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Abstract

This dissertation presents Thrust Network Analysis, a new methodology for generating compression-only
vaulted surfaces and networks. The method finds possible funicular solutions under gravitational loading
within a defined envelope. Using projective geometry, duality theory and linear optimization, it provides
a graphical and intuitive method, adopting the same advantages of techniques such as graphic statics,
but offering a viable extension to fully three-dimensional problems. The proposed method is applicable
for the analysis of vaulted historical structures, specifically in unreinforced masonry, as well as the design
of new vaulted structures. This dissertation introduces the method and shows examples of applications
in both fields.
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Chapter 1

Introduction

1.1 Introduction

This dissertation develops a new methodology for assessing historic masonry structures and for designing
new compression structures.

1.1.1 Safety assessment of historic masonry structures

Much of the world’s architectural heritage consists of buildings in unreinforced masonry which need to
be preserved for future generations. Many of these structures have complex geometries and their static
equilibrium is still poorly understood. Figure 1.1 shows some examples of intricate, three-dimensional
vaults.

When looking at the vaults in Figure 1.1, questions immediately arise about how these vaults stand and
how stable they are. They have complex three-dimensional geometry, unknowable material properties,

(a) (b) ( )bc

Figure 1.1 – Complex three-dimensional masonry vaults: (a) Hieronymites Monastery Church (Jerónimos),
Lisbon, Portugal, 1499-1528; (b) King Henry VII’s Lady Chapel, Westminster Abbey, London, England, 1503-
1519; and (c) Pfarrkirche, Königswiesen, Austria, 1520.
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and numerous cracks and voids due to support movements over the centuries. The safety of these historic
structures is difficult to determine and current computational tools are unsatisfactory.

To emphasize the inappropriateness of linear finite element analysis (FEA) for understanding the struc-
tural behavior of masonry assemblies, the simple arch example from Block et al. [2006] is reproduced.
Figure 1.2 shows a linear elastic finite element analysis showing internal stresses due to self-weight pre-
dicted in two semi-circular masonry arches with thickness to radius ratios of 0.08 (Figure 1.2a-c) and one
of 0.16 (Figure 1.2b-d). The FEA outputs of the two arches are very similar and it is difficult for the
analyst to note any significant difference between the two arches of Figure 1.2.

A simple equilibrium analysis, represented by a compressive thrust line, immediately reveals the major
difference between the two arches: the first arch (Figure 1.2a-c) is too thin to contain a thrust line and
therefore, would not stand under its own weight unless the arch material had some appreciable value of
tensile capacity. The linear elastic finite element analysis gives an unsafe and deceptive result for the
thinner arch by assuming that the material is capable of resisting tension. While the FEA shows one
possible stress state in the material, a linear elastic analysis does not say anything about the stability
or collapse of the arch. The analysis of masonry arches is a well known problem, and this example
immediately shows how difficult it is to draw conclusions from stress analysis of unreinforced masonry,
even for simple two-dimensional problems.

Assessing the structural safety of three-dimensional masonry vaults is a pressing and difficult problem.

1.1.2 Direction of design

Progressions in computer graphics, and in particular the rapidly expanding possibilities of computer
aided design (CAD) software, allow the modeling of very complex three-dimensional shapes. These
important technological and computational developments resulted in an explosion of formal explorations
in architectural design, and made it possible to generate new, and complex shapes, regardless of their
structural stability.

Unfortunately, the structural solutions necessary to make these new shapes possible typically use an
awkward accumulation of material. Such an approach to building is intellectually, and often architec-
turally dissatisfactory. This situation occurs because of a lack of structural thinking during the design
process. Figure 1.3 shows the Walt Disney Concert Hall in Los Angeles by Frank Gehry. This Pritzker
prize-winning architect promotes an architectural process which is disconnected from structures, and
purposefully ignores any structural input. The structural engineer comes in at the end of his process to
make his creations (cf. his “sketch” in Figure 1.3a) stand. This unidirectional process results in heavy
structures, waste of material and awkward details (Figure 1.3c).

The world today is faced with global warming and rapidly decreasing natural resources [Gore, 2008; Head,
2009]. The built environment is responsible for approximately half of the greenhouse gas emissions [Pew
Center, 2008]. Architectural designers therefore have an important responsibility towards the preservation
of the planet, since the built environment has a major impact on the natural environment.

Figure 1.4 shows a successful example of a more sustainable design approach in a recent project for
a new museum at the World Heritage Site of Mapungubwe in South Africa designed by Peter Rich
Architects, Michael Ramage (Cambridge University), Henry Fagan and John Ochsendorf (MIT) [Ramage
et al., 2008]. By determining the shape of three-dimensional compression forms, the authors were able to
design masonry vaults with no reinforcing steel. The low stresses further made it possible to use cement-
stabilized tiles pressed on-site without any added energy and using local soil, hence reducing the shipping
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(b) (d)

( )bc

Figure 1.2 – Comparison between finite element analysis (a-b) and thrust line analysis (c-d) of two arches with
t/R ratios of (a-c) 0.08 and (b-d) 0.16 [Block, 2005].
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Figure 1.3 – (a) Conceptual sketch by Frank Gehry for the Walt Disney Concert Hall in Los Angeles, CA,1999-
2003; (b) aerial view; and (c) the structure before receiving cladding [Tombesi, 2004].
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(a)

(b) ( )bc

Figure 1.4 – (a) New museum in Mapungubwe in South Africa, 2008-2009, using (b) cement-stabilized tiles made
from local soil to build (c) structural compression vaults . Project credits: Peter Rich Architects, M. Ramage, J.
Ochsendorf, M. Hodge, H. Fagan, A. Fitchett, P. Block and J. Bellamy. (Pictures by Peter Rich, Michael Ramage
and James Bellamy).

of materials to the site. The Guastavino vaulting technique allowed the masons to build with minimal
formwork resulting in very little waste. This project illustrates the potential for masonry compression
forms in contemporary building design.

1.2 Statement of problem

From the previous discussion, two key problems can be distilled. There is an acute need for:

• better methods for assessing the safety of complex vaulted structures in unreinforced masonry; and

• new design tools which bring structural intuition into the design process, suggesting good form.
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1.3 Equilibrium analysis of vaulted masonry structures

An equilibrium approach is necessary since not stresses, but stability is important for traditional masonry
structures [Heyman, 1995; Huerta, 2001]. A better understanding of the mechanics of these discrete,
compression-only structures is sorely needed to identify unsafe structures and to prevent unnecessary
interventions.

The author’s Masters thesis [Block, 2005; Block et al., 2006] developed tools for understanding and
explaining the basic behavior of two-dimensional masonry structures. Such an intuitive approach is
missing for three-dimensional structures. That thesis identified the potential of “thrust surfaces” for the
analysis of 3-D systems and called for “the use of graphic statics for three-dimensional force network
systems” [Block, 2005, p. 34].

1.4 Funicular design of vaulted structures

The most efficient way to transfer loads is through axial forces instead of by bending. Funicular systems
act solely in compression or tension for a given loading. In a seminal paper, Heinz Isler [1959] suggested
39 shapes for funicular vaults, ending with “etc.” to demonstrate the unlimited possibilities (Figure 1.5).

1.5 Outline of chapters

This dissertation presents a novel computational methodology for exploring three-dimensionalequilibrium
shapes, Thrust Network Analysis (TNA). The approach allows the user to find possible funicular solutions
under gravitational loading within a defined envelope. Through the use of intuitive graphical methods,
the analyst gains control over the exploration of 3-D equilibrium solutions. The proposed method is
applicable for the safety assessment of historic vaults with complex geometries in unreinforced masonry
and for the design exploration of funicular shapes.

The dissertation is divided into four parts. In Part I, the motivation and goals of the research are defined
and framed within the current state of the art.

Chapter 2 reviews the relevant literature and discusses the current state of equilibrium analysis of vaulted
masonry structures, and the design of funicular structures. Previous methods for assessing the stability
of three-dimensional vaulted masonry are reviewed and assessed, and a critical overview is given of the
approaches used for designing three-dimensional funicular systems.

Part II presents Thrust Network Analysis (TNA), the new methodology developed in this dissertation.

Chapter 3 introduces the basic framework of the TNA method. It states the assumptions, fundamentals
and key concepts; outlines the method in an overview of the main steps in the methodology; sets up the
equilibrium constraints of the network model; formulates the problem as a linear optimization problem;
and explains the solving procedure.

Chapter 4 elaborates on the implementation of TNA. It discusses how to discretize the structural action
and loading conditions of three-dimensional vaults into discrete force network models, expanding on the
geometric properties and constraints of allowed network topologies and the generation of their reciprocal
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Figure 1.5 – Image from Heinz Isler’s paper “New shapes for shells” at the First Congress of theInternational
Association for Shell Structures(IASS) in 1959, featuring 39 shapes for funicular vaults [Isler, 1959].
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force diagrams, which represent the forces in them. A new rule is introduced for deriving the degree of
structural indeterminacy of three-dimensional network systems.

Chapter 5 discusses extensions to the basic TNA framework introduced in Chapter 3. Alternative objec-
tive functions are developed for the optimization problem; other loading cases and network configurations
are discussed and the equivalence between reciprocal force diagrams and discrete Airy stress functions is
explained. A non-linear extension to the basic framework is described, including the degrees of indeter-
minacy of complex three-dimensional networks.

Part III presents applications and results of TNA.

Chapter 6 shows the results of using TNA for the assessment of the stability of masonry vaults in order
to validate the method. It discusses how to identify sensible force patterns to represent the structural
action of different vault typologies and the requirements on the force networks for modeling pathologies.
Several examples and case studies show the potential of this method to assess the stability of a wide
range of complex vault types.

Chapter 7 demonstrates the power of the new method for the design exploration of compression-only
structures.

In Part IV, Chapter 8 provides general conclusions and outlines future work in this field.
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Chapter 2

Literature review

This chapter reviews the relevant literature. Previous equilibrium methods for assessing the stability of
three-dimensional vaulted masonry are discussed, and a critical overview is given of the approaches used
for designing three-dimensional funicular systems.

2.1 Equilibrium analysis of masonry vaults

Historic masonry constructions generally fail not due to lack of compressive strength, but due to insta-
bilities caused by differential foundation settlements, earthquakes, or long-term deformations [Heyman,
1995; Ochsendorf, 2002]. Understanding the equilibrium of structures in unreinforced masonry is primar-
ily a problem of stability. For structures to stand with negligible tensile capacity, they must have a good
structural shape.

Boothby [2001] provides a critical overview of the different analysis methods for masonry arches and
vaults, and calls for the development of an automated three-dimensional version of graphical equilibrium
analysis. Huerta [2001; 2004] emphasizes the importance of an equilibrium approach for historic masonry
structures and advocates the use of compressive thrust line analysis to explore the range of possible
equilibrium states within the broader framework of limit analysis.

This section limits its scope to relevant precedents applying equilibrium analysis to masonry vaults. An
extensive historical overview of equilibrium methods for the analysis of masonry structures was recently
given by Huerta and Kurrer [2008] and Huerta [2008].

2.1.1 Ungewitter / Mohrmann’s tables

In the third edition of Ungewitter’s manual on Gothic construction [Ungewitter, 1890], Professor Mohrmann
included a set of tables giving the horizontal thrusts for a set of vaults described by a series of parameters.
Figure 2.1 shows one of these tables. They allow a rapid estimate of the thrust of masonry vaults, but
are limited to common vault typologies.
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(a) (b)

Figure 2.1 – Mohrmann’s tables in Ungewitter’s “Lehrbuch der gotischen Konstruktionen” [1890] to rapidly
calculate the thrust of masonry vaults.

2.1.2 Slicing technique

Thrust line analysis allows the understanding and exploration of the range of lower bound equilibrium
solutions of masonry vaults, by showing the paths of the resultant compressive forces throughout the
structure. For two-dimensional problems, it also suggests possible collapse mechanisms. Thrust line
analysis is primarily a two-dimensional technique and is therefore most appropriate for the analysis of
arches, flying buttresses or any structure which can be reduced to a sectional analysis [Nikolinakou et al.,
2005]. Graphic statics can be used to compute thrust lines (see e.g. Wolfe [1921] or Swain [1927]). The
main advantage of using graphic statics is the clear visual representation of the possible compressive
forces in the system through the use of funicular polygons and thrust lines (Figure 2.2a).

Any three-dimensional vault can be analyzed using thrust line analysis when combined with the slic-
ing technique, which was first discussed in Ungewitter [1890]. It slices the vault into two-dimensional
imaginary strips, reducing the vault’s structural behavior to a combination of two-dimensional problems
which can be more easily analyzed (Figure 2.2b). Figure 2.2c shows one of Wittmann’s applications
of combining thrust line analysis with the slicing technique to analyze spatial vaults [Wittmann, 1879].
According to Huerta [2008], this is the first known application of this approach.

For most historic structures, such an analysis approach is appropriate and sufficient, although it obviously
will not capture the full three-dimensional behavior of the structure and it relies heavily on the chosen
slice geometry. The main drawback of such a methodology is that it is entirely manual and quickly
becomes unwieldy and tedious [Boothby, 2001]. Barthel [1993] gives a thorough overview of the different
levels of sophistication of the approximations necessary for thrust-line analysis of cross-vaults. Smars
[2000] developed Calipous, software using an AutoCAD interface to perform pseudo-3D analysis in an
automated fashion starting from the actual, measured geometry of the vaults (Figure 2.3a). Block [2005]
and Block et al. [2006] proposed a method to produce models which contain the graphical construction
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(a) (b)

( )ac

Figure 2.2 – (a) A pseudo-3D analysis of a gothic rib vault using the slicing technique and graphic statics by
Wolfe [1921]. (b) Slicing technique applied to different web geometries introduced by Mohrmann [Ungewitter,
1890] and (c) the first known application of thrust-line analysis combined with the slicing technique by Wittmann
[1879].
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Figure 2.3 – (a) Thrust lines in slices taken through the vault’s actual, deformed geometry [Smars, 2000]; and
(b) interactive thrust line analysis allowing a parametric exploration of rib vault [Block, 2005].

but which are parametric and interactive, reducing the tedious iterative nature of traditional graphic
methods (Figure 2.3b). However, the construction of these models is still quite complicated and time-
consuming. Also, more complex vault geometries are hard to represent using only a combination of
two-dimensional views. It is not surprising therefore that all of the above references deal mainly with
cross vaults or groin vaults. For more complicated vault types, it becomes harder to assume appropriate
cuts, and to understand how the different two-dimensional arches balance in three-dimensional space.

2.1.3 Equilibrium shell analysis

Heyman [1966] introduced a rigorous framework of limit analysis applied to masonry structures. For
3-D structures, instead of using graphical methods, he used membrane solutions [Green and Zerna, 1968;
Calladine, 1983] for specific vault typologies, such as domes, groin and rib vaults or fan vaults (Figure
2.4), to use them in an equilibrium analysis by checking if these membrane solutions fit within the vault
section. He often used the slicing technique to inform the derivation of these formulations, resulting in
equilibrium shell equations usable for a wide range of related structures [Heyman, 1977].

This approach gives the thrust values for vaults based on the membrane solution, but it is not clear how
changes in the level of fill for example are taken into consideration in these general formulations. While
membrane solutions find an equilibrium state that lies near the centerline of the vault, the result is a safe
lower bound approach and does not take full advantage of the actual thickness of the vault to carry the
loads.

2.1.4 Rigid block limit analysis

The structural behavior of historical masonry is a problem of stability and not of stresses, since these
are typically very low in these structures. As a result, scaled block models with sufficient friction can be
used to model the stability of actual vaults. Figure 2.5a shows explorations by Danyzy [1732] to test the
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(a) (b) ( )bc

Figure 2.4 – (a) Groin vault sliced into parallel arches and (b-c) parameter definition, taken from a detail of (a),
to set up the equilibrium shell equations [Heyman, 1977].

collapse modes of arches on buttresses.

Livesley applied limit analysis to three-dimensional rigid block assemblies by modeling the interaction
forces at the interface between all stones [Livesley, 1978, 1992]. All the interaction forces between voussoirs
are computed in an overall optimization scheme. His approach is perhaps the most rigorous way of
describing the stability of a rigid block assembly. Whiting et al. [2009] use Livesley’s framework in
combination with procedural modeling to explore the limits of stability by exploration. The contact
points of the resultants at each interface can be seen as the three-dimensional locus of pressure points
of the vault [Moseley, 1833; Ochsendorf, 2002]. The surface going through these points is related to a
surface of thrust.

2.1.5 Force network method

The main challenge of analyzing three-dimensional masonry vaults is that they are highly indeterminate
structures. For a typical vault, there are infinite compressive solutions which could explain its safety:
different assumptions can be made about the flow of forces, the force distributions, and the support
conditions.

O’Dwyer [1991; 1999] proposed a promising three-dimensional equilibrium approach based on force net-
works, which goes beyond two-dimensional thrust lines. He implemented optimization methods to inves-
tigate masonry vaults by finding possible compression-only force networks which are entirely contained
within the boundaries of the vault. His work set up a powerful framework allowing different choices
of force patterns to represent the infinite internal force equilibrium of the highly indeterminate masonry
structures (i.e. not limited to a singular structural action as in the slicing technique). He also incorporated
loading and structural discontinuities, and vault pathologies such as cracks.

The main drawback of O’Dwyer’s approach is the inability to deal with the high degree of indeterminacy
of three-dimensional force networks which represent possible internal force paths in the vaults, limiting
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(a) (b)

Figure 2.5 – (a) Drawings of plaster model experiments of arch collapse [Danyzy, 1732]; and (b) limit analysis
applied to a groin vault, the intersection points of the resultants at each face can be connected to form a thrust
surface, or more accurately a 3-D locus of pressure points [Whiting et al., 2009].

(a) (b)

Figure 2.6 – (a) The chosen force network topology and equilibrium solution for a barrel vault with point load,
and (b) the compression-only solution of a dome with a point load [O’Dwyer, 1999].
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(a) (b) ( )bc

Figure 2.7 – (a) Hanging model of groin vault (Institut für Leichtbau Entwerfen und Konstruieren, ILEK); (b)
fitting catenary solution in section using visual clues [Kilian, 2007]; and (c) 3-D solution using a funicular network
model and optimization [Andreu et al., 2007].

the applications to problems where assumptions could be made on the force distribution, such as simple
network topologies or networks with a high level of symmetry. Although different force path assumptions
can be included in the force network, the solutions are still dependent on the mesh choice. The analyst
needs to make an informed guess for the geometry of the force network based on experience or intuition.
It is nonetheless surprising that this promising approach has not been explored further.

2.1.6 Funicular model

Poleni [1748] used Robert Hooke’s [1675] hanging chain idea – As hangs the flexible line, so but inverted
will stand the rigid arch – for the analysis of the cracked dome of St. Peter’s in Rome. He assessed the
stability of the dome by hanging a string loaded with weights proportional to segments of a radial slice
of the dome in front of a scaled drawing of a section through the dome. This becomes very challenging
and time-consuming for a three-dimensional network. Furthermore, it becomes quite difficult to relate
the hanging shape to the geometry of the vault. Also, not every network topology works and tweaking
the hanging model to fit within the section is hard to achieve for more involved networks than a simple
groin vault (Figure 2.7a).

Physical models are too cumbersome for the analysis of complex 3-D vaulted masonry. Virtual hanging
models overcome some of the issues of the physical models. Kilian [Kilian, 2007] develops a virtual
hanging model and shows how to steer the funicular network using visual or geometric clues to constrain
the models (Figure 2.7b). Recently, the problem of finding a virtual hanging-string (i.e. funicular)
network constrained within the limits of a vault has been implemented within an optimization framework
by Andreu et al. [Andreu et al., 2007], as shown in Figure 2.7c. This approach is promising and complete
as an approach for the assessment of vaulted masonry. It is not clear how the edges of the network,
which is free to find its equilibrium within the vault’s section, can be controlled in the case of discrete or
partially supported vaults. Also, the optimization problem may want to be reformulated to produce the
range of possible thrust values instead of the one solution closest to the center line of the vault.
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possible fractures

(a) (b)

(d)( )bc

Figure 2.8 – (a) The starting mesh, before the optimization, (b) visualization of the optimal thrust surface, (c)
visualization of the flow of forces in the obtained form (d) the optimized discrete Airy stress function [Fraternali
and Rocchetta, 2002].

2.1.7 Stress functions

Fraternali and Rocchetta [2002] and Fraternali [2003] proposed a new approach for masonry vaults using
piecewise-linearly approximated thrust surfaces. Their force equilibrium is related to discrete Airy stress
functions, and this approach is a 3-D application of the lumped stress method [Fraternali et al., 2002].

The method finds the optimal shape of the discretized thrust surface to fit within the section of the vault
using a geometrical algorithm on the polyhedral stress function. This approach optimizes the thrust
surface by manipulating the discrete stress function iteratively. Because the stress function and topology
of the discretized thrust surface are a direct mapping of each other, this results in a progressive combined
topological and geometrical optimization, so it is not dependent on the initial topology.

Although it could be achieved using the combination of discrete thrust surfaces and Airy stress functions,
the employed solving algorithm does not allow the incorporation of structural discontinuities. But if
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started from the initial, perfect geometry, the authors claim that this approach suggests where cracking
might occur for the specific vault geometry being analyzed. The generality and validity of their approach
to identify possible areas of cracking needs to be further investigated. As an assessment tool for masonry,
it will only provide a yes/no answer on the stability of the vault. The solving procedure also does not
address situations with non-properly supported vaults, e.g. only reactions at the corners.

Although several promising approaches have been identified, a versatile equilibrium approach to assess
the safety of three-dimensional masonry structures is still needed.

2.2 Design of funicular vaults

This section will give an overview of three-dimensional approaches for the design of funicular vaults.
There are not many precedents for this, since funicularity is not often used as a starting point in de-
sign. Instead, the design often develops without any structural considerations and is then optimized for
stresses or deflections [Ramm et al., 1993, 1997]. There are some promising trends in this area, such as
morphogenesis [Pugnale and Sassone, 2007], but in essence, the start of the design process is often an
un-informed, structurally poor shape. The form-finding processes discussed in this section all inherently
have a structural rationale, seeking axial-force-only solutions.

2.2.1 Graphic statics

Graphic statics is a powerful and intuitive methodology for exploring funicular form in 2-D [Culmann,
1866, 1875; Cremona, 1879, 1890; Zalewski and Allen, 1998]. The force polygon and force diagram are
linked through geometric constraints and changes can occur in both the form polygon and force polygon
[Kilian, 2006a]. This allows exploration of either form or forces while each change in one representation af-
fects the results in the other through the geometric constraints. Active Statics implements these graphical
methods into an interactive, real-time tool, which allows for an interactive design exploration [Green-
wold and Allen, 2001]. However, the method is limited to two-dimensional systems. Figure 2.9 shows a
three-dimensional extension of graphic statics by Föppl [1892]. The process becomes very complicated,
requiring the knowledge of the many rules and specific constructions of graphic statics and descriptive
geometry. This process is challenging because three-dimensional structures are analyzed on flat sheets of
paper. Furthermore, the approach only deals with statically determinate, rigid, 3-D bar-node systems.

2.2.2 Physical hanging models

Heinrich Hübsch (1795–1863) used simple hanging string models for building designs in the 19th century
[Tomlow et al., 1989; Gerhardt, 2002a]. Most famously, Antoni Gaud́ı (1852-1926) used three-dimensional
hanging models (Figure 2.10a) for the crypt of the Colònia Güell. The hanging model of the crypt was
realized by a highly skilled team from 1898 to 1908 [Tomlow et al., 1989]. Making the physical model was
tedious and time-consuming. An initial topology for the network of connected strings had to be chosen
for the network which was adapted and regularly updated to move towards design ideas. For hanging
models, the effect of removing, adding or adjusting the lengths of strings is not straightforward at all,
since any local changes to the network influenced the global equilibrium solution. It was hard to control
or achieve the desired shape. Furthermore, the weights had to be updated constantly as the nodes move
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Figure 2.9 – Three-dimensional graphic statics using projective geometry for a determinate frame [Föppl, 1892].
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around in space, which then again influenced the equilibrium causing the nodes to shift again to find a
new equilibrium. The entire process demands a careful, iterative approach.

Physical hanging models are excellent design explorers since they address both structural and formal
considerations and present the designer at all times with a status of the design that reflects the cumulative
changes applied to the model [Kilian, 2006a]. Large models can facilitate and encourage creative team
work and hanging models are still relevant today [Addis, 2007].

