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1. Introduction

Graphic statics is a well-known method for analysis and design
of two-dimensional structures based on Cremona’s extensions of
Maxwell’s theory of reciprocal figures [1,2]. In graphic statics, the
relation between form and forces of a structural system is con-
tained in the reciprocal relation between two diagrams. A form
diagram describes the geometrical configuration of the (axial) in-
ternal and external forces of a two-dimensional structural system,
and a force diagram represents their equilibrium. The combina-
tion of these two diagrams allows for an intuitive evaluation of
structural behaviour, performance and efficiency at a glance. The
graphical nature of the method furthermore allows for a visual ver-
ification of both the evaluation process and results [3,4], making it
more transparent than arithmetic or numerical methods.

Recent developments have demonstrated how the principles
of graphic statics can be combined with modern computer tech-
nologies to create interactive drawings that provide real-time,
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visual feedback about the relation between form and forces in re-
sponse to manipulations of the drawing by the user [5-7]. It has
been demonstrated that such interactive implementations are not
only extremely useful for educational purposes, but also for ad-
vanced research [8]. In addition, several graphic statics tools have
also been developed as plug-ins for CAD environments (e.g. [9,10]).

1.1. Problem statement

Despite its strengths, computerised (interactive) graphic stat-
ics still has some drawbacks. The process of constructing draw-
ings can easily become tedious and time-consuming and demands
a profound familiarity with the specific geometric constructions in-
volved (e.g. [4,11]). Furthermore, since the drawings produced by
the CAD tools and interactive implementations are generated in a
procedural manner according to the corresponding graphic stat-
ics “recipe”, they tend to be designed for specific types of struc-
tures. Modifications to the initial setup of the drawing (e.g. the
number and/or connectivity of structural elements, order of the
loads, ...) thus require a complete redraw of the entire construc-
tion. Although the process of making a graphic statics construction
isimportant for teaching and learning, as it helps to get familiarised
with the specific geometric and structural relationships between
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different elements of such construction, it is clear that it is incon-
venient for research or practical purposes.

1.2. Objectives

To fully explore the benefits of computerised graphic statics, a
general, non-procedural approach is needed, which allows draw-
ings to be created without specific knowledge of the geometric
construction procedures involved.

This paper presents a robust back-end for a graphics statics
application. It allows the user to start from a connected two-
dimensional line drawing. The graph of this line drawing is au-
tomatically constructed and analysed to assess the feasibility of
the input as a structural system or set of forces in equilibrium. If
possible, a reciprocal force diagram is constructed, based on user-
defined loading or self-stress conditions. The two diagrams can
then be manipulated interactively without breaking their topolog-
ical and geometrical relationship. As such, the user can explore dif-
ferent states of equilibrium by explicit, geometric modifications of
the connected diagrams, or redistribution of forces within given
constraints.

1.3. Contributions and outline

The remainder of this paper is organised as follows.

In Section 2, we bring together concepts and techniques from
graph theory and matrix analysis of structures and present them in
a unified framework for algebraic graphical analysis built around
the reciprocal relation between the form and force diagrams of
graphic statics.

In Section 3, we discuss a general scheme for a computational
implementation of the presented approach that can be used as
back-end of a real-time, interactive graphic statics application. Dif-
ferent steps of the implementation are illustrated using a Fink
truss, which is a statically determinate structure that cannot be cal-
culated directly with traditional graphic statics, because it contains
crossing edges. Relevant algorithms are provided as code snippets.

In Section 4, the use of this framework for non-procedural
graphic statics is demonstrated through four examples: a three-
hinged trussed frame, an externally statically indeterminate three-
bar truss, a geometrically constrained thrust line, defining its
funicular loading, and a pre-stressed net. Finally, we briefly discuss
the relevance of the presented approach for three-dimensional
equilibrium methods, such as Thrust Network Analysis [12].

2. Theoretical framework

In this section, we describe the theoretical framework for the
graph-based, algebraic approach to graphic statics presented in
this paper. First, we briefly revisit traditional graphic statics, and
describe the graph interpretation of form and force diagrams. Next,
we formulate the reciprocal constraints between these diagrams
algebraically, and derive from them the typical equilibrium equa-
tions of a (self-stressed) structural system. We furthermore show
how the geometry of the force graph can be readily derived from
the solution of the equilibrium equations and the topological infor-
mation of the form graph. Finally, we discuss the solution strategies
for different types of structural systems based on Singular Value De-
composition (SVD) of the equilibrium matrix of their form graph,
and describe the interpretation of the obtained results in the con-
text of graphic statics.

2.1. Graphic statics

Fig. 1 depicts a typical graphic statics drawing consisting of two
diagrams that together describe the static equilibrium of a bar-
node structure and a set of applied loads and reaction forces. The

Fig. 1. Corresponding lines in reciprocal diagrams are parallel and corresponding
lines which converge to a point in one diagram form a closed polygon in the other.
In a graphic statics context, the diagram to the left is often called the form diagram
and the one to the right the force diagram.

two diagrams are reciprocal: they consist of an equal number of
lines, so that the corresponding lines in the two diagrams are par-
allel (or perpendicular, or at any constant angle), and correspond-
ing lines which converge to a point in one diagram form a closed
polygon in the other [2].

