell 
The examples in Figs. 4 and 5 serve as a simple proof of concept of the optimization method, 
convincingly demonstrating its power. convincingly demonstrating its power.  
For a freely formed surface and randomly generated form diagram, the figures show  

a) the closest-fit, compression-only solution; 
b) a proportional distance map, showing the very good matching between the compression-

only network and the target;  
c) a pipe diagram proportional to the magnitude of the branch forces, visualizing how forces 

are flowing and being attracted along certain branches; and  
d) the reciprocal force diagram showing the distribution of force densities, or equivalently 

horizontal thrusts.  
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Fig. 4: For a freely formed target surface and random network: a) closest-fit, compression-only solution; 
b) distance map; c) pipe diagram proportional to the branch forces; and d) the reciprocal force diagram 
showing the distribution of force densities, or equivalently horizontal thrusts. 



The  second  pattern  shown  in  Fig.  5  starts  from  the  first  pattern,  but  adds  “open  edge  arches”  along  
the boundaries. These constrain the flexibility of the pattern, as witnessed in a reduction of degrees 
of freedom (see Table 1). Still, there is very good matching.  

From Table 1, it can be seen that the implemented optimization method is very efficient. The two 
examples in Figs. 4 and 5 found the best-fit solution in less than a minute. The results were obtained 
in Matlab using a Dell Precision T7400, Intel Xeon CPU X5460 3.16GHz, 8.00 GB RAM. The 
table also shows for these different patterns their degree of freedom k, i.e. the number of branches 
whose force densities can be controlled independently.    

The pattern of the examples in Figs.4 and 5 is quite 
flexible because it has branches in several directions, 
and  most  importantly  in  the  direction  of  “creases”.  In  
order to approximate a surface well, the used pattern 
indeed needs to have branches aligned in the 
directions in which creases should be generated, i.e. 
more force should be attracted.  
From this example, it is clear that freeform shells can 
be designed easily by finding the closest-fit solution 
automatically. The resulting force distribution 
suggests directly which aspects of the geometry of 
the target surface can be improved to have a more 
efficient shell, i.e. by reducing the extreme forces. 

A direct form finding approach can be very powerful. It furthermore forces the designer to 
consciously consider the forces in the system, during the interactive form finding (ref iass last). As 
important shortcoming though, such an approach cannot check if a compression-only solution can 
be found within the same structure under asymmetric loads. The method presented in this paper 
now allows to also easily consider –because of the speed of calculating- a series of asymmetric 
loading cases already in the initial design stage.  
A very revealing and interesting conclusion of this research is that it suggests that a compression-
only solution can be fitted to any freely formed target surface as long as it does not curl back onto 
itself and has  no  “puddles”. The supports also have to be on  the  “outside”  of the network. The 
question thus is no longer if it is possible to realize a freeform shell with such properties, but rather 
at what cost, i.e. how do the forces need to be redistributed internally in order to achieve a certain 
three-dimensional shape. Of course, this is only possible when either a very dense and highly 
indeterminate, hence flexible, force network topology is used, or alternatively, the choice or 
generation of network topology has been informed by the target surface’s  topography  and  curvature.  
As an example, a good fit will only be found for a shape with a crease, if force lines run along it. 

Table 1: For the examples in Figs. 4-6: 
total number of branches, degrees of 
freedom of the network patterns, and the 
solving times of the optimization. 

Fig. Number 
branches m 

Degrees of 
freedom k 

Solving 
time (sec) 

4 171 63 37 
5 127 35 52 
6 528 51 568 

 
Fig.  5:  Starting  from  the  form  diagram  of  the  example  in  Fig.  4,  “open  edge  arches”  are  added  to  the  
pattern, reducing the degrees of freedom of the network topology.  



4.2 Equilibrium analysis of masonry vaults 
The field for which these new developments will 
have the most impact is three-dimensional 
equilibrium analysis of historic vaults in 
unreinforced masonry [11,12].  
These vaults have often complex geometries and a 
forward approach is unrealistic to be able to get to a 
force distribution resulting in a thrust network 
fitting within the geometry of the vaults. 
Furthermore, in historic masonry structure a discrete 
approach where force paths can be chosen is highly 
relevant due to their often cracked and displaced 
nature. Fig. 6 shows a fully 3D thrust network 
mapped almost perfectly to the middle surface of the 
complex sexpartite geometry. 
 

5. Conclusion and future work 
This paper introduced a powerful optimization approach, based on extensions of Thrust Network 
Analysis, which finds the closest-fit, compression-only solution to an arbitrary input surface for 
given network topologies. The large potential for both the design of freeform (and efficient) shells 
and for fully three-dimensional equilibrium analysis of historic masonry vaults have been 
demonstrated through a series of examples. An important conclusion of the research presented in 
this paper is that by controlling the high degree of indeterminacy of 3D funicular networks, 
compression shells can be generated which have not been imagined before.  
Next steps in this research include the coupling of this solving procedure to the choice or generation 
of force patterns in order to improve the fitting, and implementing additional constraints necessary 
to further develop this to a full-fledged lower-bound analysis approach for historic masonry vaults, 
a field in desperate need for such tools.  
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