Heinz Isler (1926– ) perfected a technique of hanging cloth models, dipped in plaster or self-setting
polyester. After hardening, these perfect tension models were inverted to become a compression-only
shell. The measured shape is then scaled up to the actual size of the vault [Chilton, 2000]. Although
Isler explored different form-finding techniques, the obtainable shapes depend heavily on the materials
and techniques used. A real issue in using this technique is that it requires the experience, structural
intuition, and skills that Isler acquired over decades of working. Furthermore, the process demands
meticulous detail and a lot of patience.

Frei Otto (1925- ) and his team at the Institut für Leichte Flächentragwerke (IL) at the University of
Stuttgart explored a variety of physical form-finding techniques, from hanging models to soap models.
The shape of the lattice grid shell of the Multihalle in Mannheim, for example, was found using a very
accurate hanging model (Figure 2.10e). These models gave the designers flexibility over the shape of
the vaults, but again, it was a tedious and iterative process. An important disadvantage of using these
physical hanging models is that the forces in the members are only found at the end. This means that
the designer receives feedback about the overall geometry of the vault but not about the forces necessary
to achieve a certain equilibrium shape. The first digital model at the IL was created in 1966 by Klaus
Linkwitz [Serebryakova, 2006], announcing a new era of computational form-finding.

2.2.3 Computational Form-finding

For the form-finding of tension structures today, one of the main approaches is the force density method
introduced by Linkwitz and Schek [1971] for finding the equilibrium shape of tension networks (Figure
2.11). By introducing force densities, which are defined as the ratio of the axial force of a branch to
its length, the equations expressing the equilibrium of the networks could be linearized. Due to the
development of sparse matrix techniques, these linear equations could be solved efficiently [Gründig
et al., 2000]. Although developed and used mainly for finding the equilibrium shape of pre-tensioned
membranes or cable nets and inflated structures, the force density method can also be used to model
hanging networks.

Initial values for these force densities need to be chosen for the first-order form-finding. Note that if
constant force densities are used throughout the network except at the corners and edges where stress
concentrations can occur its shape forms a minimal surface between the given boundaries. The equilib-
rium values of the force densities are found in an iterative optimization process. So, the relations between
the choice of force densities and the three-dimensional equilibrium solution are not straightforward. There
is nothing that informs the user on how to distribute the forces to obtain a desired three-dimensional
shape. There is also no option to constrain a solution to a predefined solution space.

The other main category of methods is based on dynamic relaxation (DR) [Barnes, 1999]. DR is mostly
used to improve given input shapes, but does not allow the designer to easily interact with the optimization
process. New, interactive evolutions of DR systems, which will be discussed in the next section, are
important improvement relating designer input, reducing most of the shortcomings of DR.
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(a)

(b)

( )bc

Figure 2.10 – (a) Antoni Gaud́ı’s hanging model [Tomlow et al., 1989] for the crypt of the chapel of the Colònia
Güell, 1898-1916 (Picture by Pedro Uhart); (b) Heinz Isler’s hanging model and Isler’s tennis hall shells, Heimberg,
1978 [Chilton, 2000]; (c) hanging model by Frei Otto’s team at the Institut für Leichte Flächentragwerke (IL) in
Stuttgart [Addis, 2005] for the Multihalle in Mannheim, Germany, 1975.
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(a) (b)

Figure 2.11 – (a) Series of tensioned equilibrium networks found between five low points and one high point
with different proportions of force densities for the inside of the network compared to the edges [Schek, 1974]; (b)
reciprocal surfaces from Williams [1986].

An important reference for this disseration, which will be expanded on later, is Williams’ [1986] use of
reciprocal figures which describe the in-plane equilibrium of unloaded tensile membranes, represented
by a discretized network (Figure 2.11b). This mapping of reciprocal figures onto two reciprocal surfaces
to solve for its 3-D equilibrium is very powerful, but possible because the surfaces are only loaded by
in-plane pre-stress without external, out-of-plane loading.

2.2.4 Interactive form-finding

Inspired by cloth simulation in the computer graphics community, Simon Greenwold wrote a Particle
Spring (PS) library for Processing [Reas and Fry, 2007] which is basically an application of dynamic relax-
ation [Barnes, 1999]. Since 2002, Axel Kilian has been developing the CADenary for virtual explorations
of hanging strings and meshes [Kilian, 2004a, 2006b] (Figure 2.12). The novelty of his implementation is
to combine the dynamic simulation and interactive environment to find equilibrium and to allow the user
to playfully explore these constantly evolving structures [Kilian, 2004b; Kilian and Ochsendorf, 2005]. He
argues that discovery of form can occur in transitional, pre-optimized states.

This design tool allows the user to explore hanging models in the virtual world [Kilian and Ochsendorf,
2005], but as with physical models, it is hard to control and predict how the final shape of the compression
network will look if local changes are being made or a string model is being assembled and hung under
gravity. Kilian [2004b] tried to address the issue of translating this wire frame representation into an
actual structure by creating connection rules for extruding sections to the form-finder. That aspect can
be considered more as a way of giving feedback about the relative sizes of the forces in the system.

Interactive design tools are very powerful, but their manipulation and control has to be improved for
satisfactory and flexible design exploration.
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(a) (b)

Figure 2.12 – Real-time virtual catenary exploration tool by Kilian: CADenary v.1 [Kilian, 2004a], and v.2
[Kilian, 2006b].

2.3 Summary

This chapter provided a critical overview of the key references and precedents relevant to equilibrium
analysis of vaulted masonry structures and the design of funicular structures.

With contributions by O’Dwyer [1999], Fraternali and Rocchetta [2002], Andreu et al. [2007] and Whiting
et al. [2009], in recent years there have been significant developments and evolutions in computational
equilibrium analysis methods for masonry vaults. From this review, we conclude that modeling three-
dimensional historical masonry is very challenging, particularly since the approaches need to deal with
significant structural, material, loading, and support discontinuities. Other crucial issues are how to deal
with the high level of indeterminacy of three-dimensional vaults, how to put boundaries on the stability
of a vault and how to develop an assessment procedure which is independent of the user input. The
slicing technique strongly influences the results. The initial mesh topology or chosen force pattern limit
the possible equilibrium shapes in a funicular analysis or for the force network approach. An important
aspect also is how the results are being communicated, particularly the relation between geometry and
relative stability or the flow of forces.

There are many precedents for funicular design. The main aspect which is missing in all the discussed
approaches is the balance between control and freedom. The interactivity and speed of the new compu-
tational exploration tools opens up promising directions, but still deal with the same issues of control as
the physical approaches.

There is a need for interactive three-dimensional equilibrium methods which offer control and flexibility
to the designer, and which allow the user to understand the interdependencies of the hard constraints
enforced by gravity.
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Thrust Network Analysis
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Chapter 3

Methodology: Thrust network
analysis

3.1 Introduction

Graphic statics is a powerful method for exploring the infinite possible equilibrium solutions, both for the
analysis of historic structures in unreinforced masonry and for the design of new funicular structures. The
main drawback is the limitation to two-dimensional problems. This thesis develops a three-dimensional
version of thrust-line analysis which uses reciprocal diagrams so that the approach maintains the strengths
of the two-dimensional applications using graphic statics.

To be effective, the following features of graphical statics should be preserved:

• a graphical and intuitive representation of the forces in the system; and

• an interactive exploration of the range of equilibrium solutions bounded by a minimum and maxi-
mum thrust.

To cope with the challenges of the high degree of indeterminacy of three-dimensional problems, the user
should be able to

• identify and control the many unknowns (degrees of freedom) of the equilibrium system; and

• negotiate between the unknowns by formulating an optimization problem with different objective
functions.

The new methodology developed in this thesis, Thrust Network Analysis (TNA), extends O’Dwyer’s
Force Network Method for funicular analysis of vaulted masonry structures [O’Dwyer, 1999]. Inspired
by Williams [1986], reciprocal figures are introduced to relate the geometry of the three-dimensional
equilibrium networks to their internal forces. This linearizes the constraints and deals with the high level
of indeterminacy of fully three-dimensional funicular networks. A similar framework as for the Force
Density Method is used to describe the problem elegantly [Schek, 1974].
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3.2 Fundamentals

3.2.1 Assumptions

To develop Thrust Network Analysis for the assessment of unreinforced masonry structures, four key
assumptions must be made. Assumptions b) and c) are specific for masonry.

a) The structural action of the vault is represented by a discrete network of forces with discrete loads
applied at the vertices.

It is common practice for structural engineers to use truss analogies for modeling reinforced concrete
and unreinforced masonry structures (see e.g. [Schlaich and Schäfer, 1991; O’Dwyer, 1999]). A system
of discrete forces facilitates the modeling of applied loads, cracks and other structural discontinuities
[O’Dwyer, 1999]. This is discussed further in Chapters 4 and 6.

Discrete force networks allow the user to clearly visualize the possible force paths in the vault, and by using
reciprocal diagrams, to determine a satisfactory distribution of internal forces. Discrete reciprocal force
diagrams are graphical and intuitive, and their visual nature allows a graphical verification of the process
[Maxwell, 1869]. The solutions can be checked more easily than numerical or arithmetic methods, and
the method is very transparent. The denser the network mesh, the closer it will approximate a continuous
thrust surface, i.e. a continuous bending-free surface in equilibrium with the applied loads.

b) A compression-only solution in equilibrium with the applied loads and contained within the vault’s
geometry represents a valid, i.e. stable, equilibrium state of the vault.

The safe theorem, also called the lower-bound theorem, has been developed within the framework of limit
analysis for masonry structures by Heyman [1966]. To use this framework, Heyman introduced the three
assumptions stated in (c). To prove that an unreinforced masonry vault will stand, the analyst must
find a network of compressive forces in equilibrium with the applied loads that fits everywhere within the
volume of the vault. If one such network is found and the assumptions in (c) are not being violated, then
the safe theorem guarantees that the vault will be safe even though it might not be the “true” state of
internal forces in the real vault.

c) Masonry has no tensile capacity; sliding does not occur; and the stresses are low enough so that
crushing does not occur (infinite compression strength is assumed).

The first assumption of no tensile strength is a conservative assumption. Even though stone, brick
and mortar have some tensile capacity, because of the material’s brittle behavior and the heterogeneity
observed in all historic structures, it is best to neglect those contributions. The latter two assumptions
are unconservative, but not unreasonable. They need to be checked locally.

From the above, the network must have the following properties:

• branches have axial compression forces only;

• branches meet at nodes, which are in equilibrium with external forces applied to the nodes; and

• all nodes are contained within the masonry envelope.
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G

G*

G

Figure 3.1 – Relationship between the compression equilibrium shape, the thrust network (G), its planar pro-
jection (primal grid Γ) and the reciprocal diagram (dual grid Γ∗).

Since the solutions are funicular, which in our case means compression-only, this also means that they
can never fold back onto themselves, which would demand that some elements act in tension. Note that
there are no constraints on the length of the branches or the planarity of the facets of the solution.

d) All loads need to be vertical.

This is a strong and very constraining assumption. The reason for this assumption will be discussed in
§3.2.4. It is appropriate for vaults with a dominant, and parallel, loading case such as heavy masonry
structures. Possibilities of this framework and extension to other loading cases will be discussed in
Chapters 4 and 5.

3.2.2 Nomenclature

Figure 3.1 shows the relationship between the primal grid Γ, which is the horizontal projection of the
funicular equilibrium solution, the thrust network G, and the planar dual grid Γ∗, which is the reciprocal
force diagram of the primal grid Γ. When referring to elements or properties of the dual grid Γ∗, an
asterix symbol (*) will be used.

In this dissertation, equilibrium structures (or solutions) refer to compression funicular structures, i.e. a
structure in equilibrium with the applied loads using only compressive, axial forces, without any internal
bending.
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Figure 3.2 – The primal grid Γ and dual grid Γ∗ are related by a reciprocal relationship. The equilibrium of
a node in one of them is guaranteed by a closed polygon in the other and vice versa. The labeling uses Bow’s
notation [Zalewski and Allen, 1998; Bow, 1873].

3.2.3 Reciprocal Figures

Reciprocal figures are geometrically related such that corresponding branches are parallel and branches
which come together in a node in one of the networks form a closed polygon in the other and vice
versa [Maxwell, 1864]. If applied to structural mechanics, the closed polygons on the reciprocal figure
represent the static equilibrium of the nodes in the original figure and the lengths of the branches in
it are proportional to the axial forces along the corresponding branches in the original figure (Figure
3.2). For a clear overview of the history, development and applications of reciprocal figures, see the 1911
edition of the British Encyclopedia [LoveToKnow, 2006]. Graphical methods, such as graphic statics,
are applications in structural analysis and design of reciprocal figures [Cremona, 1879, 1890]. Micheletti
[2008] gives a clear and rigorous description of the mathematical relationship of reciprocal diagrams for
self-stressed frameworks based on graph theory.

The solution G should be compression-only. As will be shown in the next section, this is true when
its horizontal projection Γ is entirely in compression in its plane. The static force equilibrium of Γ
is represented by its closed reciprocal figure Γ∗. Γ and Γ∗ satisfy Maxwell’s geometrical definition of
reciprocal figures. His definition is true in general, but does not guarantee that the force diagram is
in compression-only as the nertworks considered here demand. To guarantee that the primal grid is in
compression-only, Williams [1986] added the following constraint to the dual grid Γ∗ (Figure 3.3a): the
closed polygons representing the equilibrium of the (compression) nodes in the primal grid are formed
clock-wise in the dual grid (Figure 3.3b).
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Figure 3.3 – (a) Reciprocal surfaces from Williams [1986], and (b) closed polygons representing the equilibrium
of compressive nodes in the primal grid are formed clock-wise in the dual grid.

3.2.4 Key concept I: Parallel Loads

From descriptive geometry, we know that if a set of vectors is in equilibrium in space then their projection
along any direction onto a plane will also be in equilibrium [Henrici and Turner, 1903] (Figure 3.4a).

Consider first the case in which the geometry of the 3-D network G is known and in equilibrium, i.e.
with all bars in compression, with a set of vertical loads. This equilibrium could for example have been
found by inverting the resulting shape of a hanging string model with the same set of loads hung from
each node. The network G shown in Figure 3.1 is funicular for equal loads applied at each node.

Because the 3-D network of forces in G is in equilibrium, we know that the 2D graph Γ, which is the
horizontal projection of G, will also be in equilibrium. The in-plane equilibrium of Γ can be found and
visualized using the planar reciprocal force diagram Γ∗ and this equilibrium represents the horizontal,
i.e. the xy-, equilibrium of network G.

By projecting this system of forces on a horizontal plane, which is perpendicular to the externally applied
vertical loads (Assumption 3.2.1), the applied loads reduce to a point in the planar projection Γ (Figure
3.4b). In constructing the reciprocal diagram Γ∗, because there are no external loads to give scale to
the reciprocal diagram, the geometric reciprocal relationships between Γ and Γ∗, as defined in in §3.2.3,
are true regardless of the size of Γ∗. In this case, since the geometry of G is assumed known and in 3-D
equilibrium with the applied loads, the size, represented by the scale factor ζ, of Γ∗ is uniquely defined
and is related to the geometry (depth) of that specific solution. The forces in the system can then easily
be found by measuring the lengths of the corresponding branches in the dual grid multiplied by the scale
ζ and using trigonometry.

Rather than seeking the internal forces in a known 3-D equilibrium system, the presented methodology
can be used to find the geometry of G in equilibrium with a given set of vertical loads. Starting from
the grid Γ in Figure 3.1, which is the horizontal projection of the as-yet unknown 3D network G, it has
a corresponding Γ∗ whose triangulated geometry is uniquely defined, but not its scale ζ. It is said that
Γ has only one self stress [Ash et al., 1988]. This scale is the only parameter in this system.

Choosing a scale ζ gives a unique solution G. Increasing ζ corresponds with increasing the size of Γ∗ or,
equivalently, scaling up the magnitude of all horizontal forces in the system which results in a decrease of
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(a) (b)

P

P

Figure 3.4 – (a) Henrici and Turner [1903] show that the projection of a combination of force vecotrs in equilib-
rium in space is also in equilibrium when projected along any direction onto a plane. (b) Projecting the bar forces
on the horizontal plane, i.e. perpendicular to the vertical load P reduces it to a point in the planar projection.
The external load P therefore also does not appear in the closed polygon representing the horizontal equilibrium
of the node.

the depth of the solution (Figure 3.5a). The height of each node of two solutions with different ζ’s with
respect to a planar closing surface is inverse proportional to the thrust in each system, represented by the
scale of their respective dual grids, ζ. If an equilibrium solution G(0), with nodal heights z(0) and dual
scale ζ(0), is found, an entire family of solutions can immediately be obtained which are all proportionally
related to G(0). A possible equilibrium for the same set of loads, G(j), is related to G(0) as follows

ζ(j)

ζ(0)
=

∆z(j)
i

∆z(0)
i

∀i (3.1)

So, from (3.1) we see that with one parameter, the scale ζ, the procedure can generate an infinite number
of three-dimensional solutions. The height differences, measured from the closing surface to the nodes,
of these solutions with the same force pattern and internal force distribution are inversely proportional
to the scale of their dual grids. This relationship of course holds since all externally applied loads are
vertical. This is equivalent in graphic statics to moving the pole of the funicular diagram on a line parallel
to the closing string (Figure 3.5b).

3.2.5 Key concept II: Indeterminate networks

The network G, or its planar projection Γ, in Figure 3.1 is peculiar: all nodes in the network are three-
valent, i.e. three branches come together at each node. In three dimensions, the forces in a three-valent
network are uniquely defined. This is clearly represented in the reciprocal diagram Γ∗: because it is
triangulated, it is locked and uniquely defined, except for the scale factor ζ (Figure 3.2). A 3-D three-
valent network is statically determinate with respect to its specific funicular loading.

A statically indeterminate primal grid Γ, with nodes with a higher valency than three, has several possible
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Figure 3.5 – (a) Decreasing the scale factor of the dual grid means overall lower horizontal forces in the system
and hence a deeper solution for the same set of applied loads. (b) This is equivalent to moving the pole in the
funicular polygon of a graphic statics construction along the closing string.
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Figure 3.6 – (a) For an indeterminate primal grid, (b-c) multiple dual grids corresponding to different internal
distribution of the (horizontal) forces are possible.
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PP

P P

(a) (b)

Figure 3.7 – Two indeterminate four-bar structures with the same load P, force pattern Γ, and depth of the
structure, but changes in the force diagram Γ∗, i.e. changing the internal distributions of the forces. The diagram
Γ∗ of (b) is stretched to double the size in one direction compared to (a), resulting in the doubling of the horizontal
forces in that direction and therefore also in a structure half as deep in that direction.

reciprocal diagrams Γ∗. This means that different states of self stress exist, i.e. different distributions of
the internal forces are possible. Maxwell [1864] stated that the forces are indeterminate, so that more
than one force needs to be known in order to determine all forces in the system, or else that certain
relations among them had to be given, for example based on the elasticity of different parts of the frame.
The elastic solution represents one of an infinite number of possible equilibrium solutions for a statically
indeterminate grid.

In Figure 3.6b, two possible dual grids are shown for the chosen two-way primal grid. In Γ∗(1), the dual
branch lengths are approximately equal, meaning that the structure will have approximately constant
horizontal thrust in both directions. In Γ∗(2), the dual branch lengths in one direction are on average
three times larger than the branches in the other direction, meaning that a preferred thrusting direction
is given to the vault. The solution resulting from the second dual grid will attract more force in the
direction the dual is “stretched.” More force being attracted along certain force lines also means that
the structure will become shallower along those lines. This is clearly shown for the simple four-branch
network in Figure 3.7.

The notion that the infinite stress states of an indeterminate planar truss can be explored graphically
was shown by Kilian and Ochsendorf [2005] (Figure 3.8).

3.3 Overview of the main steps

The following section will provide an overview of the main steps of the method.

a) Constructing the primal grid Γ

The structural action of the vault is represented by a discrete network of forces. The branches represent
possible load paths throughout the structure. In plan, a possible force pattern topology is constructed.
This is the primal grid Γ in Figure 3.9a which is the horizontal projection of the final solution G.

b) Formulating nodal height constraints zLB and zUB
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Figure 3.8 – For the well-known indeterminate problem of a weight on three bars, (a), (b) and (c) show different,
possible states of self-stress of this system. Case (a) corresponds with the linear elastic solution. (d) shows the
indeterminate force polygon for this problem (after Block and Ochsendorf [2005]).
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Figure 3.9 – Input for Thrust Network Analysis: (a) a possible force pattern Γ, defined on the horizontal plane;
and (b) the boundaries, the intrados and extrados of a masonry vault. (c) The weight associated per node comes
from the vault’s self-weight and other imposed loads. (d) A possible reciprocal force diagram Γ∗ is produced from
Γ.
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Possible solutions must lie within a solution space. This envelope can be related to a masonry vault’s
section, defined by an intrados and an extrados (Figure 3.9b) and obtained from the actual vault’s
geometry. These put lower- and upper-bounds, zLB and zUB respectively, on the nodal heights of the
equilibrium solution G.

c) Attributing nodal loads p

Because of the discrete character of the force network, the loads need to be discretized as well. The load
p applied per node can be divided into a dead load and a live load component. The dead load component
comes from the self-weight of the vault. The self-weight is distributed and lumped to the nodes of Γ,
and hence G, using 3-D tributary areas with respect to the nodes (Figure 3.9c). In addition to the loads
due to the lumped self-weight, loads such as asymmetric live loads can be applied, as long as they are
vertical.

d) Formulating nodal vertical equilibrium constraints

All branches coming together per node need to be in equilibrium with the applied nodal loads. The
vertical equilibrium is written as a function of the branch lengths of the primal grid Γ, and the unknown
horizontal components of the axial branch forces of G and nodal heights z.

e) Generating dual grid Γ∗

A dual grid Γ∗ is produced from the primal grid Γ following to extended reciprocal rules as defined in
§3.2.3 (Figure 3.9d). This dual grid, multiplied by a scale ζ (still unknown at this point), represents the
horizontal equilibrium of a possible final thrust network G.

f) Linearizing the constraints

By using the dual grid, the non-linear vertical constraints can be linearized as a function of the unknown
nodal heights z and the scale of the dual grid, ζ. The dual branch lengths are proportional to the branch
forces in the primal grid Γ, and hence the horizontal components of the axial branch forces of G.

g) Solving for the result G using linear optimization

Using the geometry of both primal (Γ) and dual (Γ∗) grid, the weights applied at the nodes and the
boundary conditions, this problem can be solved using a one-step linear optimization. We solve simul-
taneously for the nodal heights of G and the scale ζ of the dual grid Γ∗. The horizontal components of
the forces in the solution G can be found by measuring the lengths of the branches in the dual grid and
multiplying them by the scale ζ.

h) Updating the dual grid

Using the automatically generated dual grid in (e) does not always render a feasible or satisfactory
equilibrium solution G. In the case of an indeterminate primal grid, i.e. a grid with nodes with a higher
valency than three, the force distribution can be altered by manipulating the dual grid. This will be
explained in detail in §4.2. The constraints are then updated with the new dual branch lengths and
a new solution G is found. Steps (h) and (g) are repeated until a satisfactory result is obtained. An
automated solving procedure will be presented in §5.2.
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Figure 3.10 – The constraints come from (a) static equilibrium in every node under the applied loading, rendering
the equilibrium constraints, and (b) the boundaries, resulting in nodal height constraints.

3.4 Thrust network model

3.4.1 Formulation of the constraints

The first set of constraints comes from enforcing static equilibrium at all nodes. The vertical equilibrium
of a typical internal node i shown in Figure 3.10a gives

FV
ji + FV

ki + FV
li = Pi (3.2)

where FV
ji are the vertical components of the branches forces coming together in node i, and Pi are the

vertical loads applied at node i.

There are ni equilibrium equations (3.2), one for each internal node of the primal grid Γ. The number
of internal nodes ni is the difference between the total number of nodes n and the number of boundary
nodes nb (ni = n− nb).

It is sufficient to describe only the vertical equilibrium of the nodes of G since their x- and y-coordinates
are defined by the choice of a primal grid Γ. Section 4.1 will discuss the requirements for feasible primal
grids. The horizontal equilibrium of the network is then guaranteed when a compression reciprocal
diagram, i.e. a dual grid Γ∗, exists for the horizontal projection of G, i.e. the primal grid Γ.

We can describe (3.2) as a function of FH
ji , the horizontal components of the forces, and the geometry of
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the network G (Figure 3.9a).