The diagram to the left is the form diagram and the one to the
right the force diagram. Bow’s notation is used to label spaces in
the form diagram and their corresponding nodes in the force dia-
gram [13].

A closed polygon in the force diagram represents the static equi-
librium of the corresponding point in the form diagram, with the
magnitude of force in the converging lines at that point equal (or
proportional) to the length of the sides of the closed polygon. The
form diagram thus contains the actual configuration of the bars,
nodes, support forces and applied loads in space. The force diagram
describes global equilibrium and the equilibrium of forces in the
bars at each of the nodes. Note that it is common practice in graphic
statics drawings to represent external forces in the form diagram
by unit vectors, indicating only the direction and point of appli-
cation of these forces. As with the internal forces in the structure,
their magnitude is proportional to the length of the corresponding
line segments in the force diagram.

2.2. Reciprocal graphs

The form and force diagrams can be interpreted as directed
graphs for which (directed) incidence or connectivity matrices
can be constructed describing the topological relation between
branches and nodes (Fig. 2). We define the graph of the form dia-
gram as the form graph G, and the one of the force diagram as its re-
ciprocal force graph G*. The force graph is the topological dual of the
form graph with the added requirement that corresponding edges
are parallel. The elements of G and G* are vertices, edges and faces.
Elements of the force graph are superscripted with an asterix (*).

Due to the presence of external forces in the form diagram, the
form graph contains leaf vertices. These are vertices of degree one
since they have only one connected edge, which corresponds to an
external force. In Section 2.5, we will see that it is a requirement of
the presented approach that the leaf vertices and their edges can
be drawn on the outside of the graph, in the outer or external space.
The leaf vertices will therefore be referred to as outer or external
vertices; the others as inner or internal. Note that this requirement
simply means that all external forces should be applied to nodes
on the boundary of a structure. In Fig. 2, for example, vertices 1,
2, 4 and 6 are external vertices. They are, respectively, connected
to edges 0, 1, 2 and 3 representing the external forces in the form
diagram depicted in Fig. 1.

For a form graph G with e number of edges and v number of
vertices, the entries of the jth column of the [v x e] connectivity
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Fig. 2. Form and force diagrams can be interpreted as directed graphs. In this
context, we define them as the form graph G and the (reciprocal) force graph G*.

matrix C are:

+1 ifvertexiis the head of edge j
Gj=1—1 ifvertexiis the tail of edge j (1)
0 otherwise.

Note that these edge directions may be chosen arbitrarily, but some
convention can be imposed for clarity. Here, for example, all edges
point from vertices with lower index to vertices with higher index.

The [v* x e] incidence matrix C* represents the topology of
the reciprocal force graph G*. The reciprocal graph has v* vertices,
equal to the number of faces of the form graph, and the same num-
ber of edges e as the form graph. The row vectors of C* can be
constructed from the form graph by cycling its faces in a counter-
clockwise direction [14]. The entries of the ith row of C*, corre-
sponding to the ith face of G, are:

+1 ifedgejis traversed in the same
direction as its orientation

—1 ifin the opposite direction

0 otherwise.

*_
G =

2.3. Algebraic reciprocal constraints

Having constructed C and C*, the coordinate difference vectors
u, v, u* and v* of the form and force edges can be written as
u = C'x, v=_Cly (3a)
u* — C*tx*, v* — C*ty* (Bb)
with X, y and x*, y* the x and y coordinate vectors of G and G*,
respectively. The reciprocal constraints, as described in Section 2.1,
can be formulated in terms of the coordinate difference vectors (3a)
and (3b).

The first set of constraints, requiring that lines intersecting at
a node in the form diagram correspond to a closed polygon in
the force diagram, can be imposed by expressing that the sum of
coordinate difference vectors of edges of the force graph connected
to the same vertex in the form graph should be zero [12]:

Ciu* =0
{Civ* =0 (4)

with C; composed of the rows of C corresponding to the inner
vertices of G.

The second set of constraints, requiring parallelity between cor-
responding edges in the form and force graphs, can be imposed
by writing the coordinate difference vectors u* and v* of the force
graph as a function of the corresponding vectors u and v of the form
graph:

u* = Qu
{V* = Qv, ()

with Q the diagonal matrix of the vector q of length ratios between
corresponding edges in G* and G. The elements of q are, in fact,
the well-known force densities, first introduced by Schek [15]. Note
that after imposing (4), G and G* are dual graphs. By furthermore
imposing (5), they become reciprocal.