FH
ji ·

(zi − zj)√
(xi − xj)2 + (yi − yj)2

+ FH
ki ·

(zi − zk)√
(xi − xk)2 + (yi − yk)2

+ FH
li ·

(zi − zl)√
(xi − xl)2 + (yi − yl)2

= Pi

(3.3)

The lengths of branches ji in the primal grid are defined as LHji .

LH
ji =

√
(xi − xj)2 + (yi − yj)2 (3.4)

Equation (3.3) becomes

FH
ji ·

(zi − zj)
LH
ji

+ FH
ki ·

(zi − zk)
LH
ki

+ FH
li ·

(zi − zl)
LH
li

= Pi (3.5)

To find an equilibrium network G, i.e. a network with all branches acting under compression under the
set of loads Pi, all nodes i must satisfy 3.5. These equations are nonlinear since both the nodal heights
zi and the horizontal components of the axial branch forces of G are unknown.

A second set of constraints comes from the limits put on the nodal heights. We want the solutions to lie
within the given boundaries, zLB

i and zUB
i , defined by an intrados and an extrados.

zLB
i ≤ zi ≤ zUB

i (3.6)

The intersections of the verticals through the nodes of the primal grid and the intrados and extrados give
zI
i and zEi respectively (Figure 3.10b). For masonry structures, we seek solutions within the section of

the vault. In that case, zLB
i and zUB

i become

zLB
i = zI

i (3.7a)

zUB
i = zE

i (3.7b)

To guarantee that the entire section stays in compression without any hinging, the solution may be further
contained within the middle-third, or kern, of the vault. Then, zLB

i and zUB
i become

zLB
i = zI

i +
1
3

(zE
i − zI

i) (3.8a)

zUB
i = zE

i −
1
3

(zE
i − zI

i) (3.8b)

The inequalities (3.8) give 2n additional constraints, so, in total, there are ni + 2n constraints on the
equilibrium of the network G.
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3.4.2 Linearization of the constraints

Because the primal grid Γ and the dual grid Γ∗ are reciprocal, the branch forces FH
ji of the primal, hence

the horizontal components of the axial forces in the solution G, are equal to the corresponding branch
lengths LH∗

ji in the dual grid, multiplied with the as-yet unknown scale factor ζ.

FH
ji = ζ · LH∗

ji (3.9)

where the dual branch lengths LH∗ji are also defined as a function of the dual nodes

LH∗
ji =

√
(x∗i − x∗j )2 + (y∗i − y∗j )2 (3.10)

Using (3.9), and plugging it into the nodal equilibrium equations (3.5), after dividing both sides by ζ,
gives

LH∗
ji ·

zi − zj
LH
ji

+ LH∗
ki ·

zi − zk
LH
ki

+ LH∗
li ·

zi − zl
LH
li

=
1
ζ
· Pi (3.11)

Rearranging gives

(
LH
ji
∗

LH
ji

+
LH
ki

∗

LH
ki

+
LH
li

∗

LH
li

)
· zi −

LH
ji
∗

LH
ji

· zj −
LH
ki

∗

LH
ki

· zk −
LH
li

∗

LH
li

· zl − Pi · r = 0 (3.12)

where r is the inverse of the unknown scale of the dual grid, ζ. We can re-write equation (3.12) as

dii · zi + dji · zj + dki · zk + dli · zl − Pi · r = 0 (3.13)

where the constants dni are a function of the known primal and dual branch lengths.

The equilibrium constraints of the nodes (3.13) are written as a linear combination of zi, the unknown
nodal heights, and r, the inverse of the unknown scale ζ of the dual grid Γ∗. With the information
provided by the dual grid (3.9) and by treating r as a variable, the nonlinear constraints (3.5) are made
linear. Because lengths (absolute values) are used, this formulation guarantees that all solutions G will
be compression-only.

3.4.3 Computational set-up

The notation used throughout this dissertation follows the conventions by Schek [1974]. They are repeated
here for clarity. A vector is defined as a one-column-matrix and written in lower-case and bold, and a
matrix in upper-case and bold. The same symbols are used for the components but not in bold and

55



CHAPTER 3. METHODOLOGY: THRUST NETWORK ANALYSIS

with indices i and j. The m-dimensional vector a – called the m-vector a – has therefore aj as the jth

component. Often the diagonal matrix A to any vector a is used. A then has a as its diagonal, e.g.

a =

1
2
3

 , A =

1 0 0
0 2 0
0 0 3

 (3.14)

Using a branch-node matrix, it is possible to write the nodal equilibrium constraints elegantly in matrix
form. The branch-node matrix C captures the topology and connectivity of a bar-node network [Fenves
and Branin, 1963; Argyris, 1964]. Note that the transpose of C is defined as the incidence matrix in
graph theory [Bondy and Murty, 1976; Biggs, 1993]. To construct the primal branch-node matrix C
of a network, it can be treated as a directed graph. In a directed graph, all edges of the network are
directional. As a convention, the internal nodes are numbered first and then the boundary nodes. So,
the (n× 1) coordinate vectors x, y and z have the following form

x =
[
xi

xb

]
, y =

[
yi

yb

]
, z =

[
zi

zb

]
(3.15)

with the (ni × 1) vectors xi, yi and zi listing the x-, y- and z-coordinates of the internal nodes and the
(nb × 1) vectors xi, yi and zi of the boundary nodes.

Equivalently, the internal bracnhes are numbered before the boundary branches. The branches in the
primal directed graph are oriented from the node with the higher index to the node with the lower index.
So, the tail of the directed branch is always the higher index node and the head is the lower index node.
For a primal grid with m branches and n nodes, the (m × n) matrix C is constructed as follows: each
row represents a branch and the column value of the tail- and head-node receive a –1 or 1 respectively.

C(i, j) =


1 if node j is the head-node of branch i
−1 if node j is the tail-node of branch i
0 otherwise

(3.16)

Because of , the (m × n) branch-node matrix C can be separated into the (m × ni) matrix Ci and the
(m× nb) matrix Cb corresponding with the internal nodes and boundary nodes.

C =

 Ci Cb

 (3.17)
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Figure 3.11 – Directed primal (a) and dual (b) graphs. Primal nodes and corresponding dual spaces are labeled
using numbers, primal faces and dual nodes using letters, and primal and dual branches using roman numbers.

For the network of Figure 3.11 the C -matrix becomes

C =



1 2 3 4 5 6 7 8 9

1 −1 · · · · · · ·
1 · −1 · · · · · ·
1 · · −1 · · · · ·
1 · · · −1 · · · ·
· 1 −1 · · · · · ·
· · 1 −1 · · · · ·
· · · 1 −1 · · · ·
· 1 · · −1 · · · ·
· 1 · · · −1 · · ·
· · 1 · · · −1 · ·
· · · 1 · · · −1 ·
· · · · 1 · · · −1



I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

(3.18)

The dual branch-node matrix C ∗ (m × n∗) represents the topology and connectivity of the dual grid.
The dual grid has n∗ nodes, equal to the number of faces in the primal grid, f . The (m × 1) column
vectors of C ∗ can easily be constructed from the primal grid by cycling its spaces counter-clockwise. If
the space cycle traverses an edge in the same or opposite direction than its orientation then that entry
gets a 1 or –1 respectively. Notice that this results in corresponding branches in primal and dual graph
being oriented in the same direction. The relation between C and C ∗ is further discussed in §4.2.
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For the network of Figure 3.11 the C ∗-matrix thus becomes

C ∗ =



a b c d e f g h

i

−1 1 · · · · · ·
· −1 1 · · · · ·
· · −1 1 · · · ·
1 · · −1 · · · ·
· 1 · · · −1 · ·
· · 1 · · · −1 ·
· · · 1 · · · −1
−1 · · · 1 · · ·
· · · · −1 1 · ·
· · · · · −1 1 ·
· · · · · · −1 1
· · · · 1 · · −1



I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

(3.19)

Using the coordinate vectors (3.15) of the final solution G, and the branch-node matrix C, the (m × 1)
branch coordinate difference vectors u, v, w are

u = Cx = Cixi + Cbxb (3.20a)
v = Cy = Ciyi + Cbyb (3.20b)
w = Cz = Cizi + Cbzb (3.20c)

The vectors u and v are of course also the branch coordinate vectors of the primal grid Γ. Similarly,
the dual branch difference vectors can be set up using the dual nodes x∗, y∗ and the dual branch-node
matrix C ∗. The dual grid Γ∗ is planar and therefore z∗ = 0.

u∗ = C ∗x∗ (3.21a)
v∗ = C ∗y∗ (3.21b)

U, V, W, U ∗ and V ∗ are the diagonalized square matrices of u, v, w, u∗ and v∗ respectively. The
diagonalized primal and dual branch length matrices LH and L∗H are then found as

LH =
√

U tU + V tV (3.22a)

L∗H =
√

U ∗tU∗ + V ∗tV ∗ (3.22b)

From Schek [1974], the 3ni equilibrium equations for the internal nodes in a loaded equilibrium network
are
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C t
i UL−1s = px (3.23a)

C t
i VL−1s = py (3.23b)

C t
i WL−1s = pz (3.23c)

where px, py, pz are the component vectors of the forces applied at the nodes, the vector s contains the
axial branch forces of the equilibrium solution and L is the diagonalized matrix of l, the vector listing
the branch lengths of G, with

L =
√

U tU + V tV + W tW =
√

L t
HLH + W tW (3.24)

Equations (3.23a) and (3.23b) are trivial since px and py are zero, and since the horizontal equilibrium
of the solution is guaranteed by the existence of a feasible dual grid. It is therefore sufficient to only
consider (3.23c).

Linkwitz and Schek [1971] introduced force densities q, defined as the ratio of the branch forces s over the
branch lengths L to linearize (3.23c). These are also sometimes referred to as tension coefficients. As in
equation (3.5), the vertical equilibrium equations are written as a function of the horizontal components
of the forces, because they are known from the dual grid. The force densities q can be expressed as a
function of sH and lH, the horizontal components of branch forces and lengths respectively.

q = L−1s = L−1
H sH (3.25)

The force densities (3.25) were introduced to linearize (3.23). So, (3.23c) becomes

C t
i Wq = pz (3.26)

and using that Wq = Qw, since W and Q are diagonal matrices, gives

C t
i QCz = pz (3.27)

Equivalent to equation (3.9), the horizontal components sH of the branch forces s are obtained by
measuring the corresponding branch lengths in the dual grid Γ∗ and multiplying them by the scale of Γ∗,
ζ:

sH = L∗Hζ (3.28)

with ζ the (m × 1) branch scale vector with in this case all entries equal to the overall scale factor ζ.
Combining (3.25) and (3.28), the force densities q can be written in function of the branch lengths of
both primal and dual grid and the scale:

q = L−1
H L∗Hζ (3.29)
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Using (3.25) in (3.27) and dividing with the scalar ζ gives

C t
i (L−1

H L∗H)Cz− pzr = 0 (3.30)

3.5 Solving procedure

Equation (3.30) can be written as a function of zi and zb

C t
i (L−1

H L∗H)Cizi + C t
i (L−1

H L∗H)Cbzb − pz = 0 (3.31)

To simplify (3.31), the (ni × ni) constraint matrix D is introduced:

D =

 Di Db

 (3.32)

with the (ni × ni) matrix Di and (ni × nb) matrix Db defined as

Di = C t
i (L−1

H L∗H)Ci (3.33a)

Db = C t
i (L−1

H L∗H)Cb (3.33b)

Note that the matrix Di is positive definite since (L−1
H L∗H), the ratios of dual and primal branch lengths,

are all positive. Therefore, Di will always be invertible.

Using (3.32) and (3.33), equation (3.31) simplifies to

Dizi −Dbzb − pzr = Dz− pzr = 0 (3.34)

First, consider the situation where the scale ζ and the boundary heights zb are known. The inside
geometry of the equilibrium network G is then immediately found:

zi = D−1
i (pzr −Dbzb) (3.35)

This solution does not consider the bounds on the nodal heights. To find a solution which fits within
the given boundaries, we must include the nodal height constraints (3.6). This can be formulated as
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an optimization problem. The most general form of an optimization problem with k variables and r
constraints is [Bertsimas and Tsitsiklis, 1997]

minimize f (x1, . . . , xk)

subject to g1 (x1, . . . , xk) ≤ 0
...

gr (x1, . . . , xk) ≤ 0

(3.36)

In the case that both the objective function f and all the constraints g1, . . . , gr are linear combinations
of the variables x1, . . . , xn, it is a linear optimization (LO) problem. The following non-standard form,
used by linprog, the LO solver in the Optimization Toolbox in MATLAB [The Mathworks, 2009c], can be
used to describe the linear optimization problem

min
x

c tx such that


Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

(3.37)

where c is the objective (or cost) function vector, x are the variables, A and Aeq are the inequalities and
equalities constraint matrices with b and beq the corresponding right hand sides, and lb and ub the lower
and upper bounds on the value of the variables.

The (n+ 1× 1) variables vector x is

x =

 z

r

 (3.38)

The objective function (n+ 1× 1) vector c has all zero entries except for the n+ 1th entry, and therefore
the objective (or cost) of the minimization becomes

c tx =
[

0 ±1
]
·

 z

r

 = ±r (3.39)

If c tx is positive, r is being minimized which means that ζ is being maximized, resulting in the shallowest
solution contained within the boundaries. This corresponds to the maximum horizontal force possible for
the grid being considered. Alternatively, if c tx is negative, r is being maximized which means that ζ is
being minimized, resulting in the deepest solution contained within the boundaries. This corresponds to
the minimum horizontal force possible for the grid being considered. Other possible objective functions
will be discussed in §5.1.
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Since there are no inequality constraints, the matrix A and vector b are empty.

A =
[ ]

, b =
[ ]

(3.40)

From the second equality of (3.34) and (3.38), the (ni × n + 1) equality constraints matrix Aeq and its
corresponding (n+ 1× 1) right-hand-side vector beq are

Aeq =

 D pz

 , beq =

 0

 (3.41)

Finally, from (3.6) and using that ζ needs to be positive for the solution to be a compression solution,
the (n+ 1× 1) lower and upper bound vectors lb and ub are

lb =

 zLB

0

 , ub =

 zUB

+∞

 (3.42)

The LO problem, written in the form of (3.37), becomes

min
z,r
±r such that


Dz− pzr = 0
zLB ≤ z ≤ zUB

0 ≤ r ≤ +∞
(3.43)

The nodal heights z and scale factor r are solved for simultaneously. The actual scale factor of the dual
grid is then found by taking the inverse of r. From (3.28), the horizontal components sH of the branch
forces s of the final compression-only solution G can easily be found by multiplying the dual branch
lengths l∗H by the actual scale ζ, and the axial branch forces s of the thrust network G are then found by
combining (3.25) and (3.29):

s = Lq = LL−1
H L∗Hζ (3.44)

3.6 TNA framework

Figure 3.12 summarizes the TNA framework. Steps 2, 3 and 6 are the steps where user input is required. In
§5.2, an extended framework will be presented for which step 6 is no longer a user input, but incorporated
in an overall optimization set-up. Step 4 translates the user input, primal grid Γ (step 2) and the vault’s
geometry (step 6), into height limits, zI and zE, nodal weights pz and primal branch-node matrix C.
Step 5 generates the dual branch-node matrix C ∗ and a possible dual grid Γ∗ using linear optimization.
This step and step 6 will be developed and expanded on in §4.2. Step 7 sets up the main LO problem
solving for the geometry and internal forces of the equilibrium solution G. Step 8 visualizes the results,
allowing the user to update some parameters (step 9) and re-run the optimization.
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Start form-finding

Construct primal branch-node matrix C

Construct dual branch-node matrix C*

Generate dual grid G*  (3 LO problems)

Form constraints matrix D and lower/upper bounds 

Solve for thrust network G  (LO problem)

Compute forces in G

Draw / update primal grid G

Input vault geometry

Update dual grid  *G

Output / visualize thrust network G

End form-finding
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Changes in solution space?

Changes in force pattern?
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Find nodal height limits z  / I zE

Compute tributary weights for nodes p

I E

7c

Figure 3.12 – Overview of the TNA framework.
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A working prototype has been developed using the Optimization Toolbox [The Mathworks, 2009c] in
MATLAB [The Mathworks, 2009b] and RhinoScripting [Rutten, 2007] for Rhinoceros [McNeel, 2007],
and will be discussed in §4.5.

3.7 Summary

This chapter has introduced the Thrust Network Analysis (TNA) method. It provides a viable three-
dimensional extension for thrust-line analysis. Key features are

• clear graphical representation of forces in the system (through the use of reciprocal force diagrams,
i.e. the dual grids);

• a high level of control, allowing the exploration of different possible equilibrium solutions; and

• fast solving times because of the formulation as a simple linear optimization problem.

Chapters 4 and 5 will discuss the details of the implementation of TNA and how the basic framework
presented in this chapter can be extended.

Chapter 6 will show that TNA offers an improved lower-bound method for the assessment of the stability
of masonry vaults with complex geometries, and Chapter 7 will demonstrate that TNA can also be used as
a flexible, intuitive and interactive design tool for finding three-dimensional equilibrium of compression-
only surfaces and systems.
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Chapter 4

Implementation

This chapter elaborates on the implementation of Thrust Network Analysis (TNA). It discusses how
to represent the structural action and loading conditions of three-dimensional vaults into discrete force
network models, and expands on the geometric properties and constraints of allowed network topologies
and their reciprocal force diagrams. A new rule is introduced for deriving the degree of structural
indeterminacy of three-dimensional network systems. Finally, it shows how TNA can be used to automate
thrust line analysis.

4.1 Force patterns

4.1.1 Force paths and network topologies

The principal structural action of the vault should be represented in the chosen primal grid. The equi-
librium solution and its force distribution are highly dependent on the choice of primal grid Γ. Using an
appropriate network is very important. Kilian [2004b; 2006a] argues that a change in network topology
can have much greater effect on the forces in a vault than the geometric optimization of a sub-optimal
network. The choice of network topology also influences the obtainable geometries of the equilibrium
shapes, as will be discussed in Chapter 7. Although the primal grid can be chosen freely, based on
the experience and intuition of the analyst, simple methods can be used to help identify the principal
structural actions of a vault. For example, it is often suggested that the forces “flow” to the supports as
water would flow over its surface (e.g by Abraham [1934]), so the force lines follow the paths of steepest
descent (Figure 4.1a). Alternatively, the forces could be attracted to the supports by forming the shortest
paths over the surface (Figure 4.1b). Ideally, the chosen network topology would reflect all imaginable
structural logics (Figure 4.1c). This represents better the indeterminate character of three-dimensional
masonry vaults [O’Dwyer, 1999].

The appropriateness of force patterns is furthermore highly dependent on the specific loading conditions.
O’Dwyer’s barrel vault is a clear example (Figure 4.2). For a barrel vault, a set of parallel arches is a
realistic assumption for its load-bearing action under self weight. For a point load at mid span, this set of
force lines, which was most appropriate for the dead loading case, will not represent the three-dimensional
capacity of the vault well. If the imposed load has to be carried by a single arch, the load capacity of
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(a) (b) ( )bc

Figure 4.1 – Different structural actions can be assumed for a groin vault [O’Dwyer, 1999]: (a) parallel arches
spanning between ribs, and (b) forces directly flowing towards the corners. The network topology in (c) represents
both structural actions.

(a)

(a)

(b)

(b)

( )bc

( )bc

Figure 4.2 – (a) A point load is acted to a barrel vault, which acts as a very two-dimensional structure under
self-weight only. (b) shows an appropriate force pattern to carry a point load applied at mid span down to
line supports, and (c) is an equilibrium solution for the overlaid dead-load and live-load pattern (from O’Dwyer
[1999]).

the vault will be limited by the capacity of that one arch (Figure 4.2a). For a point load at midspan, a
fanning pattern would bring down the forces to the line supports (Figure 4.2b). So, a superposition of
these two networks represents better the combined loading. O’Dwyer quantifies the difference between
both assumptions using a collapse load factor. By increasing the point load λP until a funicular solution
can no longer be found in the vault’s section, the collapse load factor λc is found. The collapse load
factor increases for the combined network with 325% compared to the parallel arches network. This
shows clearly that a poor choice of force network can lead to an overly conservative and unrealistical
assessment.

The resulting equilibrium network G is a discrete representation of a continuous thrust surface, a con-
tinuous surface representing the compression resultants throughout the structure. Although the choice
of primal grid heavily dictates the equilibrium, the resulting discretized thrust surface is still a possible
lower-bound solution. This approach is also used by Fraternali and Rocchetta [2002] using discrete Airy
stress function instead of reciprocal diagrams, which will be discussed in §5.5.

Constraining the solutions to connected networks, which represent a possible discretization of a thrust
surface, is in some cases very conservative. It is possible to find “better” solutions, e.g. with less horizontal
thrust, if force lines can cross each other in space without intersecting (Figure 4.3). The equilibrium of
a masonry unit, or voussoir, in the vault does not require all forces to meet at one point in 3-D space.
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P

Figure 4.3 – Equilibrium of a stone voussoir with disconnected thrust lines.

The choice of force patterns can also define the boundary conditions which will be discussed in §4.1.3.

4.1.2 Properties and requirements

Valid primal grids need to be in equilibrium in the plane with all branches in compression. The inverse
of these are defined as spider webs by Ash et al. [1988]. Spider webs refer to equilibrated tension-only
solutions, but their properties can be used to look at the requirements for compression-only frameworks
since this only requires the reaction forces at the boundaries to be inverted.

Based on the properties of a spider web as defined by Ash et al. [1988], a primal grid will be compression-
only if it is a proper cell decomposition of the plane and has a convex reciprocal (Figure 4.4a). A proper
cell decomposition divides the plane into convex and unbounded convex polygons such that (i) every
point in the plane belongs to at least one cell (or space); (ii) the cells have disjoint, i.e. non-overlapping,
interiors; and (iii) any two cells are separated by exactly one edge. A convex reciprocal is made out of
disjoint convex polygons. In §4.5, the special case of a primal grid with two-valent nodes, which clearly
violates condition (iii), will be discussed.

The following three statements for defining a valid primal grid Γ are equivalent [Ash et al., 1988]: (i) Γ is a
proper cell decomposition of the plane and has a convex polygon; (ii) Γ has only branches in compression;
and (iii) Γ is the projection of a concave polyhedral bowl. This concave polyhedral bowl is actually the
discrete Airy stress function representing the compression-only equilibrium of the primal grid Γ as will
be shown in §5.5.

If the primal grid has a higher valency than three, i.e. all nodes have at least four branches coming
together per node, and it is a proper cell decomposition of the plane, then at least one spider web stress
(represented by a convex reciprocal diagram) can be found for it by choosing appropriate reaction forces
at the boundaries. This is not always true if the grid has at least one three-valent node (Figure 4.4b).
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(a)
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( )bc

( )bc

Figure 4.4 – Two proper cell decompositions of the plane with a (a) convex and (b) non-convex reciprocal [Ash
et al., 1988]

A statically determinate, three-valent primal grid has one state of self-stress, dependent on a scaling
factor. Because their in-plane equilibrium is unique, as represented by a triangulated, and thus “locked”,
dual grid, all allowable three-valent primal grids are spider webs. If not, the chosen three-valent network
cannot serve as primal grid. This is shown in Figure 4.5: the arbitrarily chosen three-valent geometry
is not in equilibrium within its plane since no reciprocal force diagram can be constructed from it. The
dotted lines in Figure 4.5 show a possible correction of the pattern to make it compression-only, by closing
its dual grid.

A theoretical spider web can intuitively be understood as follows: its geometry is stable in its plane and
in equilibrium when “all the branches are replaced by rubber bands” and the boundary branches are
pinned down at the boundary nodes [Ash et al., 1988]. It could be checked if a three-valent primal grid
is a spider web using a computational equivalent to the rubber band analogy, i.e. by looking at it as a
planar particle spring system where all branches are replaced by springs. The closest spider web to the
non-equilibrated primal grid could then be found after applying a dynamic mesh relaxation in which the
nodes are allowed to move slightly in the xy–plane.

The necessity of the primal grid to be a spider web is perhaps the most important difference between
the thrust network method and the force density method (FDM). The horizontal force densities in TNA
cannot be chosen randomly like the force densities in FDM. This is because the x– and y–coordinates
of the nodes are defined by the choice of primal grid which imposes a number of constraints on the
ratios of the force densities associated to each branch due to the requirements of valid (i.e. representing
compression-only) dual grids (see §3.2.3).

The late Professor Ture Wester pointed out the analogy between TNA and spider webs in nature (Personal
communication 2007). A spider makes its web, stable and in equilibrium within its plane (this is the
primal grid Γ). For the web to be in equilibrium, it is naturally being pre-stressed (this corresponds to
the proportions of a certain dual grid Γ∗, scaled by ζ). Under out-of-plane parallel loading, due to wind
or an insect flying into it, the web becomes a perfect funicular, i.e. tension-only, 3-D net in equilibrium
with the applied loading (this is the thrust network G). The depth of the web is then proportional to the
fixed pre-stress (equivalent to the relationship between the scale ζ and the depth of G).
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Figure 4.5 – (a) A three-valent grid not in equilibrium: (b) its reciprocal does not close, and a possible “correc-
tion” (in bold).
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Figure 4.6 – A deformed spider web in nature, loaded out-of plane by the wind [Lin and Sobek, 1998].
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(a) (b)
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Figure 4.7 – (a) Primal grid without edge arch, and its corresponding reciprocal diagram. (b) The equilibrium
of the funicular edge arch is represented by attaching a funicular polygon to the side of the reciprocal diagram.

4.1.3 Edge conditions and openings

Rather than having a continuous line support at the boundaries of a vault, the forces may go to a
number of discrete supports, such as columns or buttresses. In the case of a simple 3-D force network
made of a combination of arches, this is often obvious and inherent to the chosen network, but for fully
three-dimensional meshes, the equilibria of the freed-up edges need to be considered.

There are two options to find the equilibrium of funicular edge arches: (i) the internal force distribution
of the mesh is chosen first and the edge arch’s shape then follows from that or (ii) the geometry of the
edge arch is defined first in the horizontal plan, which then dictates the internal force distribution. For
case (i), the shape of the edge arch in the primal grid Γ is funicular for the loading resulting from the
forces in the branches connecting to it (Figure 4.7a). The values of these branch forces are found from
the corresponding branch lengths in the dual grid Γ∗ of the interior grid, without an edge arch (Figure
4.7).

In case (ii), the horizontal projection of the edge arch is chosen first and because this edge needs to be
funicular in plan to be in global equilibrium, it thus dictates the forces in the branches ending in it, hence
fixing the lengths of the corresponding dual branches. For the example in Figure 4.8, the freed-up inner
edge of that vault is circular in plan. The circle is a funicular shape for radially applied uniform loading.
In Figure 4.8c, it can be seen that as a result all the dual branches of the branches ending in it have
equal lengths.

Another example is the circular compression ring of an oculus in a dome which demands that all horizontal
thrusts from the radial arches ending into it have the same value. This idea will be expanded on in §6.5.

In both cases, once the geometry of the edge arch and a corresponding internal force distribution of the
mesh are defined, then these primal and dual grids can be used in the one-step linear optimization as set
up in Chapter 3 to find the equilibrium shape G.

Understanding the equilibrium of the free edge arch is not obvious. Since the branches from the interior of
the vault end up on a single arch, it consists of only three-valent nodes. Although the edge arch seems to
have an infinite number of possible equilibrium states (Figure 4.9a), the single edge arch will be uniquely
defined by one parameter, e.g. the sag of the arch d in plan (Figure 4.9b-c).

In Figure 4.9), the most simple edge arch condition is considered, a triangular support bringing down the
end reactions of a single parabolic arch, to show that the equilibrium of the edge arch is unique. From
rotational equilibrium around the axis aa′ (Figure 4.9c)or just from geometry (the triangular edge needs
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(a) (b) ( )ac

? ?*

Figure 4.8 – (a) Equilibrium shape with a pre-defined geometry of the edge arch. (b) The circular edge arch
requires (c) equal horizontal thrusts ending in it.
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Figure 4.9 – (a) An edge arch - incorrectly - seems to have an infinite number of equilibrium solutions. A simple
edge arch condition is considered: (b) profile of a parabola ending into a triangular edge “arch” and (c) the
equilibrium of the triangular edge condition. (d) is a part of the pseudo 3-D analysis of a vault for Mapungubwe
in South Africa (see §1.1).
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to lie in the direction of the resultant of the parabola to be in equilibrium), the following has to be true

V

H
=
h

d
(4.1)

where V and H are the vertical and horizontal end reactions of the parabola, and h and d are the
vertical and horizontal sag of the edge arch. A parabola is the funicular shape to bring down a uniformly
distributed load w applied over its span L. Its horizontal and vertical end reaction forces, H and V , can
be related to its geometry:

H =
wL2

8f
=

1
C1f

(4.2a)

V =
wL

2
=

1
C2

(4.2b)

with f the sag of the parabola. Since both w and L are known and constant, the terms wL2/8 and wL/2
are replaced by 1/C1 and 1/C2 for simplicity. Using (4.1), (4.2) and that htot = f + h, the equilibrium
of the edge arch can be written as

h =
C1htot(
C1 + C2

d

) (4.3)

Since htot is a given, the equilibrium of the arch is therefore indeed only dependent on one parameter,
either h or d in (4.3). This consideration was important in assessing the safety of the vaults of Mapun-
gubwe in South Africa (Figure 4.9d) for which a two-dimensional approach was chosen initially, but the
edge arch required a fully three-dimensional approach.

4.2 Reciprocal diagrams

4.2.1 Degrees of freedom of reciprocal diagrams

The dual branch-node matrix C ∗ gives the connectivity of the dual grid, i.e. the reciprocal force diagram.
In the statically determinate case, i.e. a three-valent primal grid and corresponding triangulated dual
grid, C ∗ is enough to construct the dual grid. After choosing one branch of the dual, the entire grid can
be constructed incrementally from that first space. In the indeterminate case, because of the degrees of
freedom of the dual grid, such a straightforward, procedural approach cannot be used. Section 4.2.3 will
discuss how this problem can be solved using linear optimization.

Maxwell’s [1864] rule for the construction of stiff frames said that in a two-dimensional framework every
point in that framework can be determined if

m = 2n− 3 (4.4)
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Figure 4.10 – Types of dual grid adjustments: (a) stretch parallel edges by the same value k and (b) stretch
incident branches proportional to their intersection point c.

To understand the behavior of frameworks which have too few bars to satisfy (4.4), Calladine [1978]
introduced the Extended Maxwell rule

m− 2n+ 3 = s− q (4.5)

where s is the number of independent states of self-stress and q is the number of mechanisms of the
frameworks.

Equation (4.5) can be used to define the indeterminacy, or different states of self-stress, of the primal
grid, which is represented by the degrees of freedom of the dual grid. Since the dual grid is convex, i.e.
each cell is a convex polyhedron, it does not have any state of self-stress, so s∗ = 0. Therefore, the dual
grid has q∗ mechanisms

q∗ = 2n∗ −m∗ − 3
= 2f −m− 3

(4.6)

with m∗ = m and n∗ = f , where m and m∗ are the number of primal and dual branches, n∗ the number
of dual nodes and f the number of primal faces. The allowable adjustments of the dual grid are shown in
Figure 4.10. The parallel relationship between the two reciprocal figures is preserved if (i) parallel edges
are being stretched by the same amount; (ii) edges which if extended all meet in one point are stretched
proportionally with respect to that intersection point; or (iii) in a combination of (i) and (ii).

For type (i) (Figure 4.10a), the new dual branch lengths are related to the original branch lengths as

l′i = li + ξ
(i)
j (4.7)
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and for (ii) (Figure 4.10b),

~ci′ = ξ
(ii)
j · ~ci (4.8)

In both cases, ξj is the same constant for all branches related to and controlled by the j th degree of
freedom of the dual grid Γ∗. For type (i) variations, all edges are stretched by the same amount, while
for (ii) variations this is not the case.

The independent mechanisms q∗ of the dual grid are degrees of freedom (DOF) of type (i). The examples
(a) to (c) of Figure 4.11 are dual grids with only type (i) DOFs. The overall scale can be considered as
an additional degree of freedom of the dual grid, it is a DOF of type (i). Degrees of freedom of the grid
of type (ii) occur when in the primal grid closed loops can be recognized (Figure 4.11d). These closed
polygonal loops in the primal grid are in equilibrium which means that their force vectors intersect in
the dual grid, hence satisfying that their branches will intersect when extended. So, by inspection of the
primal grid only, the total number of DOFs k of the dual grid can be found:

k = q∗ + c+ 1
= 2f −m+ c− 2

(4.9)

where c is the number of closed loops in the primal grid. Relation (4.9) is a new rule introduced by the
author to determine the DOFs of indeterminate reciprocal diagrams.

4.2.2 Allowed variations of the dual grid

For each of the k degrees of freedom, there is an (independent) parameter which controls a set of branches
in the dual grid. In order to manage these variables in an optimization process, the branches in the dual
grid, dependent of each parameter, need to be identified. Pellegrino and Calladine [1986] developed an
algorithm to detect and identify the mechanisms of kinematically indeterminate frameworks, which give
the DOFs of type (i).

Figure 4.12 shows for the example network used in Figure 3.11 which set of branches are linked and
controlled by each parameter. Figure 4.11d shows that the dual grid has three DOFs (k = 3), giving
three parameters ξj .

Figure 4.12 demonstrates that the set of branches {I, III, IX,XI} and {II, IV,X,XII} are controlled
by ξ(i)1 and ξ(i)2 , parameters of type (i), and the set of branches {V, V I, V II,XI} by ξ(ii)3 , a parameter of
type (ii). These k parameters ξj will be used in §5.2 to incorporate the degrees of freedom of the dual
grid in an overall optimization process.

Each of the m dual branches has a local scale factor ζi associated with it and these are not independent,
but controlled by the k parameters ξj (k < m). The parameters of type (i) are listed first and the (m×k)
matrix F relates the ξj to the ζi as follows:

ζ = Fξ =
[

F(i) F(ii)
] [ ξ(i)

ξ(ii)

]
= F(i)ξ(i) + F(ii)ξ(ii) (4.10)
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Figure 4.11 – Examples of application of the DOF rule (4.9). Example (d) has one closed loop in the primal
grid. The dottes lines label the DOFs, crossing the branches controlled by the same, independent parameter.
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Figure 4.12 – The set of branches marked with thick, solid lines and with thick, dotted lines are controlled by
parameters of type (i), and the set of branches with thin, solid lines by a parameter of type (ii).

For the example in Figure 4.12, the F matrix becomes

F =

 1 · 1 · · · · · 1 · 1 ·
· 1 · 1 · · · · · 1 · 1
· · · · 1 1 1 1 · · · ·

t

(4.11)

The scale vector ζ relates the new dual branch lengths to the branch lengths in the original dual grid.

(l∗H)new = (L∗H)old ζ (4.12)

Using (4.7) and (4.10), the relation between ζ and ξ for branches of type (i) is

ζ(i) = L∗H
−1
(
l∗H + F(i)ξ(i)

)
= 1m + L∗H

−1
F(i)ξ(i) (4.13)

where 1m is the (m× 1) ones vector; and using (4.9) and (4.10) for type (ii) branches

ζ(ii) = L∗H
−1 (L∗c + L∗H)F(ii)ξ(ii) (4.14)

in which Lc is the diagonal matrix with the lengths between the intersection point c of the incident
vectors and their starting nodes (as shown in Figure 4.10b).

ζ(ii) = L∗H
−1 (L∗c + L∗H)F(ii)ξ(ii) (4.15)
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Figure 4.13 – Oriented graphs of (a) primal and (b) dual grids. Note that corresponding branch vectors are
parallel and have the same direction.

4.2.3 Automatic production of reciprocals

A procedural approach to construct the dual grid from a given primal grid is no longer possible for an
indeterminate primal grid because of the many DOFs of the dual. To manage all these DOFs and find
a compatible distribution, i.e. resulting in a possible dual grid satisfying the requirements in §3.2.3, this
translation is formulated as an optimization problem. A possible dual grid Γ∗ from a given primal grid
Γ can be produced with a sequence of three linear optimization problems.

Following the conventions introduced in §3.4.3, the internal nodes are labeled first, and the primal branch
vectors always go from a node with higher index to one with a lower index. The numbering of the branches
is arbitrary. Both primal and dual grids are defined as oriented graphs (Figure 4.13), so each branch
can be written as a vector. The corresponding primal and dual branch vectors are li and l∗i respectively
which have the x– and y–coordinate difference vectors u and v as horizontal and vertical components.

li =
[
li,x
li,y

]t
=
[
ui
vi

]t
=
[
Cijxj
Cijyj

]t
, l∗i =

[
l∗i,x
l∗i,y

]t
=
[
u∗i
v∗i

]t
=
[
C∗ijx

∗
k

C∗ijy
∗
k

]t
(4.16)

For the first LO problem, the reciprocal rules for compression-only networks are converted into constraints
for the optimization problem.

The branch vectors in the primal and dual grid are parallel and need to have the same direction. Cor-
responding primal and dual branch vectors placed in the origin are coincident, meaning that each dual
branch vector l∗i can be written as a function of its corresponding primal branch li multiplied by a positive
scalar ti (Figure 4.14).

l∗i = ti · li (4.17)
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Figure 4.14 – (a) The primal branch vector l is scaled compared to (b) the dual branch vector l∗, (c) which is
clear if placed in the origin.

Using (4.16) in (4.17) and after rearranging gives the following linear constraints:


u∗i − ui · ti = 0
v∗i − vi · ti = 0
ti ≥ 0

for i = 1 . . .m (4.18)

where ui and vi are known since the geometry of the primal grid Γ is given. The unknowns in (4.18) are
u∗i , v

∗
i and ti. In matrix form (4.18) becomes


U∗ −Ut = Imu∗ −Ut = 0

V∗ −Vt = Imv∗ −Vt = 0

t ≥ 0
(4.19)

where Im is the identity matrix of size m.

The set of constraints (4.19) guarantee that corresponding branches in primal and dual are parallel and
oriented in the same direction. It still needs to be enforced that branches coming together in a node in
the primal grid form a closed polygon in the dual grid and that these polygonal cells are formed clockwise
to guarantee a compression node, as discussed in §3.2.3.

Shown in Figure 4.15, the equilibrium of the compressive branch forces coming together in a node of the
primal is represented by a closed force polygon, formed clockwise with respect to that node (Figure 4.15b).
By combining all these polygons together, the dual grid is formed (Figure 4.15c). When comparing Figure
4.13b and Figure 4.15c, it is clear that only half of the interior branches of the dual oriented graph are
oriented correctly with respect to the clock-wise cycling rule. Equivalently, when going around a node in
the primal grid, only half of the directed branches of Figure 4.13a are pointing towards that node. For
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Figure 4.15 – (a) Compressive branches “push” the nodes. Their nodal equilibrium is represented by (b) closed
polygons formed clockwise and (c) assembled to form the dual grid .

compatibility, this information needs to be added to (4.19). For node 2 in Figure 4.15 e.g.:

−l∗be + l∗bc + l∗cf + l∗fe = 0 (4.20)

or

{
−u∗be + u∗bc + u∗cf + u∗fe = 0
−v∗be + v∗bc + v∗cf + v∗fe = 0

(4.21)

Using the branch numbering in Figure 4.13, (4.22) is

−l∗I + l∗VII + l∗VIII + l∗II = 0 (4.22)

Doing this for all ni primal nodes, or dual spaces, gives the following (ni ×m) matrix Aeq,+ for the grid
in Figure 4.13.

Aeq,+ =


1 · · 1 1 1 · · · · · ·
−1 1 · · · · 1 1 · · · ·
· −1 1 · · · · · 1 1 · ·
· · −1 −1 · · · · · · 1 1

 (4.23)

The matrix Aeq,+ is described by the row space, or cutset space, of the incidence matrix of the primal
oriented graph, which is the transpose of the primal branch-node matrix, C t (§3.4.3).

Aeq,+ = Im
(
C t
)

= C t
i (4.24)
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where Im
(
C t
)

means the row space, or cutset space, of C t.

The equations of the form of (4.21) become in matrix notation

{
C t

i u∗ = 0
C t

i v∗ = 0
(4.25)

The automatic generation of the dual grid can be described as a linear optimization problem in the form
of (3.28). The variables vector x becomes a (3m× 1) vector, listing the unknowns u*, v* and t

x =

 u∗

v∗

t

 (4.26)

Since there are no inequality constraints, the matrix A and vector b are empty.

A = [ ] , b = [ ] (4.27)

Combining the constraints (4.19) and (4.25), the (2m + 2ni × 3m) equality constraints matrix Aeq and
(2m+ 2ni × 1) vector beq become

Aeq =


I2m

-U
-V

C t
i 0

0 C t
i

0

 (4.28)

To solve the problem using optimization, a cost vector c still needs to be defined. The goal is to find one
possible starting dual grid. If the objective (4.29) is used, the cells will have approximately equal sizes or
equivalently the dual branches lengths will be equalized. This solution corresponds to an approximately
equalized or distributed thrust network. The objective function becomes then

min
ti

∑
i

ti with ti ≥
d

li
(4.29)

where d is a positive scalar.

So, the cost ctx of the optimization becomes

ctx =
[

0 0 1tm
]
·

 u*

v*

t

 =
∑

t (4.30)
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The bounds on the variables are

lb =

 −∞−∞
d/l

 , ub = [ ] (4.31)

The first LO problem then becomes

min
u∗,v∗,t

∑
t such that



Imu* −Ut = 0
Imv* −Vt = 0
Ct

iu
∗ = 0

Ct
iv
∗ = 0

L−1d ≤ t ≤ +∞

(4.32)

Solving this first optimization problem does not yet give the dual grid; it gives the dual coordinate
difference vectors, u* and v*. The actual dual coordinates x* and y* now can be found from the
relationship between u*, v* and x*, y* from (3.19)

u∗ = C∗x∗ , v∗ = C∗y∗ (4.33)

where u∗ and v∗ have just been found in the first LO optimization.

The dual branch-node matrix C* has dimensions (m× n∗) and can therefore not be inverted to directly
find the unknown dual coordinates x* and y*. Equation (4.33) is solvable using linear optimization. Two
separate LO problems are solved, one to find x∗1 and one to find y∗1 . The two LO problems then simply
become

min
x∗

x∗1 such that

{
C∗x∗ = u∗

x∗1 = x0
(4.34)

and

min
y∗

y∗1 such that

{
C∗y∗ = u∗

y∗1 = y0
(4.35)

to find x* and y* respectively. One coordinate (x0, y0) of the dual grid needs to be chosen, and that
node gives a unique solution for the dual grid on the plane. Linear optimization in and is only used to
solve the equation C*x* = u* with a wide matrix C*. Furthermore, the objective function and if it is a
maximization or minimization does not matter.

The first LO problem of the automatic dual generation, formulation (4.32), is computationally the bot-
tleneck of the entire TNA set-up. Particularly the (2m+2ni×3m) equality constraints matrix Aeq given
in (4.28) increases the computation time drastically and the linprog solver in MATLAB seems to have
problems finding the solution for networks with more than ca. 700 branches. The heavier, and sometimes
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Figure 4.16 – (a) A large network is divided into sub-networks, whose dual grids can be found fast. (b) These
dual grids are linked to form the dual grid of the original network. (c) The overall equilibrium network is found,
with (d) as its adjusted dual grid.

problematic, computation of (4.32) can be reduced by considering sub-networks, i.e. by cutting up the
primal grid into more manageable parts, as illustrated in Figure 4.16a. In a second optimization, the
separate dual sub-grids are connected, using an intermediate optimization step, to form the dual grid
of the entire network (Figure 4.16b). This approach is used for more complex networks as e.g. the one
shown in Figure 4.16c. Figure 4.16d shows the final, adjusted dual grid which results in that equilibrium
shape.

4.3 Loading

Because of the discrete character of the networks, the loads on the structure need to be discretized and
lumped into the nodes. For the self weight of the vault, tributary volumes for each node should be defined
and then the live loads can be superposed.

4.3.1 Tributary volumes

Several strategies have been implemented for distributing the weight of the vault to the different nodes:

(i) The volume of the vault is first cut up into pieces (these can be related to the voussoirs if it is a stone
vault) and their centroids are then projected onto the horizontal plane defining the nodes of the primal
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(a) (b)

Figure 4.17 – (a) Spatial Voronoi cells generated from seeds on an input surface [Pottmann et al., 2007], and
(b) a RhinoScript implementation of Qhull [Dritsas, 2006].

grid as was shown in Figure 3.9. This approach constrains the possible topologies of the primal grid
since the main nodes are defined. Using secondary, unloaded nodes, topologies which are not constrained
only to the projected centroids can be formed (see also option (iii)), but adding these nodes increases the
computation times.

(ii) Identifying the principal structural actions and choosing a primal grid accordingly, as described in
§4.1.1, does not guarantee that its nodes are the vertical projections of centroids of the vault above, so
now the appropriate weights need to be attributed to each loaded node. This can be done using three-
dimensional tributary volumes computed using spatial Voronoi diagrams [Voronoi, 1907; Preparata and
Shamos, 1985]. The nodes of the primal grid are projected onto the middle surface of the vault. These
projection nodes are then the seeds for the spatial Voronoi tessellation (Figure 4.17a). For this, the open
source software Qhull can be used [Barber et al., 1996], for which a RhinoScripting implementation has
been written by Dritsas [2006] (Figure 4.17b).

(iii) The vault is cut up into small volumes and the centroids are connected with a continuous mesh, the
main force lines are super-imposed to this mesh (Figure 4.18a). The nodes formed at the intersections of
the self-weight mesh and the forces lines patterns are unloaded nodes. This avoids making a decision on
the discretization; instead, the forces are attracted along primary force lines, loaded by three-dimensional
meshes in between them (Figure 4.18c). A major drawback of this approach is that it drastically increases
the number of branches and nodes.

4.3.2 Live loading

Live loading can be added, but also needs to be discretized and lumped to the nodes, and applied parallel
to the gravity loads. The load Pi applied at each node i can therefore be divided into a dead load Dz,i

and live load Lz,i component:

Pi = Dz,i + Lz,i (4.36)

To guarantee the stability of a masonry vault under the expected live loads, the equilibrium solutions
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(a) (b) ( )bc

? ?*

Figure 4.18 – The (a) primal and (b) dual grids of (c) a fully three-dimensional solution with primary force lines
(thicker lines) and a continuous mesh in between which distributes the forces in a 3-D manner to those force lines.

found for the new set of loads, including live loading, also needs to fit within the section of vault. As
discussed in §4.1.1 the results of this assessment can be overly conservative. In some cases, no equilibrium
could be found if a poor choice of network topology is used: the dead load force pattern is not necessarily
a feasible path for the combined dead and live loading. In the case of historical masonry vaults, live loads
can typically be neglected since the self-weight of these structures is dominant.

4.4 Half-Edge data structure

To manage the networks, a data structure had to be implemented. A data structure is a method of
organizing and connecting objects so that they can be identified, referenced and manipulated [Eastman,
1982]. This is done by creating a dynamic collection of mesh components, e.g. faces, edges and vertices.
In a data structure, objects can identify themselves and the objects with which they are associated.

For TNA, the Half-Edge data structure is implemented [Eastman, 1982; Legakis, 1998]. Since all primal
grids have to be disjointed (see §4.1.2), the resulting networks will always be orientable surfaces, which
is a necessary requirement for the networks to apply this data structure. As seen in Figure 4.19, every
edge is represented by two directed Half-Edge structures with opposite directions, each associated with
exactly one vertex, one edge and one face: the Vertex at the end of the directed half-edge, the original
Edge and the Face “to the right” of the directed half-edge. The last relationship is defined oppositely
rather than conventionally, but this is equivalent if done consistently.

The topology and geometry of the network is entirely described in the list of half-edges and vertices
respectively. The C and C ∗ branch-node matrices in TNA can be generated from the data structure.
Attribution information can be added to the vertices, half-edges and faces. Because of the unique associ-
ations between elements, information is never stored twice and the time complexity is therefore linear in
the amount of information gathered, independent of the global complexity of the system [Legakis, 1998].
The implementation uses three pointers: Vertex, Sym, and Next. Vertex points to the vertex at the end
of the half-edge (Figure 4.19a); Sym points to the symmetric half-edge, which contains the same edge,
the opposite vertex and the opposite face (Figure 4.19b); and Next points to the half-edge to the right if
going clock-wise around a face, which contains the same face, the vertex to the right and the edge to the
right (Figure 4.19c).
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( )b ( )b( )a c

Figure 4.19 – Half-Edge data structure, showing the conventions for the three pointers: (a) Vertex, (b) Sym and
(c) Next (after Legakis [1998]).