Combining the two sets of reciprocal constraint equations, (4)
and (5), and using Qu = Uq and Qv = Vq, with U and V the diago-
nal matrices of the coordinate difference vectors u and v, one finds
that

CGUq=0
{Cdi =0 (6)
or, equivalently
Aq=0 (7)
with A the [2v; x e] equilibrium matrix of G:

| GU
A [ Cv } . (8)

Note that since all external forces are included in the form graph,
the right-hand side of (7) is a null vector. In the presented ap-
proach, the equilibrium of a structural system is thus investigated
using the states of self-stress of an equivalent unloaded network.
The number k of independent states of self-stress of the net-
work, corresponds to the dimension of the nullspace of A[16]. The
dimension of the nullspace can be calculated by SVD of A [17] and
is thus equal to the number of edges of which the force densities
can be chosen freely to explore different states of equilibrium of
the represented structural system. We will call these the free or
independent edges. The structural interpretation of the states of
self-stress depends on the type of assembly or structural system
represented by the form graph, as we will see in Section 2.6.

2.4. The force graph

It can be seen from Eqs. (3b) and (5) that the coordinate vectors
x* and y* are related to the force densities in the following way:

C*t * Qll

C'y* = Qu. ®)

This system of equations cannot be solved directly, since the
incidence matrix of the force graph, C*, is not square. Instead, the
geometry of the force graph can be determined by solving the
equivalent system

L*'x* = C*Qu * s okt

with L* the Laplacian matrix of the force graph. This system has an
exact solution which can be calculated efficiently [18], since L* is
square and positive, semi-definite [ 16].

Note that the vertex coordinates of the force graph are unique
up to a translation. Therefore, in order to obtain one specific
solution, we solve the system of equations with the location of one
point chosen. In graphic statics, this is equivalent to choosing the
first point of the load line somewhere on the drawing canvas to
start the construction of the force diagram.

2.5. Requirements

The approach presented in this paper is based on the interpre-
tation of the form and force diagrams of graphic statics as dual
graphs, with the added constraint that corresponding edges should
be parallel (or at any constant angle), as explained in Section 2.2. It
is essential that these graphs can be constructed automatically and
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Fig. 3. (a) A planar form graph without overlapping spaces. (b) A planar form graph with overlapping spaces due to the spaces created by the leaf connected to the central

vertex.

uniquely if the approach is to be used as back-end for an interactive
graphic statics application.

A (form) graph has a dual if and only if it is planar [19]. There-
fore, the presented approach only applies to structural systems
that have a form diagram with a planar graph. A graph is planar
if it can be drawn in the plane without crossing edges [20]. Fur-
thermore, it should be possible to construct a straight-line draw-
ing of the form graph that divides the plane into bounded and
unbounded polygonal spaces with disjoint interiors [21], i.e. spaces
without overlaps. A straight-line drawing is a drawing in which all
vertices are connected with straight lines. According to [22], any
planar graph has a planar straight-line drawing.

As an example, consider the two form graphs in Fig. 3. Fig. 3(a)
is the planar straight-line drawing of a valid form graph. There are
no crossing edges and none of the spaces overlap. All edges cor-
responding to external forces are on the outside of the drawing.
Fig. 3(b) is the drawing of an invalid form graph. The drawing is
crossing-free, but it inevitably has overlapping spaces due to the
presence of the leaf edge at the central vertex. This edge corre-
sponds to an external force applied to a node of the structure that
is not on the boundary.

From a planar straight-line drawing without overlapping spaces,
the dual of a valid form graph can be constructed uniquely
and efficiently using a “wall following” maze solving algorithm. A
wall follower identifies the clockwise cycles of the drawing by
traversing the graph and always taking the rightmost (or leftmost
for counter-clockwise cycles) edge out of a vertex. All cycles are
identified once all edges have been traversed in both directions.
These cycles can then be inspected as discussed in Section 2.2 to
determine the topology of the dual.

2.6. Structural systems

The presented approach can be used to investigate the possible
states of equilibrium of different types of structural systems, with
different degrees of static and kinematic (in)determinacy. The
static and kinematic (in)determinacy of a structural system can be
evaluated using the extended Maxwell rule [23]:

k—m=b—-2n+r, 11)

with k the number of independent states of self-stress, m the
number of inextensible mechanisms, b the number of bars, n the
number of nodes, and r the number of kinematic restraints at the
supports. Applied to a form graph, since all external forces (loads
and support forces) are included in the graph, Eq. (11) simplifies to

k—m=e—2u, (12)

with e the number of edges and v; the number of internal vertices.
The values of k and m can be calculated by SVD of the equilibrium
matrix A [17] and determine how the equilibrium problem should
be solved and interpreted.

Rigid, statically determinate and (externally) indeterminate
systems have a form graph withm = 0and k > 0.In a determinate
system, the number of independent edges k is equal to the number
of applied loads. A form graph representative of a determinate
system is depicted in Fig. 4(a). The number of independent edges
in an indeterminate system is greater than the number of applied
loads, as seen in Fig. 4(b).

Funicular systems have m = 0 and k = 1, regardless of the
number of applied loads. These systems are stable in a specific ge-
ometry for only one specific equilibrium of internal and external
forces (Fig. 4(c)). Therefore, there can be only one degree of free-
dom or independent edge. Any of the edges in the graph of a funic-
ular system may be identified as the free edge.