The Half-Edge data structure keeps track of the geometry in an organized and efficient manner. With
some careful bookkeeping, it allows flexible changes in topology, such as dividing a space with a new
edge, deleting edges, or adding vertices and edges. This would not be obvious using just the branch-
node matrices. The importance of this property of the Half-Edge data structure is crucial for extending
the TNA framework with topological optimization algorithms and for developing a fully interactive and
flexible design and analysis environment. This will be further discussed in §8.2.

Notice also that because the half-edges around a face are defined to be oriented and connected clock-wise,
for the dual grid this means that the set of directed half-edges around that dual face represents the closed
force polygon of the branch forces coming together in the corresponding primal node (see Figure 4.15).

4.5 Automated thrust line analysis

4.5.1 Two-dimensional analysis

The TNA framework can also be used for two-dimensional arch analysis. Using TNA for thrustline
analysis has several advantages over using graphic statics, even in its interactive version as proposed by
Block [2005] and Block et al. [2006].

An important advantage over using graphic statics is that no tedious graphical constructions are needed.
With this framework, it is straightforward to consider deformed geometries and model hinges and cracks
(Figure 4.20a). The geometry of the actual vault is obtained from CAD models or other input data.
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(a) (b) ( )vc

Figure 4.20 – (a) Section of the abbey church at Vézelay, France, drawn in the 19th-century by Viollet-le-Duc
[1868], showing its ideal undeformed (left) and deformed state at the time it was drawn (right); and (b-c) a
possible thrust line through the deformed section.

Instant computation of minimum and maximum thrust states allows the iteration of the geometry, e.g.
to simulate support settlements or other displacements, and graphic feedback is visualized over the CAD
geometry of the vault (Figure 4.20b).

For an arch in the xz-plane, (3.12) becomes

− 1
ui−1,j

· zi−1 +
(

1
ui−1,j

+
1

ui,j+1

)
· zi −

1
ui,j+1

· zi+1 − Pi ·
(

1
H

)
= 0 (4.37)

where H is the constant horizontal thrust of the arch. The horizontal coordinate difference vector u is

u = Cx =


−1 1

−1 1
. . .

−1 1


x1

...
xn

 (4.38)

With U = diag(u), (3.26) simplifies for a two-dimensional problem to

Ct
iU
−1Cz− pz ·

(
1
H

)
= 0 (4.39)

So, the problem reduces to minimizing or maximizing 1/H to find the shallowest or deepest solution
within the arch’s geometry, which corresponds to the minimum and maximum thrust state of the arched
structure. From the solution, the corresponding funicular polygons can be constructed geometrically.

86



4.6. IMPLEMENTATION OF PROTOTYPE

4.5.2 Pseudo three-dimensional analysis

Even without using the entire TNA framework, reciprocal diagrams for planar projections are a valuable
addition to the tools and techniques provided by graphical statics. For a three-dimensional system, such
as the vault shown in Figure 4.21, these can be used to understand the equilibrium of all thrust values of
the combination of two-dimensional arches in space. This section introduces the horizontal thrust diagram
(Figure 4.21d) which supplements the familiar funicular polygons for three-dimensional problems.

It can be seen in Figure 4.22a that the primal grid now has two-valent nodes. Two spaces are therefore
sometimes separated by more than one edge, violating part (iii) of the definition of a proper cell decom-
position (see §4.1.2) which is necessary to have a spider web, i.e. a compression-only solution. There
are mh collinear branches separating the same two spaces in the primal grid (e.g. spaces C and D in
Figure 4.22a), which all connect the same two dual nodes corresponding to these spaces in the dual grid
(Figure 4.22b). Their dual branches therefore all coincide resulting in equal lengths which means that the
corresponding branches in the primal have the same horizontal force component. This makes sense since
these independent inverted “hanging string” pieces have a constant horizontal thrust in them (Figure
4.22e). This is why in the case of pseudo-3-D networks the dual grid can be understood as a horizontal
thrust diagram.

In Figure 4.22c, the spaces around a node connecting different arches are labeled and its closed force
polygon is identified in the dual grid. The resultant thrust value at the corners of the vault can be found
by measuring the outside segments of the thrust diagram.

Two-valent nodes give problems for the automatic generation of the dual grid. This is solved by introduc-
ing the reduced branch-node matrix C − which replaces each string of collinear branches in the primal
corresponding to one arch with a single branch. The reduced network with the corresponding C − is
a proper cell decomposition of the plane and has therefore a convex reciprocal(see §4.1.2). Using C −

results in the reduced dual branch-node matrix C ∗−. The actual dual branch-node matrix of the system
C ∗ is then constructed by using the row of C ∗− corresponding to the substituted branch as row for each
sub-branch of that hanging string piece.

4.6 Implementation of prototype

A computational prototype for TNA has been implemented using Rhinoceros [McNeel, 2007], Rhino-
Scripting [Rutten, 2007] and MATLAB [The Mathworks, 2009b].

The geometry of the primal grid, drawn in Rhinoceros, is exported using the OBJ file format. The OBJ
file format is a dataformat that represents 3-D geometry as a text file, listing all the vertices of the lines
and faces of the object. A custom parser was written to translate the OBJ files and import the geometrical
data into MATLAB. The topological information of the primal grid is translated into the Half-Edge data
structure, which allows the generation of the primal and dual branch-node matrices. A rhinoscript has
been written to obtain the nodal height limits and compute the nodal weights for the system directly
from a three-dimensional model of the vault, without the need for abstraction or simplification.

The implementation of the data structure and the solving is done in MATLAB. For the linear optimization
problems MATLAB’s linprog LO solver is used [The Mathworks, 2009c]. Rhinoscripts are produced in
MATLAB to generate and visualize the results, i.e. the dual grid Γ∗ and the thrust network G, in
Rhinoceros.
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Figure 4.21 – Graphic analysis of quadripartite vault [Wolfe, 1921]: (a) the interacting arches in plan, with (b)
their respective forces polygons; (c) overlaid over the funicular polygon of the rib, the horizontal force components
in the branches of the rib are shown; and (d) the overall equilibrium of the system is clarified by the horizontal
thrust diagram using the thrust components from (b) and (c).
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Figure 4.22 – (a) Primal and (b) dual grids of a network of connected two-dimensional arches, and (c) the
resulting equilibrium network for a groin vault.(d) shows the equilibrium of the node highlighted in (a). (e) The
dual branches of the collinear branches separating e.g. spaces C and D connect the same dual nodes c and d,
resulting in equal horizontal force in each of these branches, the constant horizontal thrust HCD in that arch.
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In Rhinoceros, the dual grid can be updated by actual dragging of the nodes of the grid, respecting the
parallel constraints. A rhinoscript exports the geometry of the updated Γ∗, and in MATLAB the new
equilibrium shape is found which can again be visualized in Rhinoceros. For each iteration, the updated
geometry of the dual grid is used directly, removing the time-consuming step of generating the dual grid.

Because of the large number of variables, the LO problem (3.39) is a large-scale problem and more efficient
solving methods than those based on the Simplex algorithm should be used [Bertsimas and Tsitsiklis,
1997]. MATLAB’s linprog solver for large-scale LO problems is used, which is based on LIPSOL [Zhang,
1995], a variant of the predictor-corrector algorithm by Mehrotra [1992], which is a primal-dual interior-
point method.

4.7 Summary

This chapter discussed the properties and requirements for allowable primal grids, their meaning, gener-
ation and geometrical constraints.

A linear optimization approach is presented to generate possible dual grids for indeterminate networks,
guaranteeing no-tension equilibrium solutions. A new rule is introduced to reduce the high level of
indeterminacy of the dual grid to a specific number of allowable variations which maintain equilibrium.
This provides understanding of how to control the equilibrium and identifies the degrees of freedom of
the system, by inspection of the topology of the primal grid.

Several strategies to compute the nodal weights have been developed and discussed. The details of the
Half-Edge data structure as implemented in TNA, allowing for flexible topology management, has been
explained.

Finally, the implementation of a computational prototype for TNA using Rhinoceros, RhinoScripting and
MATLAB’s Optimization Toolbox has been described.

Using the TNA framework, automated two-dimensional and three-dimensional thrust line analysis imple-
mentations are shown. The concept of a thrust diagram is introduced to visualize how a series of thrust
lines equilibrate in space.

Chapter 5 will discuss and suggest extensions of TNA beyond the basic framework considered until now.
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Extensions

This chapter discusses extensions to the basic thrust network method described in Chapter 3. Alternative
objective functions for the optimization problem are introduced. In addition, nonlinear extensions to the
basic framework are developed, which include the degrees of indeterminacy of the three-dimensional
network in an overall optimization set-up. Other loading cases and overlapping network configurations
are discussed. Finally, the relation between of reciprocal force diagrams and discrete Airy stress functions
is described.

5.1 Alternative objectives

Until now the objective function has been to minimize or maximize the scale factor ζ, finding the minimum
and maximum thrust states which fit within the solution space (Figure 5.1a). This section will identify
two alternative objective functions, each using a linear optimization set-up. The first one (Figure 5.1b)
defines the geometric safety factor of an arched structure indicating its sensitivity to asymmetric loading.
The next objective function results in an upper-bound analysis which quantifies the limit of stability
of the structure under a point load by increasing it until the structure becomes unstable (Figure 5.1c).
Finally, the problem is inversed: instead of finding the equilibrium geometry under certain set of loads,
the loading is found which would cause a pre-determined network geometry to be funicular for a chosen
network topology.

5.1.1 Geometric safety factor

The geometric safety factor (GSF) is defined as the proportion of the total depth of the cross section D
to the minimum depth d required to contain the thrust line [Heyman, 1982].

To find the geometric safety factor D/d, a new variable β is introduced in the upper- and lower-bounds
on the nodal heights zi [O’Dwyer, 1999]. It relates the width of the strip containing the entire equilibrium
solution to the full section of the vault.

zI
i +

(
zE
i − zI

i

)
β ≤ zi ≤ zE

i −
(
zE
i − zI

i

)
β (5.1)
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(a) (b) ( )ac)

l  Pc

Figure 5.1 – Some possible objective functions: (a) min/max thrust, (b) geometric safety factor, and (c) collapse
load factor.

Figure 5.2 – Definition of the geometric safety factor [O’Dwyer, 1999].

92



5.1. ALTERNATIVE OBJECTIVES

From (5.1), the GSF can thus be found by maximizing β:

GSF =
D

d
= max

β

1
1− 2β

(5.2)

The bounds (5.1) translate to the following 2ni inequality constraints:

{
−zi +

(
zE
i − zI

i

)
β ≤ zI

i

zi +
(
zE
i − zI

i

)
β ≤ zE

i

(5.3)

The parameter β can be related to the proportion D/d and this puts a value on the geometrical safety
of the structure.


β < 0

0 ≤ β ≤ 1
2

1
3 ≤ β ≤

1
2

d > D

d ≤ D
d ≤ 1

3 ·D

GSF ≤ 1
GSF ≥ 1
GSF ≥ 3

(5.4)

Feasible solutions from a stability standpoint, i.e. solutions within the vault’s section, are solutions with
a GSF ≥ 1, i.e. d ≤ D or 0 ≤ β ≤ 1

2 . We can identify different limit states from equation (5.4). If β = 0,
or GSF = 1, the vault is on the verge of collapse. If β ≥ 1

3 , the solution lies inside the middle third
ensuring no tensile forces on the section, hence no cracks or hinging in the vault. If β = 1

2 , the solution
is a membrane solution for that vault, meaning that this shape could theoretically support the applied
loads with zero thickness.

In matrix form, the linear optimization problem (3.40) changes to

min
z,r,β

− β such that



Dz− pzr = 0

−z +
(
zE − zI

)
β ≤ zI

z +
(
zE − zI

)
β ≤ zE

0 ≤ r ≤ +∞
−∞ ≤ β < 1

2

(5.5)

This objective function (and added constraints) guarantees that the optimization problem always has a
solution, even if this solution does not lie within the section (d > D). In that case, the cost becomes
negative (GSF < 0) and this value is indicative of how far the solution is from being a possible lower-
bound solution of the vault. This optimization set-up is therefore better than the original formulation
in (3.40) which would not find a feasible solution and would return an error for a solution with d larger
than D.

The GSFs found using this set-up will be the actual geometric safety factor of the structure only in the
case of a two-dimensional analysis, since the thrust line has only one parameter, the horizontal thrust H.
For a three-dimensional system, the solution is highly dependent on the choice of primal grid and, more
importantly, on the geometry of its dual grid. The main benefit of using this objective function over
(3.40) is that it guarantees a solution at each step allowing the user to manually and iteratively move
towards a better solution. Section 5.2 will introduce a nonlinear extension to the basic TNA framework
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which includes the parameters of the dual grid (see §4.2), to obtain a realistic GSF for a certain network
geometry in the case of three-dimensional structures.

5.1.2 Collapse load factor

A load factor λ is added to equation (4.36) which divides Pi into the fractions due to the constant dead
load, Dz,i and live load, Lz,i:

Pi = Dz,i + λLz,i (5.6)

The sensitivity of the structure under live loading can be explored by using a collapse load factor λc.
By increasing λ, which multiplies the live load component Lz,i, until a funicular solution can no longer
be found within the vault’s cross-section, the collapse load factor λc is found. This factor defines the
maximum point load that the structure can safely carry at that specific location for a chosen force pattern.

Using (5.6), the linear nodal equilibrium constraints (3.12) of the LO become

dii · zi + dji · zj + dki · zk + dli · zl −Dz,i · r − Lz,i · λ′ = 0 (5.7)

with λ′ = λr = λ
ζ .

To find the collapse load factor λc, the following LO problem needs to be solved:

min
z,r,λ′

− λ′ such that


Dz− dzr− lzλ

′ = 0
zLB ≤ z ≤ zUB

0 ≤ r, λ′ ≤ +∞
(5.8)

and the collapse load factor λc is then found by dividing λ′ by r. Maximizing λ′ maximizes both λ and
r, but at collapse, the equilibrium state is unique because it is an upper-bound solution; minimizing or
maximizing r gives the same solution. Note that, as clearly shown in the barrel vault example in §4.1.1,
this approach is irrelevant if no appropriate force pattern has been overlaid on the dead load force pattern
to bring down the point load.

5.1.3 Funicular loading

It may be desirable to find the loading which causes the middle surface to be a membrane solution under
those loads [Williams, 1990]. This set of loads is called the funicular loading of that vault. For this
objective, the nodal heights z are given and, for a chosen force logic, the only unknowns are then the
funicular loading pf and the overall scale of the dual grid ζ. Rearranging equation (3.30), and after
dividing by r and using (3.20c), gives

C t
i

(
L−1

H L∗H
)
w ζ − pf = 0 (5.9)
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This is again a linear problem, but the optimization process now defines the loading pf and the overall
scale of the dual grid ζ causing a pre-defined shape to be funicular under prescribed assumptions of how
forces are distributed. The solution obtained using equation (5.9) is of course dependent on a choice of
the dual grid.

Section 4.2 showed how to identify the k DOFs and corresponding control parameters ξj of the dual grid
and relate them to the local dual branch scalars, ζi. So, equation (5.9) can be generalized to

C t
i

(
L−1

H L∗H
)
Wζ(ξ)− pf = 0 (5.10)

Using equations (4.14) and (4.15), (5.10) can be written as a function of the ξj of both type.

C t
i

(
L−1

H L∗H
)
W
(
1m + L∗H

−1
F(i)ξ(i) + L∗H

−1 (L∗c + L∗H)F(ii)ξ(ii)
)
− pf = 0 (5.11)

Rearranging (5.11) gives the following linear constraints in ξ(i), ξ(ii) and pf :

C t
i L−1

H W
(
F(i)ξ(i) + (L∗c + L∗H)F(ii)ξ(ii)

)
− pf = −C t

i

(
L−1

H L∗H
)
w (5.12)

The funicular loading for a given input network is then found with the LO problem

min
ξ,pf

1 t
k ξ such that


C t

i L−1
H W

(
F(i)ξ(i) + (L∗c + L∗H)F(ii)ξ(ii)

)
− pf

= −C t
i

(
L−1

H L∗H
)
w

ξLB ≤ ξ ≤ ξUB

(5.13)

This approach can be used to define the optimal level of fill for a masonry vault with a given intrados
such that the thrust network follows the central surface of the vault or, in other words, to find the best
extrados for a chosen intrados geometry. If no feasible solution exists for (5.12), then the input shape
can never be funicular using the chosen network topology, represented by the primal grid.

5.2 Force distribution optimization

5.2.1 Problem statement

In the main set-up described in Chapter 3, the geometry of the dual grid Γ∗ is considered fixed, i.e. the
internal distribution of the forces in the primal grid Γ were decided in advance and kept unaltered. This
reduces the optimization problems to linear problems, resulting in fast computation of the results. As will
be illustrated in Chapter 7, such a set-up, particularly when extended with the GSF objective introduced
in §5.1.1, is entirely appropriate for designing new structures. An initial solution is found within given
boundaries and the user can interactively explore three-dimensional equilibrium by tweaking the dual grid
and exploring different network topologies. With fast solving times, quasi-real-time feedback is achieved
which makes the interactive set-up possible.
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For the safety assessment of masonry structures on the other hand, this iterative approach becomes
very tedious and unwieldy. First of all, the linear optimization problem as described in (3.40) does not
guarantee that a feasible solution can be found, i.e. that a compression-only funicular solution exists
within the vault’s section for the starting point provided by the automatically generated dual grid. This
was resolved using the LO variant introduced in §5.1.1. This approach guarantees a solution for the
optimization problem and furthermore gives a measure of how far the solution is from fitting inside the
vault. It does not suggest though which adjustments of the dual grid will move the result in the direction
of a feasible or better solution.

For simple choices of force patterns, this process can be done by hand, based on intuition, experience
or perseverance, but for more sophisticated and interconnected primal grids the process quickly becomes
too challenging. It is furthermore impossible to get to the lowest geometric safety factor or the absolute
minimal horizontal thrust state manually, due to the infinite possibilities of the complex three-dimensional
system of forces. It therefore becomes important to control the degrees of freedom of the dual grid in an
overall optimization process.

Such a set-up also opens possibilities for making structurally informed design decisions by finding the
closest funicular network to an arbitrary input surface. This is a difficult problem which has not been
solved satisfactorily [Sobek, 1987].

5.2.2 Problem description

Starting again from the vertical equilibrium equations (3.4) of a typical node i, the horizontal branch
forces FH

ji are now no longer all directly proportional to the geometry of the dual grid, represented by
the one scalar ζ as in (3.8). Instead, there are now m scalars ζji associated with each dual branch.

FH
ji = ζji · LH*

ji (5.14)

and plugged into (3.4),

ζji (zi − zj)
LH∗

ji

LH
ji

+ ζki (zi − zk)
LH∗

ki

LH
ki

+ ζli (zi − zl)
LH∗

li

LH
li

= Pi (5.15)

The unknowns in (5.15) are the dual branch scalars ζji and the nodal heights zi. These ζji cannot
be chosen arbitrarily because the dual grid is constrained geometrically to maintain compression-only
solutions (§3.2.3). The dual grid has a particular number of degrees of freedom, k, controlled by the
parameters ξk. Section 4.2 introduced rule (4.9) to obtain the number of DOFs of a dual grid by
inspection of the primal grid, their corresponding parameters ξk and relation to the dual branch scaling
factors ζji. So, (5.14) becomes

FH
ji = ζji (ξk) · LH*

ji (5.16)

The inital goal is to set up an optimization problem to find a set ξ = {ξ1 . . . ξk} such that the funicular
solution G is contained within the section of the vault, i.e.

zLB ≤ z ≤ zUB (5.17)
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As discussed above, the height constraints (5.17) can be too strong to find an initial feasible solution.
The hard constraints on z in (5.17) can be relaxed by replacing them with penalty terms fi(zi) related
to the middle surface of the vault, and minimizing these penalty terms, summed over all the nodes, in
the objective function f(z):

f(z) =
∑
i

fi(zi) =
∑
i

(
zi − zM

i

)2
=
∥∥z− zM

∥∥2

2
(5.18)

where zM = zLB+zUB

2 .

The sum of all penalty terms fi(zi) needs to be minimized, resulting in the optimization problem

min
z,ξ

f(z) such that

{
D(ξ)z = pz

ξ ≥ ξLB (5.19)

Minimizing f(z) in (5.19) would render the z and ξ, representing the equilibrium solution which maximizes
the GSF of the vault for that choice of primal grid. Minimizing f(z) is a least squares problem, but by
adding the equilibrium constraints of the form (5.15), which are bilinear in ξ and z, the problem (5.19)
becomes a complex nonlinear, constrained optimization problem for which there exists no direct solving
algorithm.

The nonlinear optimization problem (5.19) can be solved using an iterative gradient approach. Because
the height constraints have been brought into the objective function, a similar strategy can be used as
for the nonlinear extensions to the Force Density Method [Schek, 1974]. If at each iteration an improved
set of parameters ξ is obtained and is considered as known, the problem (5.19) reduces to a linearly
constrained least-squares optimization problem which can readily be solved using the lsqlin solver of
MATLAB’s Optimization Toolbox [The Mathworks, 2009c]. The lsqlin solver is a sequential quadratic
programming method described by Gill et al. [1981].

5.2.3 Outline solving procedure

The starting set of parameters ξ(0) is obtained from the automatically generated dual (see §4.2) which
guarantees that they represent a possible stress state of the primal grid, but resulting in a solution which
is not necessarily contained within the boundaries. The constraints in (5.19) become linear in z because
the parameters ξ are now known from ξ(0). The geometry of the equilibrium solution z(0) corresponding
to the inital set of parameters ξ(0) is found by solving the optimization problem

min
z

f(z) such that D(ξ(0))z = pz (5.20)

which is a linearly constrained least squares problem. This renders the cost f(z(0)) which will be used to
steer the overall optimization problem:

ξ(0) → ζ(0) lsqlin→ z(0) → f(z(0)) (5.21)
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For the next iterations, the optimization wants to move in a direction which reduces the cost f , i.e.
reducing the sum of the penalties which means approaching the middle surface of the boundaries. The
set of the parameters ξ at the next iteration is defined as

ξ(0) := ξ(0) + ∆ξ (5.22)

with ∆ξ, the change of the parameters ξ, which is generated such that

f(ξ(0) + ∆ξ) < f(ξ(0)) (5.23)

At each iteration, the linearly constrained least squares problem (5.20) needs to be solved. The stopping
criteria for this iterative procedure is

f(ξ(0))− f(ξ(0) + ∆ξ) < ε (5.24)

with ε a given tolerance. The resulting z(GSF) and ξ(GSF) are the values defining the equilibrium network
G(GSF) which maximizes the geometric safety factor.

The difficulty is to find appropriate variations ∆ξ in (5.22). The Levenberg – Marquardt Algorithm
(LMA) is used to find the search direction from the following set of linear equations, evaluated at ξ(0),
the parameter set at the current iteration [Levenberg, 1944; Marquardt, 1963; Gill and Murray, 1978]:

∆ξ =
(
J tJ + λI

)−1
J tf(ξ(0)) (5.25)

where J is the sensitivity, or Jacobian, matrix of f with respect to ξ, λ is the damping coefficients vector,
I the identity matrix and f the objective function. The damping coefficients vector λ is introduced to
help with the computation of the inverse of J tJ, the Gaussian transformation of J. Section 5.2.5 will
derive the Jacobian matrix J.