Finally, if the form graph represents an unloaded, two-
dimensional, self-stressed network, the k > 0 independent states
of self-stress of the graph represent the actual states of self-stress
of the structural system. Generally these systems have a form
graph with m = 0. However, in axisymmetric configurations, such
as the one depicted in Fig. 4(d), the form graphs of these networks
canhave m > 0.For example, the network represented by the form
graph in Fig. 4(d) has m = 1. Indeed, the rotation of the vertices
forming the square cycle around the central node is an inextensi-
ble deformation of the network [24].

Note that if k = 0, no states of self-stress exist for the form
graph. Therefore, regardless of the value of m, the graph does not
represent a stable structural system. This is the case if, for example,
the form graph represents an equilibrium system in an infeasible
configuration.

The free or independent edges cannot always be selected ar-
bitrarily and it is not always obvious which combinations of
edges are allowed. In those cases, a possible set can be identified
by transforming A into Reduced Row Echelon Form (RREF) using
Gauss—-Jordan Elimination (GJE). The non-pivot columns of RREF(A)
correspond to the free variables in the vector of force densities q
and thus to a possible set of free or independent edges [24].

Having identified the independent edges, either by manual
selection or using GJE, (7) can be rewritten as

Aqqq = —Aigqid, (13)

with A4 and Ajq containing the columns of A corresponding to the
dependent and independent edges respectively, and qq and qiq
containing the force densities of those edges.
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Fig.4. (a)Astatically determinate structural system, with the edge corresponding to the applied load as selected independent edge. (b) A statically indeterminate structural
system, with a selection of independent edges corresponding to the applied load and one support force. (c) A funicular system of forces, with only one independent edge.
(d) A two-dimensional, self-stressed network of forces, or “spiderweb”, with three degrees of freedom.

Fig. 5. Using the convention for constructing the dual graph described in
Section 2.2, edges with positive force density values or with the same orientation
in both graphs are in tension (red); those with negative values or opposite
orientation in compression (blue). The thickness of an edge of the form graph (left)
is proportional to the length of the corresponding edge in the force graph (right) and
thus to the size of the internal force. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

If m = 0, the [2v; x (e—k)] matrix Aq is square and non-singular
and thus invertible, such that (13) can be rewritten as

qa = —A; 'AigQia. (14)
The full set of force densities q can then be obtained directly as a
function of the chosen q;g4.

If m > 0, Aq is not square. In this case, the remaining force
densities qq can be calculated by solving the following equivalent
linear system

AjAqdd = —AjAidid- (15)

2.7. Tension and compression

The interpretation of the force in a member as either tension
or compression depends on the conventions that were used for
deriving the incidence matrix C* (Section 2.2).

For a typical graphic statics interpretation, meaning that the
equilibrium of the nodes is inspected by cycling around those
nodes in clockwise direction [4], the dual incidence matrix should
be created by cycling through the primal faces in a counter-
clockwise direction. By assigning 41 to edges that have the same
orientation as the cycling direction (this is the convention used in
Section 2.2), edges with positive force density values will represent
primal edges in tension; and edges with negative force densities
represent primal edges in compression. Whether an edge is in com-
pression or tension can thus simply be determined from the sign of
the calculated force density. Consequently, when visually inspect-
ing G and G*, a primal edge having a corresponding dual edge with
the same orientation will be in tension; and a primal edge with a
corresponding dual edge with opposite orientation will be in com-
pression. This is a direct result of the parametric equations (5) and
can be seen in Fig. 5.

2.8. Force-driven design

So far, we have described the required computational steps of
a method for constructing the reciprocal force graph of a given

form graph. This method can be used to investigate the possible
(if any) states of stress/equilibrium of a structural system in a
specific configuration and thus provides the basis for the back-
end of a tool for graphic statics-based analysis of structures. As
described in [8], graphic statics can also be used for sophisticated
force-driven design explorations. Typically, the goal in these
explorations is to find an equilibrium configuration for a structure
based on a set of constraints; for example, the location of the
supports, the spatial configuration of the loads, size of the forces
in specific elements...The problem then becomes a constrained
optimisation problem that is not simply the reverse problem of the
one solved in this paper. Therefore, it will not be discussed here.

3. Computational setup

In this section, we discuss a general scheme for an implementa-
tion of the presented approach that can be used as the back end of
an interactive application for algebraic graphical analysis of struc-
tures. Relevant code snippets are provided using the scripting lan-
guage Python [25].

An overview of the implementation is depicted in Fig. 6. Differ-
ent steps of the algorithm are illustrated using a Fink truss. This
type of truss is a statically determinate structure that cannot be
calculated directly with graphic statics, because its form diagram
contains crossing elements.

However, we will demonstrate how the system can be solved
with the presented method by generating a planar straight-line
drawing of the form graph without overlapping spaces.

3.1. Form graph

The algorithm takes as input a set of connected lines represent-
ing a form diagram describing the spatial/geometrical configura-
tion of all internal and external forces of a structural system. The
only requirement for this drawing to be valid input is that all edges
are properly connected.

The directed connectivity graph of this set of lines can be easily
constructed by identifying all unique vertices among the start and
end points of the lines, and assigning an ordered pair of vertices (an
edge) to each line. The form graph of a Fink truss with six external
forces (three loads and three reaction forces) is depicted in Fig. 7.

3.2. Planar straight-line drawing with non-overlapping spaces

As discussed, the presented approach can only be applied to
structural systems with planar form graphs. Furthermore, a planar
straight-line drawing of the form graph with non-overlapping
spaces is needed to construct the dual graph using a wall follower.
This part of the algorithm therefore consists of the following steps:

1. Check if the current drawing of the form graph has crossing
edges. If there are no crossing edges, skip the next step.

2. If the graph is planar, generate a planar straight-line drawing.
Otherwise, stop.

3. Check if none of the leaf vertices is connected to an inner vertex
of the graph. In other words, verify that all external forces are
applied to boundary nodes of the structure.



T. Van Mele, P. Block / Computer-Aided Design 53 (2014) 104-116

109

Sform_graph
lines — edges,vertices

are_edges_crossing
edges,vertices

is_planar
edges,vertices

embed
edges,vertices —» vertices®

has_inner _leaves
edges,vertices*

dual graph
edges,vertices™ —» edges™®

k.

‘ svd (A) — mk }47

YES

‘ solve (Aq=0) — q ‘

vertices™®

‘ force graph ‘

: vertices

Fig. 6. Overview of different steps of an implementation of the presented approach.
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Fig. 7. The graph of the form diagram of a Fink truss has crossing edges.

3.2.1. Crossing edges test

A simple algorithm for verifying if the current representation
of the form graph has crossing edges is included in Listing 1.
The algorithm checks for each pair of edges if they intersect and

returns true if a pair is found that does. Edges with a common
vertex are omitted from the test. Two edges AB and CD intersect
if the triangles ABC and ABD, as well as the triangles CDA and CDB,
have opposite cycling directions. This indicates that C and D lie on
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Fig. 8. A planar crossing-free straight-line drawing of the form graph generated
using Schnyder’s realizer method. The drawing is clearly not very useful for our
purposes.

opposite sides of a line formed by A and B, and that A and B lie
on opposite sides of a line formed by C and D, which can only be
the case if the edges intersect. The cycle direction of three points
A, B and C is determined by comparing the ratios of the x and y
coordinate differences of B and C with respect to A.

The graph of the Fink truss depicted in Fig. 7 obviously has
crossing edges, which is confirmed by the algorithm. Therefore,
planarity should be checked.

3.2.2. Planarity testing

Several linear-time algorithms for planarity testing exist, e.g.
[26-28]. The test used in this paper is an implementation of the
classic algorithm by Hopcroft and Tarjan [26]. As expected, a test
of the Fink graph confirms it is planar. This means a planar straight-
line embedding exists.

3.2.3. Crossing-free drawing

As with planarity testing, several algorithms for generating pla-
nar, straight-line drawings exist, e.g.[22,29,30]. However, as (most
of) these classic algorithms are merely concerned with establish-
ing the existence of a planar (straight-line) drawing, for example
to prove that a graph is planar, they often produce drawings that
are not very useful in practice [31]. As an example, Fig. 8 depicts an
embedding of the Fink graph generated with an implementation of
Schnyder’s realizer method [30], available through Sage [32].

Force-directed methods, on the other hand, produce layouts of
graphs by positioning vertices as a result of a simulation of motion
caused by repelling and attracting forces assigned to the vertices
and the edges. Although these algorithms do not base their layouts
on the topological information of a graph, they tend to produce
crossing-free layouts for planar graphs [33]. Furthermore, because
of the repelling forces between the nodes, leaf vertices tend to
end up in the outside face. Since the graphs of form diagrams of
relevant structural problems are relatively small and limited in
complexity, force-directed algorithms can thus be used as a fast
and reliable method for generating planar straight-line drawings
of planar graphs by simply generating one layout after the other
until one without crossing edges is obtained.

Fig. 9 is a drawing generated with an iterative implementation
(Listing 1) of the Fruchterman-Reingold algorithm [34] available
through NetworkX, a Python package for working with graphs [35],
in combination with the crossing-edge check discussed above.

Listing 1: Python snippet for generating a planar, straight-line
drawing without overlapping spaces of a planar graph. vertices is
a list of vertex coordinates. edges is a list of ordered index pairs in
the vertex list.

import networkx as nx

def draw_without_crossing_edges(edges, vertices):
start = dict(enumerate(vertices))
while True:
G = nx.Graph(edges)
coords = nx.spring_layout(G, pos=start,
vertices = coords.values()
if not are_edges_crossing(edges, vertices):
break
return vertices

iterations=500)

def are_edges_crossing(edges, vertices):
for edge in edges:
A = vertices[edge[O0]]
B = vertices[edge[1]]
for test in edges:
if any(i in test for i in edge):
continue
else:
C = vertices[test[0]]
D = vertices[test[1]]
if intersect(A,B,C,D):
return True

return False

def intersect(A,B,C,D):
return ( ccw(A,C,D) != ccw(B,C,D)
and ccw(A,B,C) != ccw(A,B,D) )

def ccw(A,B,C):
return (C[1]—A[1]) * (B[0O]-A[0]) > (C[0]-A[O]) = (B[1]—-A[1])

3.2.4. Inner leaves check

Finally, we verify if none of the edges representing an external
force is connected to an inner vertex of the graph. To do so, we
simply remove all leaves from the graph, identify the vertices of
the boundary cycle, and verify that all leaves were connected to
the graph at one of these vertices.