Instead of finding the geometric safety factor of a vaulted structure, it is often more valuable to find
the range of horizontal thrust, defined by a minimum and maximum state, it exerts or can exert onto
its neighboring elements. If an equilibrium solution exists for the vault and a sensible network topology
is chosen, then the G(GSF) obtained with the procedure described above will be a possible lower-bound
solution for the vault, i.e. a compression-only equilibrium solution which is entirely contained within
the vault. The corresponding set ξ(GSF) and z(GSF) are therefore feasible starting values for a new
optimization which reintroduces the hard nodal height constraints from (5.17). The new optimization
problem, minimizing the horizontal thrusts at the boundaries, thus becomes

min
z

− f(z) such that

{
D(ξ(GSF))z = pz

zLB ≤ z ≤ zUB
(5.26)

The objective is now to maximize the GSF while keeping the solution within the boundaries (GSF→ 1).
this will render the overall minimimum horizontal thrust state for the chosen network topology. The
problem (5.26) can be solved using the same iterative procedure described above, but now starting from
G(GSF) and driving the optimization in the opposite direction.
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5.2.4 Implementation

An iterative gradient search method is used to solve the difficult nonlinear optimization problem (5.19),
implementing the Levenberg – Marquardt algorithm to find appropriate search directions and step lengths.
At each iteration, the linearly constrained least squares problem (5.20) needs to be solved. The lsqlin
solver in MATLAB’s Optimization Toolbox uses the following form for least squares optimization prob-
lems with linear constraints:

min
x

‖Cx− d‖22 such that


Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

(5.27)

where x are the variables, C and d the cost matrix and vector, A and Aeq the inequalities and equalities
constraint matrices with b and beq their corresponding right hand sides, and lb and ub the lower and
upper bounds on the value of the variables. This problem converges to a global minimum, if C in (5.27)
is positive definite. From (5.18) and (5.21), the linearly constrained least squares problem becomes

min
z

∥∥Inz− zM
∥∥2

2
such that

{
D(ξ)z = pz(
zLB ≤ z ≤ zUB

) (5.28)

where the height constraints zLB ≤ z ≤ zUB are only included for the minimum thrust optimization.
The problem (5.28) converges to a global minimum, since C = In, the identity matrix of size n.

For the overall search procedure, since the damping coefficients vector λ is being dynamically updated
in the Levenberg – Marquardt algorithm to optimize the convergence, the search algorithm tends to
converge to a solution even for starting values which are far from the optimal solution, i.e. the solution
that minimizes the objective [Gill and Murray, 1978]. The resulting solution is not necessarily the global
optimum though. In the case that the penalties fi(z

(0)
i ) vary too much, the optimization search may

terminate at a local minimum. In this case, the problematic fi(zi)’s need to be identified and multiplied
by weighting coefficients αi. This helps the solution to be “pushed” out of a local minimum. So, adding
weighting coefficients αi to (5.18), the objective for the constrained least-squares problem becomes

f(z) =
∑
i

αi · fi(zi) =
∑
i

αi
(
zi − zM

i

)2
= A

∥∥z− zM
∥∥2

2
(5.29)

5.2.5 Representation of the Jacobian matrix J

For the first optimization problem , finding the derivatives with respect to ξ of the objective function f
is not obvious since f is not explicitly given as a function of ξ. Using the chain rule, the Jacobian matrix
of the multi-convoluted function f can be obtained as

J =
∂f (z (ζ (ξ)))

∂ξ
=
∂f

∂z

∂z

∂ζ

∂ζ

∂ξ
(5.30)
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The ∂f
∂z matrix is found by deriving with respect to z:

∂f

∂z
=
(
Z− ZM

)
(5.31)

Schek shows how to derive the matrix ∂z
∂ζ by starting from the nodal equilibrium equations [Schek, 1974]:

C t
i W (z) q (ζ) = pz (5.32)

Each change in dξ or dz needs to keep the equilibrium untouched, so

d
(
C t

i Wq
)

=
∂
(
C t

i Wq
)

∂ζ
dζ +

∂
(
C t

i Wq
)

∂z
dz = 0 (5.33)

As in equation (3.29), the force densities q can be written as a function of the (m×1) vector ζ, listing all
the dual branch scale factors ξji, which are no longer assumed to be equal as in the basic TNA framework.
Using (3.29) in (5.33) gives

∂
(
C t

i Wq
)

∂ζ
=
∂
(
C t

i WL−1
H L∗Hζ

)
∂ζ

= C t
i WL−1

H L∗H (5.34)

and

∂
(
C t

i Wq
)

∂z
=
∂
(
C t

i Qw
)

∂z
=
∂
(
C t

i QCz
)

∂z
= C t

i L
−1
H L∗HZC (5.35)

so that the desired matrix ∂z
∂ζ becomes

∂z

∂ζ
= −

(
C t

i L
−1
H ZL∗HC

)−1
C t

i WL−1
H L∗H = −D−1C t

i WL−1
H L∗H (5.36)

To find the matrix ∂ζ
∂ξ , the relation between the dual branch scales ζ and parameters ξ of both types has

to be derived. Using the chain rule, this gives

∂ζ

∂ξ
=

∂ζ

∂ξ(i)

∂ξ(i)

∂ξ
+

∂ζ

∂ξ(ii)

∂ξ(ii)

∂ξ
(5.37)

From (4.14), ∂ζ
∂ξ(i) is found as

∂ζ

∂ξ(i)
=

∂

∂ξ(i)

(
1k(i) + L∗H

−1
F(i)ξ(i)

)
= L∗H

−1
F(i) (5.38)
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and from (4.12), ∂ζ
∂ξ(ii) becomes

∂ζ

∂ξ(ii)
=

∂

∂ξ(ii)

(
L∗H
−1 (L∗c + L∗H)F(ii)ξ(ii)

)
= LH∗−1 (L∗c + L∗H)F(ii) (5.39)

The relation between ξ(i), ξ(ii) and ξ is

[
ξ(i)

ξ(ii)

]
=
[

Ik(i) 0
0 Ik(ii)

]
ξ =

[
Ξ(i)

Ξ(ii)

]
ξ (5.40)

with k(i) and k(ii) the number of DOFs of type (i) and (ii) respectively, and k(i) + k(ii) = k. Thus the
(k(i) × k) matrix ∂ξ(i)

∂ξ and (k(ii) × k) matrix ∂ξ(ii)

∂ξ become

∂ξ(i)

∂ξ
= Ξ(i) (5.41a)

∂ξ(ii)

∂ξ
= Ξ(ii) (5.41b)

Plugging (5.38), (5.39) and (5.41) into (5.37), the desired matrix ∂ζ
∂ξ becomes

∂ζ

∂ξ
= L∗H

−1
(
F(i)Ξ(i) + (L∗c + L∗H)F(ii)Ξ(ii)

)
(5.42)

Combining (5.31), (5.36) and (5.42), the Jacobian matrix J becomes

J =
∂f

∂z

∂z

∂ζ

∂ζ

∂ξ
= −

(
Z− ZM

)
D−1C tWL−1

H

(
F(i)Ξ(i) + (L∗c + L∗H)F(ii)Ξ(ii)

)
(5.43)

5.3 Non-vertical loads

For both design and analysis, the case of non-parallel loads should also be considered. As can be seen in
Figure 5.3, the horizontal components of the non-parallel loads will appear in the dual diagram.

It can be seen that the number of DOFs k of the dual grid is the same as in the case without non-vertical
loads. The primal branch-node matrix C and dual branch-node matrix C ∗ stay unchanged with the
occurrence of the non-vertical loads; their topology and connectivity stay indeed unaltered. The external
horizontal force components, as shown in Figure 5.3c, do influence the altered dual branch lengths L∗H.
It is clear from Figure 5.3 that the dual grid becomes much less legible and intuitive.

The same optimization set-up as for the parallel loading case can be used if the dual branch lengths L∗H
are updated to accommodate the non-parallel loads, i.e. to guarantee equilibrium in the horizontal plane.
After using (3.40) the funicular solution for this set of random loads will be found, with the nodes still
constrained to only move up and down.
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Figure 5.3 – Projections of non-parallel loads: (a) primal grid with horizontal components of these forces; (b)
dual grid ignoring the horizontal components from the non-parallel loads; (c) the closed polygons representing the
horizontal equilibrium of the nodes 2, 3 and 5 must include the externally applied loads and the dual grid adapts
to the horizontal components.

For a given primal grid, but not for every set of non-vertical loads, a solution can be found.

5.4 Overlapping networks

In some cases it may be useful to consider the equilibrium of multiple overlapping networks, such as the
mesh supported at discrete points by the polygonal arch shown in Figure 5.4a.

The interaction of the continuous mesh and the supporting arch can be modeled as shown in Figure 5.4.
Their interaction is quite complex, but can be modeled using linear programming by adding interaction
forces Vi. If described properly, the unknown interaction forces can be found in the same optimization
that simultaneously finds G(mesh) and G(arch), the equilibrium shapes of the mesh and arch.

The interaction can be split into two connected actions: the supporting action on the mesh by the arch
(Figure 5.4b) and the loading action of the mesh on the arch (Figure 5.4c). For the equilibrium equations
of the mesh, the forces on the nodes from the arch are incorporated as shown in Figure 5.5.

V ∗i are defined as function of the Vi and the scale of the dual grid of the mesh, ζ(mesh),

Vi = ζ(mesh) · V ∗i =
1

r(mesh)
· V ∗i (5.44)

This allows the V ∗i to be introduced in the linear equilibrium constraints (3.13) as “negative” weights:

dii · z(mesh)
i + dji · z(mesh)

j + dki · z(mesh)
k + dli · z(mesh)

l + V ∗i − Pi · r(mesh) = 0 (5.45)
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Figure 5.4 – Modeling of overlapping networks: (a) compressive arch supports a compressive mesh in a discrete
set of contact points; (b) the mesh is supported in points by the polygonal arch; and (c) the arch is loaded by
these inverted vertical reactions forces from the mesh.
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Figure 5.5 – The equilibrium of a typical node i of the mesh which interacts with the arch. Vi is the interaction
force at that node between the mesh and its supporting arch, modeled as a “negative” load.

103



CHAPTER 5. EXTENSIONS

with the unknowns z(mesh)
i , V ∗i and r(mesh).

The nodal heights of the mesh nodes which are connected to the supporting arch are not free but are
constrained by the equilibrium of the arch, which will be funicular for the contact forces V ∗i . To describe
the action of the mesh on the arch, equation (4.37) can be rewritten using (5.44) as

− 1
li−1,i

· z(arch)
i−1 +

(
1

li−1,i
+

1
li,i+1

)
· z(arch)
i − 1

li,i+1
· z(arch)
i+1 − V ∗i ·R = 0 (5.46)

with R = r(arch)

r(mesh) , in which r(arch) = 1
H(arch) and r(mesh) = 1

ζ(mesh) .

If R is chosen, the constraint equations of the supporting arch (5.46) also become linear, in the unknowns
z
(arch)
i and the same interaction forces V ∗i .

The overall equilibrium of the interacting G(mesh) and G(arch) is guaranteed because the equilibrium con-
straints (5.45) and (5.46) are coupled by the interaction forces V ∗i , but also by introducing an additional
set of constraints demanding that the mesh and the arch touch in the discrete contact points connected by
the interaction forces V ∗i . The linear optimization problem to obtain global equilibrium has the following
form:

min
z(mesh),r(mesh),z(arch),v∗

± r(mesh) such that



D(mesh)z(mesh) + v∗ − pzr
(mesh) = 0[

C t
i L
−1
H C

](arch)
z(arch) − v∗ ·R = 0

z(arch) −Nz(mesh) = 0

zLB ≤ z(mesh), z(arch) ≤ zUB

0 ≤ r(mesh) ≤ +∞

(5.47)

where N is an (n(arch)
i × n(mesh)

i ) matrix describing which points of the mesh are supported by the arch.
The entry N (i, j) receives a “1” if the ith node of the supporting arch is connected to the jth node of the
supported equilibrium mesh, and a “0” otherwise.

This implementation of overlapping networks has been illustrated using the interaction between an arch
and a mesh. It can also connect several in plan overlapping meshes, which opens exciting possibilities for
design.

5.5 Links with Airy stress functions

This section will discuss the relation between reciprocal figures and discrete, i.e. polyhedral, Airy stress
functions [Airy, 1863]. Their correlation was first pointed out and proven analytically by Maxwell [1869].

Section 4.1.2 demonstrated the equivalence between a primal grid which has a convex dual, and the
projection on the horizontal plane of a convex (or equivalently concave) polyhedral bowl. Ash et al.
[1988] discussed the geometrical construction to go from the reciprocal dual grid to the polyhedral bowl
which has the primal as horizontal projection (Figure 5.6a). This polyhedral bowl is actually a discrete
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(a) (b)

Figure 5.6 – (a) The geometrical relationship between discrete Airy stress functions and reciprocal figures as
first described by Maxwell [1869], clarified and illustrated by Whiteley [1986]. (b) The change in angle of the
discrete stress function along an edge of the primal grid [Fraternali et al., 2002].

stress function representing one of the possible horizontal equilibrium states of the thrust network G.
This will be proven by the following discussion.

Equation (3.5) can be generalized for j branches coming together in node i as

∑
j

FH
ji ·

(zi − zj)
LH
ji

− Pi = 0 (5.48)

From Fraternali and Rocchetta [2002], but with the notation used this dissertation, the equilibrium
constraint equation of a typical node i with j branches ending in it can be written as

∑
j

F̂ji ·
(zi − zj)
LH
ji

− Pi = 0 (5.49)

in which F̂ji =
[[
∂ϕ̂/∂lh

]]j
i

denotes the jump in the directional derivative ∂ϕ̂/∂lh across the edge ij of the
polygonal stress function ϕ̂, which is considered to be a piece-wise linear approximation of a continuous
thrust surface. As shown in Figure 5.6b, this jump

[[
∂ϕ̂/∂lh

]]j
i

can also be understood as the change in
angle going clock-wise along the edge ij of the discrete stress function ϕ̂.

Comparing (5.48) and (5.49) then renders the relationship between the horizontal component FH
ji of

the axial force in the branch ij and the change in angle across that edge of the Airy stress function ϕ̂
describing its equilibrium:

FH
ji =

[[
∂ϕ̂/∂lh

]]j
i

(5.50)
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and using (3.9),

ζ · LH
ji

∗
=
[[
∂ϕ̂/∂lh

]]j
i

(5.51)

Equation (5.51) relates the two representations of the horizontal equilibrium of the thrust network G:
its dual grid Γ∗ and its discrete Airy stress function ϕ̂. The dual branch lengths LH

ji
∗, multiplied by the

overall scale of the dual grid ζ, give the value of the change in angle over that edge of the discrete stress
function

[[
∂ϕ̂/∂lh

]]j
i
.

Fraternali and Rocchetta [2002] point out that a compression-only network corresponds to a concave stress
function, and equivalently a tension-only network to a convex stress function. A concave, polyhedral stress
function indeed has consistently the same sign for the angles between its planar facets, corresponding to
the positive force densities in a compression-only network. This ties up the argument since we know from
Ash et al. [1988] that tension-only grids are the horizontal projections of convex polyhedral bowls.

Although the Thrust Network Analysis approach in this dissertation was developed independently from
Fraternali and Rocchetta [2002], both approaches use a nearly identical framework but TNA uses recipro-
cal force diagrams instead of discrete Airy stress for the lumped stress method [Fraternali and Rocchetta,
2002]). The advantages and disadvantages of their approach over TNA were discussed in the literature
review (§2.2.7). The correlation between discrete Airy stress functions and reciprocal diagrams discussed
in this section needs to be further explored so that the strengths of both approaches can be comple-
mented and extended. Particularly the predictor-corrector strategy by Fraternali and Rocchetta [2002],
a geometric technique based on the convex hull [Avis and Fukuda, 1992] to optimize the shape of the
thrust surface within the boundaries of a vault, could be valuable in the TNA framework.

5.6 Summary

This chapter discussed several alternative objective functions for the basic Thrust Network Analysis
framework. The idea of the funicular loading of a given vaulted shape has been translated into a linear
optimization problem.

An important nonlinear extension to the basic TNA framework allows the incorporation of the degrees
of freedom of the dual grid, i.e. the infinite variations of internal forces in a statically indeterminate
network. It optimizes the internal force distribution in order to obtain the absolute minimum thrust
or geometric safety factor using complex networks. This nonlinear extension of the TNA framework is
an important step towards making Thrust Network Analysis a viable and versatile assessment method
for complex vaulted masonry structures. It also opens up new possibilities for approximating free-form
designs using funicular structures.

Procedures have been presented to extend the TNA framework beyond parallel-only loading cases and
non-overlapping surfaces. The equivalence between the reciprocal diagrams used in TNA and discrete
Airy stress functions has been shown. This relation opens up the possibility to utilize solving procedures
and algorithms from computational geometry.
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Chapter 6

Analysis of masonry vaults

6.1 Introduction

This chapter shows results of using Thrust Network Analysis for the equilibrium assessment of masonry
vaults in order to validate the method. The method is particularly appropriate for historic masonry vaults
because their self-weight is the dominant load. It discusses how to identify sensible force patterns for
representing the structural action of different vault typologies and the requirements on the force networks
for modeling pathologies. Several examples and case studies show the potential of this method to assess
the stability for a wide range of complex vault types.

6.1.1 Force patterns

The principal challenge for the analysis of masonry structures is to define an appropriate network of forces
to model a plausible flow of forces in a three-dimensional structure. There has been extensive debate
on the structural behavior of masonry vaults, with a particular emphasis on the perceived role of the
rib in Gothic vaults [Viollet-le Duc, 1868; Sabouret, 1928; Abraham, 1934; Heyman, 1968; Mark, 1982].
Many assumed that the vault forces “flow” to the supports in the same manner as water would drain
off the vault’s upper surface or as a cannonball would roll off the surface of a vault, as Abraham [1934]
shows in Figure 6.1a. In Figure 6.1b, Abraham compares Viollet-le-Duc’s “wrong” assumption (A) and
his “correct” assumption (B) on how the forces travel to the supports. Mark [1982] uses photo-elastic
analysis on carefully machined, perfectly homogeneous and smooth, plastic models to show the elastic
path of forces in a groin vault (Figure 6.1c).

Regardless of the above discussion, the safe theorem shows that it is not important or even possible to
know the exact internal state of the vault. However, as discussed in §4.1.1, it is useful to seek help in
choosing a sensible logic for the force patterns. Ungewitter [1890] and Rave [1939] for example apply
the same idea as Abraham to assume force paths for a wide range of cross vaults with different cap
geometries. They cut the vault into imaginary tributary strips which are informed by the curvature of
the vaults (Figure 6.2). The main force lines follow the principal directions of curvature. These lines of
steepest descent run perpendicular to the height isolines. This strategy for slicing up a vault seems to be
generally considered as the most sensible, and would therefore be the best choice when a combination of
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(a) (b) ( )bc

Figure 6.1 – Different assumptions on how the forces flow to the supports in a quadripartite vault, according to
(a) Abraham [1934], (b) Viollet-le-Duc in part A [Abraham, 1934], and (c) Mark [1982].

two-dimensional analyses is used.

By using Thrust Network Analysis the different force pattern assumptions can be compared, though the
real power of the approach lies in the ability to superpose multiple assumptions on the structural behavior
of the vault (Figure 4.1). As pointed out by O’Dwyer [1999], the resulting combined patterns represent
better the highly indeterminate character of three-dimensional vaults. Alternatively, the example in
Figure 4.18 showed a fully three-dimensional network distinguishing primary and secondary force lines.
The location of these main force lines can for example be inspired by the location of ribs in the actual
vault, since such elements could attract more force, but also because often the ribs were laid out along
the lines of principal curvature [Pottmann et al., 2007].

6.1.2 Modeling pathologies

For historic masonry vaults, it is important to observe cracks and deformations to make informed as-
sumptions on how the structure might act. The chosen primal grid should then reflect these structural
discontinuities. Due to support displacements, Sabouret cracks [Sabouret, 1928] often occur parallel to
the walls in cross vaults (Figure 6.4a) and radial cracks often occur in domes [Heyman, 1995]. Pieper
[1983] and Barthel [1993] give an overview of common cracking patterns for different vault typologies
(Figure 6.4b).

A system of discrete forces allows cracks and other structural discontinuities to be modeled easily. These
defects put geometric constraints on the thrust network G, and hence the allowed primal grid. Branches
of the force network which would cross holes or open cracks need to be removed, since no compressive
forces can be transmitted over them. For more intricate force patterns, the equilibrium of the opening
edge needs to be checked (see §4.1.3). Hinging cracks force branches crossing them to go through them,
either on the intrados or extrados (see Figure 4.20). Forcing the thrust network to go through the hinge
lines is achieved by introducing weightless nodes at the intersection of the traversing force lines and
the hinge line and constraining their z-coordinates on the hinge line, which is either at the intrados or
extrados opposite to the opening crack. This is done by making the lower and upper bounds on their
z-coordinate equal to that value.
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(a) (b)

Figure 6.2 – Historical examples for proposals to cut up a three-dimensional structure using the slicing technique
by following the curvatures of the vaults by (a) Ungewitter [1890] and (b) Rave [1939].
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(a) (b)

Figure 6.3 – Typical crack patterns for masonry vaults: (a) The cracks running parallel with the side walls
are called Sabouret cracks [Abraham, 1934]. (b) For some common vaults, Barthel [1993] shows their typical
pathologies.

6.2 Groin and rib vaults

The range of possible equilibrium states, bounded by a minimum and maximum thrust, can be pro-
duced easily and quickly using TNA (Figure 6.4). The range of thrust values provides the most useful
characterization of the structural behavior of a masonry vault. The minimum (or passive) thrust state
represents the least amount this vault will push sideways onto its neighboring elements, as a function
of its self-weight and shape. The maximum (or active) state of thrust on the other hand represents the
largest horizontal force this vault can provide. So, this value demonstrates how much horizontal force
this vault can exert on its neighboring elements.

Figure 6.5 shows different force patterns responding to the geometry of three generic types of cross vaults:
(a) a groin vault; (b) a pointed quadripartite vault; and (c) a vault with domical caps. Their respective
topographical map, resulting force pattern and force diagram are shown. These vault typologies are a
selection from Barthel’s classification [Barthel, 1993]. The first force pattern (Figure 6.5a) has main rib
arches going from corner to corner and web arches spanning in between them, as used for the groin vault
example in Figure 6.4. The second pattern (Figure 6.5b) shows a different assumption on how the forces
could travel through the structure: all force lines go directly to the corner supports. The force diagrams
represent in a clear fashion the equilibrium of the corner nodes and center node. A similar pattern will
be used to analyze the fan vaults in §6.3. Both patterns only have thrusting reactions at the corners, but
the first one relies heavily on forces in the ribs, while the latter has the web spanning independently of
the ribs, which would be a more sensible choice of force pattern in the common case where the web is
separated from the ribs in the actual structure.

As pointed out in §4.5.2, although the force patterns in Figure 6.5 are merely a combination of two-
dimensional force lines, the use of reciprocal force diagrams is valuable for understanding how the different
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Figure 6.4 – Possible thrust values for this groin vault range from a minimum thrust of 0.21W to a maximum
thrust of 0.32W, with W the total weight of the vault.

(b)

(a)

( )bc

Figure 6.5 – Three generic types of cross vaults: (a) a groin vault from two intersecting barrel vaults, (b) a
pointed quadripartite vault, and (c) a vault with domical caps. Their respective topographical map, sensible force
pattern reflecting the geometry of the vault, and reciprocal force diagram are shown.
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thrust lines combine to create a three-dimensional network. The reciprocal force diagrams clearly show
how the forces interact, what thrust values are interdependent and how many degrees of freedom (to
redistribute the forces internally) are in the chosen system. A radial force pattern would be appropriate for
cross-vaults with domed caps (Figure 6.5c). An important difference with the previous two assumptions
is that for the network in Figure 6.5c the forces no longer only go to the corner supports, but a part of
the vault is carried along the edges. If Sabouret cracks are present in the vault, separating the web from
the supporting walls, this pattern would not be appropriate for the assumed path of the forces.

6.3 Fan vaults

The fan vaults of King’s College Chapel in Cambridge, England were constructed between 1512 and
1515 by master mason John Wastell (Figure 6.6a) [Leedy, 1980]. These doubly-curved vaults were first
analyzed by Heyman [1967; 1977; 1995] using membrane theory. The static equilibrium of these vaults
and an estimation of the horizontal thrust acting on each buttress can be obtained using a simple slicing
approach and TNA. The difference between the results of both approaches will be discussed and compared
to Heyman’s results.

From available documentation (Figure 6.6b) [Mackenzie, 1840; Leedy, 1980], a detailed three-dimensional
CAD model is constructed (Figure 6.6c-d). This model is used to obtain the nodal height constraints and
to approximate the weights applied at each node of the assumed force networks. The vault has cracks
between the conoid fan vaults and the transverse arches and also along the side walls [Leedy, 1980]. The
transverse arches and the fan vaults are therefore assumed to work independently of each other. The
chosen cuts in the slicing technique or the chosen force pattern in TNA reflect this, i.e. no branches
cross the interfaces between the fan vault and the transverse arch. With more information about where
exactly cracks and openings have developed, some interaction between the transverse arches and the
conoid vaults could occur but it is conservative to assume that there is no interaction.