Note that the leaf vertices have no influence on the outcome of
the crossing edges test nor of the planarity test. In fact, planarity
testing is performed on each biconnected component separately
and would thus skip the leaf vertices anyway. Furthermore,
generating a crossing-free drawing with the algorithm provided in
Listing 1 is more robust and faster without the leaf vertices as well.
Therefore, the leaf vertices could also be removed before any of the
other steps, and re-added afterwards.

In any case, at this point, if everything checks out, the connec-
tivity matrix C* of the dual of the (generated) planar straight-line
drawing can be determined using a wall follower, as discussed in
Section 2.5. The planar straight-line drawing and its dual are de-
picted in Fig. 9. The dual is drawn with dotted lines and its vertices
placed at the centroids of the corresponding faces of the original
graph.

3.3. Structural system and force densities

The equilibrium matrix A of the form graph of the Fink truss ex-
ample has 2v; = 16 rows and m = 19 columns. By SVD of the
equilibrium matrix, using the implementation provided by the lin-
ear algebra module of Scipy [36], we obtain m = 0 and k = 3. Note
that the vector of singular values s returned by this implemen-
tation contains all values greater than machine precision. There-
fore, the actual number of relevant singular values still needs to be
determined by comparison to an appropriate tolerance. The tol-
erance used in this paper is 10~ of the highest singular value:
tol = s[0] x 1073 [17].
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Fig. 9. A planar straight-line drawing of the form graph generated using a force-driven approach. The dual of the form graph is depicted with dotted lines. Its vertices are

placed at the centroids of the corresponding faces of the form graph.
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Fig. 10. The reciprocal form (left) and force (right) graphs of a Fink truss. The colours of the edges of the force graph indicate tension (red) or compression (blue). The
thickness of an edge is proportional to the size of the force in it. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

Since k is equal to the number of applied loads, the system is
statically determinate. This means there is no need for identifying
the independent edges; the force densities of any three edges of
the graph can be chosen freely to obtain a state of equilibrium
of the system. An obvious option, however, is to choose the force
densities of the edges corresponding to the applied loads, which
are edges 0, 1 and 2.

After selecting a set of independent edges, partitioning both
A and q accordingly, and choosing values for the three qiq, the
remaining 16 qq can be calculated directly since the matrix Aq is
square and non-singular. With the force densities of edges 0, 1 and
2 chosen as —2, we obtain the following result:

q=[-2,-2,-2,-3,0,-3,-1.2,-2.8, —2.8,
-1.2,12,1.2,1.2,1.2,1.6,1.6, —2.4, —3.2, —2.4]. (16)

As discussed in Section 2.7, negative force densities correspond to
forces directed towards the nodes and thus to edges in compres-
sion. In the case of our Fink truss example, this also means that the
applied loads are acting in the downward direction. The force den-
sity inedge 4 is q4 = 0. There is thus no horizontal reaction force at
the left support, since, indeed, there is only vertical loading. Edges
3 and 5 correspond to the vertical reaction forces at the left and
right supports.

3.4. Force graph

The final step is the construction of the force graph. Having de-
termined the connectivity of the force graph in Section 3.2, the x

and y coordinates of the vertices can be calculated from the ob-
tained force densities using Egs. (10).

The reciprocal form and force graphs of the Fink truss example
are depicted in Fig. 10. The forces in the edges of the form graph
are visualised using thickness, indicating the (proportional) size of
forces, and colour, indicating tension or compression (red for ten-
sion and blue for compression). This convention has been used in
all subsequent figures.

3.5. User interaction

Once the reciprocal relation between the form and force graph
has been established and the graphs have been created in a script-
able drawing environment such as Rhino (or the browser), several
types of user interaction are possible.

First of all, users can simply change the values of the force den-
sities and/or the selection of independent edges to investigate dif-
ferent force distributions (Fig. 11).

The user can also change the geometry of the form graph to
explore different configurations of the truss and different load
and support conditions (Fig. 12). Note that for some structures,
changing the geometry requires re-calculation and possibly re-
identification of the independent edges (see Section 4.4). Here,
however, this is not the case, since the structural system is rigid
and statically determinate.