The resulting two-dimensional minimum thrust lines obtained using the slicing technique are visualized
in Figure 6.7a. The thrust line solutions barely fit within the fan vault’s geometry. This would suggest
that the vault is close to a unique upper bound solution, which means close to instability. Using the
crude, two-dimensional approach the vault is found to be barely stable. In reality though, there are many
three-dimensional force paths which are neglected by this simplified “arch” approach. However, the arch
action demonstrates one possible lower bound solution and the vault is significantly more stable than this
solution suggests.

The thrust lines traveling through the part of the vault labeled “B” in Figure 6.7a-b are very shallow and
travel through the high level of fill at the haunches. These result in large thrust values, which moreover
enter the buttresses at a higher point. On the other hand, in part “A”, the added height and weight
over the transverse ridges between two adjacent fan vaults (Figure 6.6c) causes a kink in the thrust lines
in the short direction of the vaults such that they fit in the very steep section. Without this added
surcharge no thrust lines could be found which stay inside the vault’s section in region A when using
the slicing technique. The thrust lines were obtained using the two-dimensional automated thrust-line
analysis version of TNA, as described in §4.5.1. The resulting thrust values of the fan vaults transferred
onto the buttresses is about four times higher than the resulting thrust from Heyman [1995].

This huge discrepancy can be explained by the inability of the two-dimensional arches to redistribute
forces. This becomes most critical in the arches along the diagonal of the bay (highlighted in Figure 6.7b).
Figure 6.7c shows a half section of the vault taken along the diagonal. It can be seen that the arched
profile becomes very flat towards the middle of the span. On top of that this, this singular arch carries
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(a)

(b)

( )a

(d)

fill

transverse
     arch

transverse ridge

c

Figure 6.6 – King’s College Chapel in Cambridge, England: (a) interior view of the fan vaults, and (b) one of
the detailed drawings of the geometry by Mackenzie [1840], used to produce (c-d) the detailed CAD model of the
vault geometry to obtain accurate boundaries and weights.
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A

A

B

B

hB

hA

level of fill

without fill

with fill

(b) (d)

(a) ( )bc

level of fill

boss

Figure 6.7 – For a typical bay of the King’s College Chapel vaulted ceiling, (a) visualizes the result using the
2-D slicing technique. The thrust lines from regions A and B reach the buttress at two distinct heights, hA and
hB respectively. (b) shows the plan view of the chosen arches. (c) Very flat profile of the most extreme, diagonal
section. (d) The thrust line in the main transverse arches with and without fill. It can be seen that the fill is
necessary to keep the thrust line within the arch’s section.
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H          buttr

Figure 6.8 – (a) Three-dimensional equilibrium network obtained using TNA for King’s fan vaults, with (b)
the chosen force pattern and (c) its corresponding thrust diagram from which the thrust onto the buttresses can
easily be obtained.

the entire weight of the heavy boss at the center. The problematic effect is similar to what happened
with the barrel vault example in §4.1.1. These two punishing effects combine to cause these funicular
arches to have very high thrust values while hitting the buttress much higher. Using the unrealistically
high thrust values (four times higher than Heyman’s results) could lead to erroneous conclusions, such
as claiming that the buttresses are barely stable due to those high thrust values. This result shows that
the slicing technique can be very unsatisfactory.

When performing a three-dimensional analysis using TNA, the resulting horizontal thrust per buttress
is 176kN, or about 18 tons, which is still 1.8 times more than the 10 tons obtained from a membrane
solution by Heyman [1995]. Figure 6.8 shows (a) the equilibrium result, for (b) the chosen force pattern
and (c) its corresponding thrust diagram. From the thrust diagram, half of the total horizontal thrust
on the buttress can be found graphically as well. In the three-dimensional network (Figure 6.8a), the
connection between all arches in the center distributes the weight of the boss over all of them, resulting
in a solution which follows the intrados of the fan vaults much closer.

This analysis was done iteratively by hand, and like Heyman’s analysis the thrust of the transverse arches
is not considered. With the non-linear extension of TNA laid out in §5.2, the overall minimum thrust
state could be found, though it has not been implemented for this example. If completed, it would result
in an even lower thrust value, likely much closer to Heyman’s result. Part of the discrepancy between
the results could be explained by different assumptions. For example it is not clear what assumptions
Heyman made about the level of fill or how he reduces the thrust values from 16 tons to 10 tons because
of the in plan interesecting conoids, resulting in rectangular bays. Furthermore, the CAD model could
vary from the actual geometry of the fan vaults due to misinterpretations by the author of the historical
documents. This would influence both the limits on the nodal heights as well as the computed weights
used in the analysis.
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Figure 6.9 – Rose window of the Notre Dame de Mantes, France (c. 1180).

6.4 Rose windows

The delicate stone tracery of large rose windows provide an additional challenge in the three dimensional
analysis of masonry structures. The main loading of large windows of Gothic churches and cathedrals is
the pressure and suction caused by wind. Assessing their out-of-plane stability is therefore crucial. In
order to withstand these lateral loads, these windows have to develop flat arch action in their shallow
depth [Heyman, 2002]. The structural action of rose windows is similar to flat circular vaults, but they
differ in that the force paths are defined and limited by the layout of the mullions and ribs in the window
tracery. The geometry of a rose window can be abstracted by a bar-node system. Most rose windows
have a statically determinate force pattern, with a maximum of three bars coming together per node,
resulting in only triangles in the force diagrams. This means that all forces in the system are known
except for a scale which will be defined by the loading and the depth of the mullions. Neglecting the
contribution of the self-weight of the window, this means that the same reaction force is required from
all sides.

Thrust Network Analysis can be used to model the flat vault action of the rose window of the Notre
Dame de Nantes, or Mantes-la-Jolie Cathedral, France, originally constructed around 1180 (Figure 6.9).
Figure 6.10 shows (a) the assumed primal grid, which approximates the structure as a bar-node system;
and (b) the unique corresponding dual grid. The grey dotted lines in Figure 6.10a contour the tributary
areas of the loaded nodes, found using Voronoi diagrams on the vertical plane of the window. This is
a variation of the second approach for computing the nodal loads as discussed in §4.3.1, since here the
tributary areas for the wind related to each node needs to be known. The corresponding compressive
equilibrium solution in Figure 6.10c visualizes the flat-vault action of the structure. The force network is
in equilibrium with the wind loads and stays within the depth of the rib structure.

The solution obtained is compared with Heyman’s [2002] results. Using this fully three-dimensional
approach, for the same geometry (diameter of the rose window is 8 m and mullions of 25 cm by 25
cm) and wind loading (2 kN/m2), the minimum thrust of the final spokes is 49.6 kN. Heyman used a
simplified two-dimensional approach to determine a value of 67 kN which is 35% higher, and hence more
conservative. For this case, Thrust Network Analysis provides a significant improvement over existing
hand methods of analysis.
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(a) (b) ( )bc

Figure 6.10 – Thrust-network analysis of the rose window of Notre Dame de Mantes, France. (a) The structural
action is reduced to a bar-node system (after [Heyman, 2002]). (b) The in-plane forces in the rose window due to
the wind loading can be measured from the reciprocal force diagram. (c) The equilibrium network demonstrates
flat vault action.

In this analysis, the potential failure due to the shear forces at the perimeter of the window is not checked.
Because the joints between the stones making up the mullions are parallel to the dominant wind loading
and the proportion of the cross-sectional area of the mullions compared to the loaded area is small, this
failure mode can be critical and sliding due to the shear forces needs to be checked at the interfaces of
the outer spokes with the outer ring. To prevent this failure, iron connecting dowels were often inserted
to transfer the shear forces [Heyman, 2002; Clifton and Willis, 2007].

The obtained flat vault action causes stresses less than 800 kN/m2 which is more than an order of
magnitude below the crushing strength of even the softest lime-stone ( 12,000 kN/m2). This result needs
to be considered carefully though, since the analysis assumed that the window has a perfect geometry
which can generate the suggested minimum thrust flat vault action. For even small out-of-plane deflections
of the window, which is not unthinkable for large area windows, the thrust network, constrained by the
formation of hinges in the mullions and the decreased height due to the “sagging” of the window, quickly
becomes nearly flat, resulting in very high thrust values and hence high stresses on reduced sections.
This makes windows one case where not only geometry and stability, but also elasticity matters because
of the potential for snap-through failures of the slender ribs.

6.5 Thin-shelled spiral staircases

Thrust Network Analysis can also be used for the structural analysis of thin shell spiral staircases, which
have presented a challenge for engineers due to their complex geometry and their extreme thinness. The
R. Guastavino Company built thousands of thin-shelled masonry vaults in the late 19th and early 20th
century [Collins, 1968; Huerta, 2003; Ochsendorf, 2009]. They were commissioned to construct structural
vaults of many important buildings, such as the Boston Public Library and Carnegie Hall in New York.
Lesser known are their thin-shell staircases in tile (Figure 6.11a-b). These spectacular thin-shelled vaults
work quite differently than the typical cantilevered stone staircases shown in Figure 6.11c [Price, 1996;
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(a) (b) ( )bc

Figure 6.11 – (a) An example of a Guastavino thin-tiled helicoidal stairway at the Union League Club of the
City of New York, 1901-1902 (Guastavino/Collins Collection, Avery Library); and (b) stair at Carnegie Mellon
University, Pittsburgh, 1914 (Picture by Michael Freeman). (c) shows cantilevering spiral stone stair at the Castle
Drogo in England [Maunder, 2005].

Maunder, 2005]). Calladine [2005] suggests that the Guastavino spiral stairs behave as elastic shells
and estimates their natural frequencies through finite element modeling (see also [Mandal and Calladine,
2008]). Garćıa Ares [2007] proposes a lower-bound solution which demonstrates the static equilibrium of
these helical shells.

TNA can demonstrate the stability of these stairs by finding a three-dimensional compression-only equilib-
rium solution for several loading cases. First of all, it can be noted that there is a topological relationship
between (a) a dome spiral, (b) a flat vault, and (c) a helical staircase with an oculus, as illustrated in
Figure 6.12. In plan, the assumptions for an appropriate force network for all three structures are iden-
tical: a compression central ring and meridian “hoops” and radial arches. For the dome (Figure 6.12a)
or flat vault (Figure 6.12b), the compression ring of the oculus (and each meridian hoop) is in the same
horizontal plane and is therefore in equilibrium by itself under applied vertical loads. This is clearly
different for the helical stair (Figure 6.12c) where the compression ring, also circular in plan, now spirals
in the z-direction. Since the compression hoops are not closed, they will require external reactions at the
landings to keep them in equilibrium. As discussed in §4.1.3, the circular inner compression ring requires
the horizontal thrusts of all radial arches to be equal, since the circle is the funicular shape for uniform
loading applied radially. This assumed force pattern for these helicoidal stairs (Figure 6.12d) counts on
a continuous wall support and supports at the landings.

The results obtained using TNA for the minimum thrust state under certain loading condition will be
compared to the results of Garćıa Ares [2007]. Figure 6.13b shows the definition of his parameters: an
angle in plan γd of 180 degrees, an inner radius r1 of 1.5 m, an outer radius r2 of 2.5 m, a height h of
4m, a thickness g of 15 cm and an equivalent density ρe of 33.3 kN/m3, combining the loading of the
self-weight, with a density of 20 kN/m3, and a surcharge of 2 kN/m3.

A perfect helical spiral has some interesting properties. Because the spiral has a constant slope, or “climb
angle”, the intersection of the spiral with a cylinder of the same central axis is a straight line if unrolled
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Figure 6.12 – Identical force pattern topologies for (a) a dome with a circular oculus, (b) a circular flat vault
with an oculus, and (c) a helical spiraling stair with compression hoops. (d) shows their primal grid and (e) their
dual grid. The horizontal thrust of the flat vault or spiral are respectively 6.78 and 6.33 times larger than the
dome’s horizontal thrust.
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(a) (b) ( )bc

Figure 6.13 – (a) Elliptical spiral staircase in the first National Bank of Paterson, New Jersey, ca. 1890
(Guastavino/Collins Collection, Avery Library). (b-c) show the parameters used by Garćıa Ares [2007].

(Figure 6.14a-b). Garćıa Ares [2007] uses this knowledge to find the minimum thrust state of such a
strip, which is the deepest parabolic funicular. Figure 6.14c shows the outlines of the funicular polygons
of these parabolas. He then finds the minimum horizontal thrust RH(r) given in kN/m per strip to be:

RH(r) =
wL2

8h
=
ρ(g∆r) · (γdr)2

8g
=
ρ∆γ2

dr
2

8
(6.1)

where ∆r is the tributary width of the strip. The distributed reaction forces E at the wall are equal to

Er2−r1 =
γ2
dρ(r22 − r21)

16
(6.2)

To allow comparison with Garćıa Ares’ results, the horizontal thrusts in the spiraling hoops are chosen
proportional to (6.1). This is controlled by defining the branch lengths proportional to these values. The
horizontal components of the end reactions at the two landings will therefore have the same distribution
as Garćıa Ares’ results.

The resulting horizontal thrust RH(ri) using TNA is about 50% higher than Garćıa Ares’ results. This
difference can be explained because a connected network is used in TNA to approximate continuous
thrust surfaces, which means that all spiraling funiculars, all connected in the radial direction, cannot
be as deep as the deepest parabolas of each strip, as assumed in Garćıa Ares’ analysis. The horizontal
thrust resulting from the spiraling “arches” will therefore have to increase. On the other hand, the wall
reactions E are within 5% of his values. As can be seen in equation (6.2), the linear wall reaction forces
E are only dependent on the plan geometry of the spiral.

Garćıa Ares’ approach and the assessment using TNA are very similar. An important difference though is
that TNA did not demand the fairly elaborate derivation of equations, obtained after careful inspection of
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Figure 6.14 – (a) The intersections of the spiraling vault and concentric cylinders form straight strips when
unrolled (b). (c) are the outlines of the funicular polygons of the deepest parabolas fitting the straight, unrolled
sections in (b).
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the specific problem and geometry. Instead, the process was intuitive and the solution was easily checked
by the graphical diagrams. More importantly perhaps, TNA can just as easily be applied to winding
stairs with inner edges with arbitrary geometries in plan as in the example shown in Figure 6.11b.

The Guastavino Company used load testing to demonstrate the safety of their spiraling stairs (Figure
6.15a). The following upper-bound analysis attempts to define the collapse load factor λc of a line load
applied at γd = 60 degrees (Figure 6.15b). The objective function introduced in §5.1.2 is used. It is found
that the load factor grows virtually to infinity (order of magnitude of seven). This surprising result can
be explained by the spiraling “straight” sections (Figure 6.14). Similar to a straight (or barely arched)
flying buttress, a direct line can be drawn in the section, so theoretically the horizontal thrust value
can grow to infinity. Of course, this state of maximum thrust will be limited by the capacity of the
supporting walls or by the material failure. This suggests that spiral stairs in masonry will be limited by
their material strength, which is unusual for historical structures.

This upper bound analysis demonstrates that, if the supporting walls are rigid, then the stairs have an
extremely effective shape to support both uniform and point loads. Before this theoretical upper-bound
would be reached, compressive crushing, sliding at the landings or instabilities, such as buckling would
occur. To identify the actual collapse load factor λc of these stairs, material properties will need to be
taken into consideration. The visual results from this collapse load analysis do start to suggest possible
three-dimensional collapse mechanisms. Where the 3-D thrust surface touches the extremities of the
stair’s geometry, possible hinge lines can be postulated (Figure 6.15c). Notice that only three hinge lines
are identified which because of the straight profile of the spiraling strips and thinness of the structure is
enough to cause instability (Figure 6.15d).

6.6 Discussion and summary

This chapter demonstrated the ability of Thrust Network Analysis to obtain lower- and upper-bound
solutions for masonry vaulted structures with complex geometries, allowing the incorporation of structural
discontinuities. It demonstrated the value of TNA as a powerful new tool for understanding, visualizing
and exploring the equilibrium of historic vaults in unreinforced masonry. With the same framework, a
variety of vaulted masonry structures were explained in an intuitive manner.

When using TNA of masonry vaults, various parameters can be changed: (a) different force patterns can
be chosen to compare assumptions on how forces may be traveling through the structure; (b) the force
diagrams can be manipulated to redistribute the internal forces; (c) the solution envelopes can be chosen
to constrain the solutions, for example to the middle third of the vault thickness or to include the level
of fill or the thickness of ribs; (d) different support conditions can be defined; and (e) the level of fill or
other imposed loads can be integrated by adding load to the affected nodes. In addition, the spiral stair
demonstrates the potential of this approach to suggest possible three-dimensional failure mechanisms.
These and other topics deserve to be explored further.

However, there are some shortcomings to the method at present. It is clear that the extension of the
basic TNA framework as formulated in §5.2 is crucial to make TNA a viable assessment tool for complex
three-dimensional structures in unreinforced masonry. Due to the fairly simple network topologies, the
examples shown in this chapter were still possible to carry out iteratively and by hand. However, this
process is time consuming and should be automated in the future. In summary, the method shows great
potential with significant room for improvement.

In the examples of the rose window and the thin-shelled spiral staircase, it became clear that stability,
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Figure 6.15 – (a) Sand bag test on a stair under construction in the First Church of Christ Scientist, New York
City, 1903 (Guastavino/Collins Collection, Avery Library). (b) shows the result of a collapse load factor analysis.
The network shown is the upper-bound, limit state. (c) Diagram of possible hinge lines where the thrust surface
touches the extremities of the stair’s geometry, whith (d) only needs three hinges to cause instability because of
its straight section and thinness.
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explained using TNA, only gave a partial answer to their safety. Their limit states, or collapse, were
not limited by only stability but also by elasticity issues. This border-line cases need to be considered
further. It is important to discuss the limits of limit analysis where elastic phenomena can no longer be
neglected since the basic assumptions for limit analysis (§3.2.1) may be violated.

It is also important to point out that for three-dimensional structures Heyman’s safe theorem framework
(§3.2.1) might not be satisfactory to conclusively assess the stability of rigid block assemblies. The
existence of a possible three-dimensional, compression-only solution which stays within the boundaries of
the vault, does not necessarily guarantee the stability of the vault. As Parland [1979; 1995] points out,
there could exist other equilibrium states which could cause sliding problems. This important issue is
equivalent to the typical sliding failure observed at the interface of flying buttresses and the cathedral
walls [Nikolinakou et al., 2005]. This problem only occurs when the flyers are in a state of minimum
thrust. Many more internal force distribution are imaginable, and hence possible, for complex, three-
dimensional vaulted structures. An exhaustive analysis should thus run through all the possible variations
in force pattern and internal force distribution to identify the critical equilibrium states for sliding. The
nonlinear extension in §5.2 is a first step in that direction, but this issue also asks for an “optimization”
procedure varying the used force pattern topologies.

By developing a method for analyzing three-dimensional unreinforced masonry vaulted structures with
complex geometries, a powerful tool emerges for exploring sophisticated three-dimensional good structural
form, as will be demonstrated in Chapter 7. Many historic masterpieces have quite challenging geometries,
and in order to model their structural behavior, Thrust Network Analysis can be used to discover new
funicular shapes.
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Chapter 7

Design of equilibrium vaults

7.1 Introduction

This chapter demonstrates the use of Thrust Network Analysis (TNA) as a powerful interactive method
for designing funicular vaulted structures. The method finds possible equilibrium solutions under gravi-
tational loading within a defined envelope. Using reciprocal diagrams and linear optimization, it provides
a graphical and intuitive method, adopting the same advantages of techniques such as graphic statics,
but offering a viable extension to fully three-dimensional problems. TNA gives the designer a high level
of control of all the degrees of freedom of a three-dimensional funicular system resulting in a flexible and
controlled manipulation of the final shape and the discovery of new structural forms.

This chapter will demonstrate that the TNA framework is a powerful method for discovering new funicular
systems. It is a form-finding method, but not framed in the typical context of structural optimization:
the goal is not to improve a given shape, but instead to combine free-form design, structural optimization
and analysis in one integrative and holistic design exploration.

7.1.1 Three-dimensional graphical method

The TNA method can be considered as a three-dimensional equivalent of graphic statics, in that it offers
clear graphical feedback and control of the forces in the system, allowing the exploration of the infinite
number of equilibrium solutions for three-dimensional systems.

The constraints which can be controlled are

• the choice of network topology, represented by the primal grid Γ, which is the horizontal projection
of the final equilibrium solution, the thrust network G;

• the distribution of the (horizontal) forces in the system, visualized and controlled by the dual grid
Γ∗, and geometrically related to the network’s geometry;

• the solution space, defined by lower and upper bounds on the nodal height and the outline of the
supporting edges;
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• the overall depth of the solution, controlled by the scale of the forces in the system, represented in
the dual grid; and

• the boundary conditions, from fully supported to partially supported boundaries.

7.1.2 Constraint-driven design

There is no design without constraints. Constraints do not have to be considered as limiting factors, but
can instead become the drivers of design. By understanding the constraints and their interdependencies,
innovative design solutions can emerge [Kilian, 2006a]. Laurent Ney argues that the art of structural
design is in the translation of the design problem into the definition of boundary conditions [Ney and
Strauven, 2006]. The shape of the structure will follow from these constraints, so the setup is the crucial
step. Ney points out that this is the important difference between architectural and structural design,
i.e. that “the form of things [. . . is] not a sculptural mass, but a geometry that is in part self-determining
once the boundary conditions have been chosen” [Ney and Strauven, 2006]. There is a natural state for
a structure, and it could be argued that this natural state has elegance to it since it expresses where the
forces want to go. The interesting challenge is how to define the boundary conditions.

The TNA setup allows constraint-driven design explorations and helps to understand the interdependen-
cies of the constraints and their repercussions for the equilibrium solutions.

7.1.3 Bidirectional design explorer

Kilian [2006a] defined a design explorer as a “construct that combines design representations and con-
straints in order to support design exploration within the defined conditions,” and bidirectional as “the
relation between two entities in which the role of driver and driven can switch.” Gaud́ı’s physical hanging
models fit the notion of design explorer since they address both structural and formal considerations and
present the designer at all times with a status of the design that reflects the cumulative changes applied
to the model. Graphic statics is a classical example of bidirectional exploration of a constraint network.
The force polygon and force diagram are linked through geometric constraints and change can occur in
both the form polygon or the force polygon. This allows for the exploration of either form or force while
each change in one representation affects the results in the other through the graphic statics constraints
[Kilian, 2006a].

Kilian [2006a] argues that “replacing commonly used analytical, unidirectional models for linking repre-
sentations with bidirectional ones further supports design exploration.” To be truly supportive of design
exploration, constraint solvers need to be bidirectional [Mahdavi et al., 1997]. This means that the con-
straint network cannot be implemented as a hierarchically structured dependency tree that allows only
propagation of effects towards the tree leaves [Kilian, 2006a]. The TNA set-up is a perfect example of
a bidirectional design explorer as defined by Kilian [2006a]. It offers a high level of control over the
boundary conditions and gives direct, visual feedback of user interaction: structural repercussions are
clearly visualized in the reciprocal force diagrams; spatial, or architectural, qualities can be observed and
evaluated in the thrust network.
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7.2 Interactive design process

The introduction of indeterminate reciprocal force diagrams allows the linearization of the constraint
formulations, resulting in very fast solving times for reasonably sized networks. This virtually real-time
response, combined with the graphical and planar representation of forces and structure, make TNA very
interactive. Section 4.2 demonstrated that the automatic generation of a possible reciprocal diagram
is computationally the most demanding, but this step only needs to happen once, for the initial force
diagram. For each iteration, the new geometry of the updated reciprocal is used directly. Updating the
reciprocal, or redistributing the internal forces in the network, can happen by literally “tweaking” the
dual grid. This process was described earlier in §4.6, but several examples in this chapter will show how
it is used for exploring new form.

Figure 7.1 shows a series of compression-only solutions for a uniformly applied loading, starting from a
regular rectangular grid. This entire exploration was done using TNA in less than an hour. It shows the
relationship between the primal and dual grids and the corresponding solution. From the dual grids, the
internal distribution of all horizontal forces in the networks can be understood in a glimpse, and since
all dual grids are drawn at the same scale (except for (h) which is drawn at 2/3 of the scale), the overall
magnitude of horizontal forces in the different solutions can be compared directly.

7.3 Discovering form

The methodology allows the designer freedom to sculpt three-dimensional shapes. Because of the extreme
flexibility and freedom given by the multiple layers of constraints, the notion of free-form versus funicular
design is blurred. The TNA framework balances control and discovery. The interdependencies caused
by the geometrical constraints allow the understanding of the boundary conditions, but when optimized,
natural shapes emerge within these definable boundaries. The designer has the impression that he can
freely manipulate the form, but the solutions always satisfy equilibrium.

Figure 7.2 shows an example exploring some of the possible equilibrium solutions for the chosen radial
primal grid Γ. All iterations have equal loads applied at each node. Since the scale factors of the dual
grids vary largely, all dual grids are drawn to the same scale. Their scale factors are given as a function
of the scale of the first solution, ζ(a) (Figure 7.2). The dual grids have been rotated by 90 degrees in this
example to more clearly relate the changes in them to their corresponding three-dimensional equilibrium
solutions.

The exploration in Figure 7.2 starts from (a) which uses the default, automatically generated dual grid
Γ∗(0) which is symmetrical with approximately equal dual branch lengths. Its principal axes of symmetry
are labeled as I and II. The actual scales, ζ(i), of the dual grids for each iteration are given proportional to
the scale factor ζ(a) of the first solution. Starting from (a), several parameters are changed to demonstrate
the elements which can be altered to explore and discover new funicular forms.

The first solution (a) uses the default dual grid Γ∗(0). Both the inside and outside boundaries are fully
supported. The solution space is defined by the horizontal planes z = zLB and z = zUB. This results in
a symmetrical solution Γ(a) and scale ζ(a) for the dual grid Γ∗(a).

Iteration (b) varies only one parameter of Γ∗(0): stretching all dual branches crossing the axis of symmetry
II. This means that more force is attracted to the corresponding set of branches along axis I in the primal
grid, resulting in a shallower arch in the equilibrium solution G(b). The solution still has two axes of
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(a) (b)

(d)

(e) (f)

( )g

(h)(g)

c

Figure 7.1 – A series of funicular compression forms, starting from a regular rectangular grid, showing the
relationship between the geometries of the primal and dual grids and the corresponding equilibrium solution.
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(a)

(b)

( )a

(d)

(e)

(f)

(g)

c 1.36

1.52

1.00

2.22

1.78

2.52

2.00 (a)z.

(a)z.

(a)z.

(a)z.

(a)z.

(a)z.

(a)z.

II

I

Figure 7.2 – A fast exploration using TNA showing for each iteration (from left to right) the 3-D equilibrium
shape G(i), a section through G(i) within the solution space, the primal grid Γ(i) and dual grid Γ∗(i) and its scale
factor ζ(i), defined as a function of the scale ζ(a) of (a).
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symmetry. The scale factor of ζ∗(b) is 1.52 · ζ(a). The increase in scale factor can be understood because
part of the structure is shallower, resulting in larger horizontal thrust.

Iteration (c) stretches the dual branches of Γ∗(0) asymmetrically with respect to the axis I, resulting in
the asymmetrical equilibrium solution Γ(c). The scale factor of ζ∗(c) is 1.36 · ζ(a). The more gradual
tweaks of the dual grid result in a shallower solution than (a), but slightly deeper than (b).

Iteration (d) uses the default dual Γ∗(0) again, but changes the solution space. The lower bounds on
the height of the outside boundary nodes are all increased by 3/4 of the height difference of the initial
solution space, resulting in a funnel solution, Γ(d). The scale factor of ζ∗(d) is 2.2 · ζ(a).

Iteration (e) heightens the lower bounds on the outside boundary nodes linearly from 0 to 3/4 of the
height difference of the initial solution space, resulting in the tilted funnel, Γ(e). The scale factor of ζ∗(e)

is 1.78 · ζ(a).

Iteration (f) starts again from Γ∗(0) and the initial solution space. Now, the inner edge support is released
and G(f) receives an oculus. The equilibrium of the compression ring of the oculus is represented by the
extra radiating branches in the center of Γ∗(f). Since the compression ring is circular in plan, it forces
the horizontal components of the branch forces ending in it to be equal, visualized by the equal lengths
of the radiating branches. The scale factor of ζ∗(f) is 2.52 · ζ(a).

In iteration (g), not all of the inner edge is released. The equilibrium of the freed inside boundary edge
is again represented by the radiating branches in the center of Γ∗(g). The scale factor of Γ∗(g) is 2.0 · ζ(a).

7.4 Exploiting indeterminacy

Perhaps even more so than the distribution of the internal forces, which can be controlled by manipulations
of the dual grid, the choice of topology of the force network, represented in the primal grid, has an effect
on the 3-D equilibrium solution. In §4.1.1 and §6.3, it was shown that for the assessment of masonry, not
all networks are appropriate for certain load cases. In design on the other hand, the choice of primal grid
can limit which shapes can be obtained, but it can also begin to suggest form. This will be illustrated
with the two examples in Figure 7.3 which carry the same loads.

For both these examples, the front edge is no longer fully supported but instead a three-dimensional edge
arch brings down the forces to the corner supports (Fig. 7.3). The edge arches for both cases have the
same sag in plan. The primal and dual grids of the example in Figure 7.3a are the same, up to a scale,
as for the pillow result in Figure 7.1a. So, the same force pattern, equally thrusting in both directions,
is maintained until the forces are brought down to the supports by a single arch at the free edge. This
arch is pretty shallow in plan, resulting in the large fan-like “funicular polygon” added to the right edge
of the dual grid (see §4.1.3). This funicular polygon represents the equilibrium of the horizontal forces
in the edge arch which grew very large in comparison to the forces inside the rest of the structure. This
does not seem to be the most efficient way of re-directing the forces to the corner supports.

A more efficient way to bring down the thrusting forces to the supports is by having several three-
dimensional arches pick up the forces earlier than in the edge arch, as shown in Figure 7.3b. In the
corresponding force diagram the forces are now more equally distributed, i.e. the forces in the edge arch
are less extreme compared to the forces inside the vault. In this result, slight “rippling” occurs due to
the increased attraction of forces along these 3-D edge arches.

The difference in internal forces in the system can now drive the design of the profile of the actual
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(a) (b)

Figure 7.3 – Two grid shells supported on three edges. In (a) a single arch supports the free edge; and in (b)
multiple arches support the free edge. [Note: the dual grid of (a) is drawn at 2/3 of the scale of (b).]

vault. When giving thickness to these equilibrium networks, the magnitude of the internal forces can be
expressed. The first solution could be translated in a thin vault with a heavy edge arch. When realising
the second equilibrium solution, a continuous vault containing the entire network could be chosen or
the multiple internal arch action could be accentuated by following the rib pattern representing the
designer’s force logic and perhaps suggesting the actual flow of forces in this solution. These arches have
attractive spatial and lighting qualities, and by actually making these creases in the surface, the structure
is being stiffened locally, hence attracting more force. The structure will thus behave more as the designer
imagined it.

7.5 Duality

For the spherical dome in Figure 7.4a the sunflower force pattern was inspired by the rib pattern of the
Palazetto dello Sport by Pier Luigi Nervi and Annibale Vitellozzi in Rome, Italy, built in 1958 [Huxtable,
1960] .

The dual grid (Fig. 7.4b) for this sunflower pattern was generated automatically. It represents the
equilibrium of the forces in the primal grid (Fig. 7.4a). Since the two grids have a reciprocal, or
dual, relationship, their role can be reversed: the original primal grid (Fig. 7.4a) then becomes the
representation of the forces in the original dual grid (Fig. 7.4b). Note that the force pattern with the
oculus in Figure 7.4 is a solution with approximately equal horizontal forces in all elements since all
branch lengths in its dual grid (Fig. 7.4a) are approximately the same.

Instead of generating the dual grid, one can also start from the dual force diagram to generate possible
primal force patterns. In Figure 7.5a, starting from a piece of the aperiodic Penrose tiling [Penrose,
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(a) (b)

Figure 7.4 – The meaning of primal and dual grid can switch, since their relationship is reciprocal, as shown by
these compression dome examples.

1989], which has equal branch lengths, the interesting five-way symmetric pentagrid was generated as a
primal pattern. Figure 7.5b shows a small exhibition by the author in collaboration with the late Prof.
Ture Wester of the Danish Royal Academy of Arts in Copenhagen, Denmark extending these ideas to
the four-valent patterns obtained using a random stack of hairs. These hair patterns have a very similar
topology as the pentagrid shown in Figure 7.5a, and their dual therefore looks like a distorted Penrose
pattern.

These examples show that the automatic generation of a viable dual grid (see §4.2) not only allows the
representation of an initial, possible distribution of the forces in the system in a visual manner, but can
also lead to the discovery of new designs. The surprising emergence of a related pattern and the blurring
of the boundaries between what drives the form exploration and what is driven, is particularly powerful
in the TNA framework.

7.6 Designing the vault’s section

The funicular shape is designed for the expected dead loading. This provides the overall geometry of the
vault which will bring down the forces due to that specific, dominant loading using axial, compressive
forces only. Theoretically, if this funicular loading is applied and the construction of the vault follows
precisely the equilibrium solution and neglecting material crushing or elastic instabilities such as buckling,
the vault could have a zero thickness. This is of course never the case. For long-span structures, the dead
loads can be used to define the overall geometry, but the live loads should inform the shape or profile of
the vault’s section.

Two main strategies can be utilized to keep a funicular shape stable under live loading. Resistance to live
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(a) (b)

Figure 7.5 – (a) The aperiodic Penrose tiling and the pentagrid are reciprocal figures. (b) Exhibition Digital
Practice, organized by the Centre for Information Technology and Architecture (CITA), School of Architecture,
The Royal Danish Academy of Fine Arts, March-April 2008.

loading can be achieved by 1) providing enough depth for all thrust lines or networks under live loading
to cross through the vault’s (middle third) section, or 2) providing bending stiffness. Providing enough
depth (1) can be obtained by e.g. thickening the vault, adding stiffeners or diaphragms, undulating or
“folding” in the other direction or by connecting shells. Ochsendorf and Block [2009] present a masonry
design example exploring some of these concepts.

Finally, the funicular solutions under live loading can be used to quantify the amount of bending stiffness
that needs to be added by relating it to the geometry of the vault. This is explained by Gerhardt [2002a;
2002b], Gerhardt et al. [2003], and Zalewski and Allen [1998] for 2-D examples, but wants to be extended
to fully 3-d problems.

7.7 Summary

Like graphic statics for 2-D, Thrust Network Analysis is a holistic, bidirectional design and analysis tool.
It is a truly 3-D extension, which allows for structurally informed architectural explorations, but also for
sculptural escapades because of the possibility to exploit the structural indeterminacy. Instead of trying
to find the “right” answer for the indeterminacy, the variations in equilibrium solutions become an added
level of control and flexibility for the designer.

This chapter has illustrated the immense potential of the Thrust Network Analysis setup for the design
of novel funicular structures.
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Chapter 8

Conclusions

8.1 Summary of results

The results of this dissertation are discussed in three parts: 1) the general development of the methodol-
ogy; 2) its applications and contributions for the safety assessment of historical masonry vaults; and 3)
applications for the design exploration of funicular vaulted structures.

8.1.1 Thrust Network Analysis Methodology

This dissertation presented Thrust Network Analysis (TNA), a novel computational methodology for
exploring three-dimensional equilibrium. The approach allows the user to interactively find possible
funicular solutions under gravitational loading within a defined envelope, and through the use of intuitive
graphical methods, to gain control over the exploration of form.

TNA extends O’Dwyer’s Force Network Method for funicular analysis of vaulted masonry structures
[O’Dwyer, 1999] by introducing reciprocal figures to relate the geometry of the three-dimensional equi-
librium networks to their internal forces, inspired by Williams [1986]. By using the duality between the
network geometry and its reciprocal force diagram and by constraining the external loads to parallel load-
ing cases, the equilibrium constraints are able to be linearized. To negotiate between the multiple degrees
of freedom resulting from the structural indeterminacy of fully three-dimensional funicular networks, the
form-finding problem is solved using optimization methods.

The TNA framework can be considered as a viable three-dimensional equivalent of graphic statics in that
it offers clear graphical feedback of the forces in the system and a high level of control of the infinite
number of equilibrium solutions for three-dimensional systems. The constraints which can be varied are:

• the network topology, represented by the primal grid Γ, which is the horizontal projection of the
final equilibrium solution, the thrust network G;

• the distribution of the (horizontal) forces in the system, visualized and controlled by the dual grid
Γ∗, which is geometrically constrained by its relation to the network’s geometry;
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• the solution space, defined by lower and upper bounds on the nodal height and the outline of the
supports;

• the overall depth of the solution, controlled by the overall scale of the forces in the system; and

• the boundary conditions, i.e. fully or partially supported boundaries.

8.1.2 Assessment of masonry vaults

This dissertation has shown the ability of Thrust Network Analysis to obtain lower bound solutions for
masonry vaulted structures with complex geometries and structural discontinuities. It demonstrated the
value of TNA as a powerful new tool for understanding, visualizing and exploring the static stability of
historic vaults in masonry. With this framework, a variety of structures have been analyzed in a very
intuitive manner.

For the application as an assessment tool for unreinforced masonry structures the following properties
are valuable. TNA allows the analyst to:

• find the range of lower-bound solutions bounded by a minimum and maximum thrust state, charac-
terize the load capacity of a vault, and understand the indeterminate character of three-dimensional
masonry;

• visualize clearly how forces are balanced in the vaults, using reciprocal force diagrams, or horizontal
thrust diagrams;

• compare different assumptions on the principal structural action of vaults, and combine different
structural actions

• in the chosen network topologies to capture the full indeterminacy of 3-D masonry vaults;

• include different measures of geometric safety, and establish limits or measures of stability for the
vaults;

• obtain the vault’s geometry and loads directly from detailed CAD models without abstraction or
simplification;

• model structural discontinuities, such as cracks, crevices or block misalignments, by altering or
constraining the allowable network geometries and topologies;

• examine and compare a wide range of different vault typologies, independent of the complexity of
their geometry; and

• deal with non-proper boundary conditions, as for example, a vault supported only at the corners,
and complex loading combinations.

8.1.3 Design of funicular vaults

Thrust Network Analysis (TNA) has tremendous potential as an interactive method for designing funicu-
lar vaulted structures. The form-finding method allows the designer to find possible equilibrium solutions
under gravitational loading within a defined envelope. Using reciprocal diagrams and linear optimization,

140



8.2. FUTURE WORK

it provides a graphical and intuitive method, adopting the same advantages of techniques such as graphic
statics, but offering a viable extension to fully three-dimensional problems. TNA gives the designer a high
level of control of all the degrees of freedom of a three-dimensional funicular system resulting in a flexible,
“free” manipulation of the final shape and the creation of shapes going well beyond what is typically
imagined as being funicular. It is a fast and interactive design tool for three-dimensional equilibrium
systems, bringing structural intuition into the design process through intuitive, graphical diagrams and
constructions and blurring the boundaries between funicular and free-form design.

8.2 Future work

This section identifies possible directions for the TNA framework to be developed further.

8.2.1 Assessment of complex masonry structures

The nonlinear extension of TNA (§5.2) needs to be fully implemented and validated. This would be an
important improvement over the existing basic set-up. Within that new framework, if started from an
overly redundant mesh containing all imaginable force paths, the optimal principal paths of force for
complex structures could be identified. Rather than a brute force approach, a more interesting route
would be to incorporate rules to actively suggest topological improvements, e.g. based on simple local
mesh operations. The equivalence between reciprocal figures and (discrete) Airy stress functions as in
Fraternali and Rochetta [2002] (§5.5) should be explored further. Their implementation of the geometric
convex hull method has potential for simultaneously optimizing force pattern and distribution.

As discussed in §6.6, it is important to consider sliding. For three-dimensional structures, this might mean
that the analysis runs through all the possible variations in force pattern and internal force distribution
to identify the critical equilibrium states for sliding. The nonlinear extension in §5.2 is a first step in that
direction, but this issue also asks for an “optimization” procedure varying the force topologies.

There is much research to be done in the area of understanding collapse mechanisms of fully three-
dimensional systems. The possibility of using upper-bound analyses generating limit state thrust surfaces
(§6.5) should be explored further with this regard. Discrete element modeling (DEM) (e.g. [Bićanić et al.,
2003; DeJong et al., 2007; DeJong, 2009]) and experiments with physical models [Danyzy, 1732; Furstenau
et al., 2010] could help to find correlations between thrust surfaces and possible collapse mechanisms.
Once possible mechanisms have been identified, combined kinematics and statics could be added to the
models to explore the limits of stability under imposed support displacements [Smars, 2000; Ochsendorf,
2002; Block et al., 2006].

Tilting a model can be used as an initial measure of the stability of vaults under lateral acceleration.
The inclination is equivalent to applying an equivalent static horizontal force, for a first-order estimate
of the seismic capacity of a vault [Gaß and Otto, 1990; Block et al., 2006; DeJong, 2009]. This may also
be the best measure to compare the overall stability of different solutions. Since it is an upper-bound
solution this solution is unique and is therefore independent of the choice of internal force distribution.
For a given angle of tilt, the vault either stands or collapses.

Several interesting questions emerged when attempting a tilt analysis of three-dimensional structures,
and applying TNA is not as simple as tilting the input geometry. First of all, the original force pattern
chosen for the pure dead load case is not necessarily an appropriate pattern for the model in a tilted
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state. Consider a simple spherical dome. Abraham’s [1934] gradient approach to define sensible force
trajectories immediately shows that the center of the radial pattern chosen for a dome wants to shift
perpendicular to the rotation axis of the tilt. Furthermore, if started from a dome with typical radial
cracks up to a certain height, the connectivity of the equilibrium network may need to be updated during
the tilt.

Secondly, it exposes the inaccuracy of thrust line analysis (TLA) compared to the computation of the locus
of pressure points [Moseley, 1833; Ochsendorf, 2002]. For vaulted structures with no tilt, the difference
between the results obtained with TLA and LOP are minimal. In fact, TLA will result in a slightly
more conservative solution. When centroids start to line up vertically, as for buttresses, or even “go
back”, as is the case for tilting models, the inaccuracies of TLA begin to appear. The thrust lines no
longer make sense, but they can still be used to compute the locus of pressure points. Because TNA
is a three-dimensional equivalent of TLA, this problem has an important implication for TNA since the
force pattern cannot fold back onto itself which happens due to the non-sequential order of the centroids
during a tilt. This issue needs to be addressed.

8.2.2 Revival of vaulted masonry design

From the author’s stone pavilion project in Texas, it became very clear that the translation of the force
patterns to an actual structure is far from obvious [Block et al., 2009]. During the design process, many
interesting computational questions arose, such as how to offset a discretized, non-smooth network with
non-planar faces, or how to best cut up a volumetric solution into stone voussoirs. It would be particularly
interesting to develop algorithms to inform and automate the generation of cutting patterns for stone,
inspired by the vault’s typology, its topology, and also by the structural intent, as realized and made
possible through the choice of force pattern.

Furthermore, masonry does not need to be limited to the traditional notion of stone or brick. Because fu-
nicular shapes tend to have low stresses, block structures could be built of different compression materials,
such as glass, ice or even cement-stabilized pressed soil or compressed and recycled material.

The Guastavino vaulting technique allows the fast construction of vaulted structures with minimal form-
work. One of the challenges to extend the use of this technique to more complex forms is the incorporation
even within the initial form-finding method of all constraints related to the sequence of construction and
the stability of the partly constructed vaults at any stage during construction. It also becomes signifi-
cantly more challenging to control the curvature of more sophisticated, complex forms being built without
formwork.

8.2.3 Beyond masonry

An interesting challenge is to extend the interpretation of the thrust network beyond being a representa-
tion of possible force paths through a vaulted structure. If considered as a possible bar-node system, then
questions arise about rigidity, local buckling of elements and global geometric and elastic deformations
and instabilities. In the case of such open structural systems, the issue of cladding comes up, which
often brings in its own set of fabrication concerns [Schlaich and Schober, 2005; Pottmann et al., 2007].
Additional constraints related to materials, fabrication, erection, construction, cost or aesthetics could
optimally all be included into a complex multi-objective optimization problem.

Furthermore, if single surface structures are used, the sensitivity of the structure to asymmetric loads
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becomes much higher. Shell solutions are very sensitive to small changes in geometry; which can have
an important effect on the performance of the structure [Ramm et al., 1997; Chilton, 2000]. Although
the TNA approach is meant to be the initial design explorer, it would benefit from having some checks
incorporated to give feedback on the sensitivity of certain solutions over others, as for example the idea
that double curvature makes the surface stiffer, or that buckling can be checked using a simple global
buckling equation [Chilton, 2000]. Another observation is that two variations in the exploration might not
have significant structural differences under the design loads, but might be drastically different concerning
their aerodynamic properties, water drainage or lighting qualities. In summary, the literal translation
of the thrust networks obtained using TNA to “free-form” bar-node structures is not obvious and much
more work can be done in this area.

8.2.4 Development of a design tool

Chapter 7 argued that the TNA framework has the potential to be a powerful bidirectional design explorer
for discovering novel funicular shapes. The methodology and solving procedure has been developed in
this dissertation, but has not been implemented in a fully interactive environment.

One important question is if the tool should be platform dependent or platform independent, i.e. im-
plemented for a specific software platform or usable by itself such as interactive applets made in Java
or Processing [Reas and Fry, 2007]. A clear benefit of such an approach is that the tool is independent
of commercial licenses, but an important disadvantage is that the entire user interface and 3-D design
environment needs to be developed, which is not at all an obvious task, particularly on the solver end.
These tools are only considered useful when they have some way to export the geometry which can then
be opened and manipulated in a commercial drawing software package.

Developing an independent (and hence very specific) design tool is less valuable than developing a plug-
in for an existing, well-developed CAD environment, familiar to the computational and architectural
designers. The software Rhinoceros is put forward as the best choice since it is widely used by architects,
because of its reasonable license fees, active development team, open-source attitude, flexibility to add
extra functionalities through scripting and external plug-ins, and large online user community, actively
sharing knowledge and progress.

Several software companies recognize the value of linking or implementing their software to Rhinoceros,
as a “companion with Rhino support” or as a “Rhino plug-in.” The prototype of TNA, as currently
implemented, can be considered as a crude “companion with Rhino support” in that it uses Rhino for both
input and output. The current TNA tool could easily be made independent using MATLAB’s Compiler
[The Mathworks, 2009a], which lets you share a MATLAB application as an executable. Executables
and libraries created with the MATLAB Compiler product use a runtime engine called the MATLAB
Compiler Runtime (MCR). The MCR is provided with MATLAB Compiler for distribution with the
application and can be deployed royalty-free [The Mathworks, 2009a].

A Rhino plug-in on the other hand is a software module that extends the functionality of Rhino by adding
commands, features, or capabilities. The Rhino 4.0 Software Development Kit (SDK) provides the tools
to develop native C++ or .NET plug-ins for Rhino 4.0 [McNeel, 2007]. This would allow the development
of a fully interactive and bidirectional implementation of TNA, due to the fast solving times inherent
to the implementation using matrix algebra and occasional (linear) optimization. The flexible Half-Edge
data structure (§4.4) furthermore allows the user to interactively update both primal and dual topologies.
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(a) (b)

Figure 8.1 – (a) King’s College Chapel in Cambridge, England; (b) partially collapsed Terminal E of the Charles
de Gaulle International Airport, France.

8.3 Final reflection

This dissertation is not just about advocating funicular form, but is grounded in the notion that design-
ers have an important responsibility towards preserving architectural and historical heritage, nature’s
resources, and human life. The last image of this dissertation captures the essence – or at least the
motivation – of this work.

Figure 8.1a illustrates the fan vaults of King’s College Chapel in Cambridge, England, built by master
mason John Wastell (c.1460-c.1515) from 1512 to 1515. These vaults are constructed of unreinforced
stone, spanning 12.66 m, 28 m above the ground with a minimum thickness of only 10 cm, and complex
anticlastic curvature. Though the stone vaults are filled with cracks, they have stood for 500 years.

Figure 8.1b illustrates the elliptical vaults of Terminal 2E of the Charles de Gaulle International Airport,
France, by architect Paul Andreu (1938– ), constructed from 1999 to 2004. It is a double shell assembly
of 10cm thick reinforced concrete inner shell and glass and aluminum outer shell, spanning 33.5m, single
curvature, construction cost of 750 million, which collapsed on 23 May 2004 at 7am, just one year after
opening, killing 6 people with a reconstruction cost of 100 million.

This dissertation presented the Thrust Network Analysis method, a novel approach which explains why
the fan vaults of King’s College Chapel are standing, and allows the discovery of exciting, but structurally
informed design alternatives for vaulted buildings.
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