Finally, the data structures containing the topological informa-
tion about the form and force graphs simplify visualisation of the
reciprocal relation between the elements of the two graphs, for
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LT

Fig. 11. Investigate different force distributions by changing values of force densities and/or the selection of independent edges. Left: The form graph (top) and its planar
drawing (bottom). Right: The reciprocal force graph. In this case, the force densities of edges 3, 14 and 15 are chosen by the user, resulting in a different equilibrium compared

to Fig. 10.
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P\)

Fig. 12. The geometry of the form graph can be changed to explore different truss configurations or different load and support conditions. Left: The form graph (top) and

its planar drawing (bottom). Right: The reciprocal force graph.

example by reducing the identification of corresponding vertices
and faces and the connected edges to a simple topological opera-
tion (Fig. 13).

4. Results

Here, we illustrate the versatility of the presented approach
using a series of examples of different structural problems. In all
figures, edges of the form graph marked in red are in tension, blue
edges in compression.

4.1. Athree-hinged trussed frame

Finding the reaction forces, and subsequently the bar forces, of
a three-hinged trussed frame is a well-known but more advanced
example of a graphic statics procedure. A detailed recipe for this
procedure can be found in e.g. [4].

The form graph of a three-hinged trussed frame with applied
loads and reaction forces is depicted in Fig. 14(a). By SVD of the
equilibrium matrix we find that m = 0 and k = 5, which is equal to
the number of loads. Therefore, the structure is statically determi-
nate. By choosing values for the force densities of the edges repre-

senting the loads, both the reaction forces and the bar forces can be
calculated directly as shown before. The resulting reciprocal force
graph is depicted in Fig. 14(b).

4.2. Statically indeterminate structures

Consider the bar-node structure and its corresponding form
graph G, depicted in Fig. 15. SVD(A) resultsinm = O and k = 2
indicating that the network has two independent states of self-
stress, which means that the structure is statically indeterminate
since there is only one applied load.

Having chosen a value for the force density of the edge repre-
senting the applied load (edge 3), every choice for the second inde-
pendent edge results in a state of self-stress of the network. Three
such states are shown in Fig. 15. For a discussion on the meaning of
the existence of different states of self-stress in an indeterminate
structure, we refer the interested reader to Van Mele et al. [8].

4.3. Funicular geometry

The form graph in Fig. 16 represents a freeform discretised
spline with 9 applied loads. The spline is not a rigid structure
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Fig. 13. Easy visualisation of reciprocal relation between form and force graphs based on topological data structures. Left: The form graph (top) and its planar drawing
(bottom). Right: The reciprocal force graph. The edges converging at the selected node (marked in green) in the form graph form a closed polygon in the force graph,
representing the equilibrium of forces at that node. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 14. Reciprocal form (left) and force (right) graphs of a three-hinged, trussed frame.
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Fig. 15. Left: The form graph of an indeterminate, planar, three-bar structure.
Right: Its reciprocal force graph depicting three possible states of self-stress.

and can only be in equilibrium in this geometry and for the given
loading conditions (i.e. the given directions of external loads) for
one combination of internal and external forces, which is unique up
to a scale factor. There should thus be only one degree of freedom.
Indeed, SVD of the equilibrium matrix of the form graph yields
m = 0and k = 1. As discussed in Section 2.6, any of the edges
can be selected as the independent edge of which the force density
may be chosen freely. The solution in Fig. 16 results from g3 = —6.
It provides the required values of the applied loads for which the
spline is in equilibrium in this geometry such that the reaction

force at the left support is exactly 6 kN. Note that edges 3 and 4 are
in tension (red), whereas the other edges corresponding to applied
loads are in compression. This is reflected by a change in direction
of the edges of the load line in the force diagram. The ‘tension’ loads
are in fact upward loads which support the ‘dimple’ in the freeform
arch.

Fig. 17 depicts the reciprocal form and force graphs of a spline
with circular geometry and applied vertical loads. The horizontal
and vertical components of the external forces at the supports
have been included such that they can be controlled explicitly.
Also in this case, SVD(A) of the form graph returns m = 0 and
k = 1,indicating there is only one degree of freedom. Again, for any
choice of force density of any one of the edges the force distribution
is thus identical up to a scale factor.

The solution shown in Fig. 17 is the result of choosing q; = H,
representing the horizontal force at the supports. Note that the
result clearly visualises that in order for this circular arch to
be funicular for a set of gravitational (i.e. downward, vertical)
loads, the loads should be distributed as seen in the force graph:
decreasing towards the middle of the arch.
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Fig. 16. Left: The form graph of a freeform discretised spline with a set of applied loads with given direction. Right: The reciprocal force graph as a result of choosing
q1s = —6. Red edges of the form graph are in tension, blue edges in compression. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 17. Left: A form graph consisting of a discretised semicircular arc, applied vertical loading and reaction forces. Right: the reciprocal force graph of the form graph.

4.4. Self-stressed equilibrium nets

The last three examples deal with planar, self-stressed net-
works of forces, like spider webs [21].

Fig. 18 depicts the form graph of a network consisting of two
rings of edges connected by two sets of crossing edges. Singular
value decomposition of the equilibrium matrix of the form graph
returns m = 2 and k = 4. Two inextensible mechanisms exist.
Due to the axisymmetric configuration, the rings can rotate inde-
pendently around the centre of the net, by an infinitesimal amount,
before this rotation is prevented by the internal forces in the other
elements. As a result, the number of states of self-stress is four,
rather than the expected two. Indeed, four sets of edges can be
tensioned independently, without changing the geometry of the
net: 9-10-11-5-4-3, 0-1-2-8-7-6, 18-17-16-19 and 15-14-13-12.
Assigning positive values to the force densities of a selected set of
edges, for example, gz = 1,q11 = 1,915 = 1and g9 = 0.5, we
obtain the result depicted in Fig. 18. Note that since m > 0, the ma-
trix Ay is not square. Therefore, the full set of force densities was
calculated with (15) rather than (13), as discussed in Section 2.6.

The example depicted in Fig. 19 represents the reciprocal form
and force graphs of a self-stressed network with its edges arranged
in an orthogonal grid. Here, SVD(A) yields m Oand k = 5.

Note that this is yet another situation in which the independent
edges cannot be chosen freely. The grid consists of five sets of edges
forming straight continuous lines. Due to the (perfect) orthogonal-
ity of the grid, these sets can be tensioned independently, with-
out affecting the forces in the others. Therefore, only selections of
edges containing exactly one edge of each of these series are valid.
RREF(A) identifies edges 2, 5, 8, 12, 16, which indeed contains one
edge of each of the sets forming straight orthogonal lines. Choosing
q2 = —0.5, qs = —1.0, qs = —0.5, qi2 = —1.0 and 16 = —1.0
we obtain the result of Fig. 19.

The last example demonstrates that it is not always straightfor-
ward to determine the number of independent edges and identify
a possible set. The form graph in Fig. 20 represents an irregular net-
work of bars and nodes. The system has 11 independent edges. A
possible independent set has been determined by GJE of the equi-
librium matrix and consists of the edges 23, 29, 32, 34, 35, 36, 37,
38, 39, 41, 42. The force densities of these edges have been deter-
mined by trial-and-error such that a compression only equilibrium
is obtained.

As a final remark, the authors would like to point out the sim-
ilarity between the form and force graphs of the last example and
the primal and dual grid used in Thrust Network Analysis [12]. In-
deed, if the form graph is interpreted as the horizontal projection
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Fig. 18. Reciprocal form (left) and force (right) graphs of a self-stressed network with two concentric rings of edges in an axisymmetric configuration. The network is in
tension-only equilibrium indicated by the red colour of the edges. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 19. Reciprocal form (left) and force (right) graphs of a self-stressed, orthogonal grid of forces in compression-only equilibrium. The grid is in compression-only
equilibrium indicated by the blue colour of the edges. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 20. Reciprocal form (left) and force (right) graphs of an irregular grid of forces in compression-only equilibrium. The grid is in compression-only equilibrium indicated
by the blue colour of the edges. In this geometry, the system has 11 independent edges. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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of a three-dimensional network of forces in equilibrium with ver-
tical loads applied to its vertices (thus disappearing in the pro-
jection), then the reciprocal form and force graphs represent the
horizontal equilibrium of this system of forces. Different states of
self-stress of the form graph obtained by choosing different values
for the force densities of a possible set of independent branches
correspond to different three-dimensional equilibrium networks
for the given loading, all with the same horizontal projection. The
identification of the independent edges of a self-stressed network
lies at the basis of techniques such as “best-fit TNA” [37] and the
design of cable net formwork for concrete shells [38].

5. Conclusions

This paper presented a general, non-procedural approach to
graphical analysis of two-dimensional structures.

In Section 2.2, we discussed the interpretation of the form
and force diagrams of graphic statics as reciprocal graphs. We
described how an algebraic formulation of the reciprocal relation
between these two graphs results in the equilibrium equations of
an unloaded network that is equivalent to the structural system
represented by the form graph (Section 2.3). We furthermore
showed how the possible states of equilibrium of this structural
system can be controlled using the force densities of the system'’s
free or independent edges, which can be identified by rank analysis
using singular value decomposition and Gauss-Jordan elimination
of the equilibrium matrix of the unloaded network (Section 2.6).

In Section 3.2, we discussed how the topology of the force
graph can be derived from a planar straight-line drawing of the
form graph using a wall following maze solving algorithm. We
furthermore described an algorithm for generating planar straight-
line drawings of (planar) form graphs based on the repetitive
application of a force-driven layout method in combination with
a crossing-edges check.

A computational setup allowing the presented approach to be
used as back-end for a graphic statics application in an interactive
CAD environment was described in Section 3.

Through a series of examples (Section 4), we showed how an
implementation of the computational setup can be used to in-
vestigate the equilibrium of different types of structural systems,
including a fink truss, a three-hinged arch, an indeterminate struc-
ture, funicular systems and self-stressed networks.

Finally, the relation to advanced form-finding and analysis tech-
niques for three-dimensional equilibrium structures were briefly
discussed.
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