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Abstract.  This paper presents a novel and rigorous approach for the design of 
efficient spatial support structures for flat slabs. Based on the given dead load of 
the slab and the topology of the supporting structure, this method allows form-
finding of support structures that are in equilibrium with axial compression forces 
only. During the form-finding process, the resulting horizontal forces from the 
compression support structure are balanced through translation and rotation of 
the slab, and subsequently resolved in the plane of the slab using funicular or 
trussed strut-and-tie systems. The presented method can be applied for the design 
of a variety of different typologies of supporting structures, such as inclined 
columns, curved walls, branching structures and shells. A computational prototype 
of the approach is implemented as CAD modeling tool, and the potential of the 
method is shown through two formal design explorations.  
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Figure 1: Left: The Basento Viaduct in Potenza, Italy, by Sergio Musmeci, 1967-74. The 
flat bridge deck is supported by a concrete shell with complex geometry (Photo by nEmo 
Gruppo Architetti, Florence). Right: Viscous Adaption in Salzburg, Austria, by Soma 
Architecture, 2010-12. The flat, perforated roof of the foyer of the Building Academy is 
supported by asymmetric branching columns (Rendering by Soma Architecture, Vienna).  
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1 Introduction 

The integration of structural constraints in early stages of the architectural design 
process with digital means has been topic of a variety of recent design and 
research projects [Oxman and Oxman, 2010]. A typology of structures that has 
been described only fragmentary in this context is the flat slab supported by 
compression-only structures. This typology offers a rich variety of formal 
expressions, since the support structure can take various forms such as inclined 
columns, branching structures, double-curved walls, or shell surfaces. Up to now, 
all of those solutions have been studied separately. The lack of a unified design 
approach is remarkable, as this system is structurally efficient and allows 
designing support structures with a minimum use of material. Furthermore, the 
typology has a wide range of architectural applications, since the slab can be used 
as roof, floor plate, or bridge deck.  

Different approaches to the form-finding of such structures have been used in 
the past. The design of shell-supported slabs has been intensively studied by 
Musmeci using physical models [Nicoletti 1999]; based on these experiments the 
impressive Basento Viaduct in Potenza, Italy (Fig. 1, left) has been realized. For 
the form-finding of branching structures, physical experiments as well as 
computational means have been applied [Otto and Bien, 1992], [Hunt et al. 2009]. 
Sasaki developed the 3D Extended ESO Method; it combines FEA software with 
shape optimization. This technique has been used in the design of the branching 
structure for the National Convention Centre, in Doha, Qatar [Sasaki 2007]. 

Several buildings have been constructed, that incorporate flat slabs supported 
by non-standard structures, working primarily in compression: Terminal 1 of the 
Stuttgart Airport, Germany, and the Pragsattel II footbridge [Holgate 1997]; both 
are branching structures designed by Schlaich, Bergermann & Partner. 
Furthermore the Mediatheque in Sendai, Japan, designed by Ito and Sasaki, 
consists of thin floor plates that are supported by a network of steel tubes forming 
spatial, hyperboloidal columns [Rappaport, 2007]. The perforated roof of the new 
foyer of the Building Academy Salzburg, supported by asymmetric branching 
columns, was recently completed (Fig. 1, right) [Oberascher 2012].  

This paper describes a unified design methodology for compression-only 
support structures for flat slabs. It is structured as follows: Section 2 states the 
general problem and frames it within the concept of lower-bound design. Section 3 
describes the design approach and form-finding algorithm in two steps, and 
illustrates it with an implemented prototype. Section 4 finally presents two formal 
design explorations for supporting structures with complex geometry.  

2 Concepts 

The approach is suited for early-stage design explorations of spatial compression-
only support structures, based on one dominant loading case, for example, the self-
weight of the slab. The method is considering static equilibrium only, and allows 
making constructive design decisions based on qualitative and quantitative 
properties of the resulting force-flow. In subsequent steps, a structural analysis 
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regarding structural safety for live loads, stability (e.g. buckling) and serviceability 
has to be carried out, and if necessary, additional design features for stiffening 
have to be introduced.  

2.1 Lower-Bound Solutions 

Within the framework of the theory of plasticity, and thus assuming ductile 
behavior of the building materials, the transfer of loads can be described by only 
considering static equilibrium of forces while neglecting material stiffness and 
deflections. All structures discussed here are modeled as pin-jointed structures 
with only axial forces in their members. According to the lower-bound theorem of 
the theory of plasticity, such structures are safe for a given loading case, if the 
member dimensions for a given state of equilibrium are sufficient for axial stresses 
and are not in the danger of buckling. Lower-bound solutions have been 
successfully used in the design of steel structures [Baker et al. 1956], structures in 
reinforced concrete, using strut-and-tie models [Schlaich et al. 1987] and stress 
fields [Muttoni et al. 1996], and masonry structures, using thrust lines [Heyman 
1995] and thrust networks [Block and Ochsendorf 2007]. Recently, lower-bound 
concepts have been combined with parametric modeling methods for the design of 
roof and bridge structures with complex geometry [Lachauer and Kotnik, 2010], 
[Lachauer and Kotnik, 2011]. 

2.2 Equilibrium of Supported Slabs 

The main challenges in finding an equilibrium solution for a support structure with 
complex geometry for a flat and heavy slab are illustrated schematically for a 
simple two-dimensional case with a pin-jointed branching column (Fig. 2). The 
self-weight of the support structure is not considered, as it is assumed to be small 
in comparison to the weight of the slab. 

Assuming that the support positions are given, one can determine a set of 
support forces F1

v, F2
v for the dead load Q of the slab (Fig. 2a). For the branching 

support structure with arbitrary geometry, shown in Figure 2b, the forces in the 
strut elements connected to the slab are statically defined: using trigonometry, the 
axial member forces, Fi, and horizontal components in them, which are the 
horizontal support forces, Fi

h, can be directly found from the vertical support 
forces, Fi

v, as indeed Fi = Fi
v + Fi

h. Considering the free1 node N, the resultant, or 
sum of forces in the struts attached to the slab, Fr = F1 + F2, is not necessarily 
acting in the direction of the strut connected to the ground, which means that node 
N is not in equilibrium. Furthermore, the reaction force -Fh = F1

h + F2
h, acting 

horizontally in the plate, is also not necessarily balanced yet.  
With these observations as premise, the form finding problem can thus be 

divided in two categories: 
- Finding the geometry of the supporting structure of horizontally restrained 

 attached to a building), such that all of its free 
m for the given loads of the slab. This is theoretically 

slabs (e.g. a projecting roof
nodes are in equilibriu

                                                        
1 A free node is neither a ground support, nor a support of the slab. 
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possible for any given support position G to the ground, by just moving the 
free nodes N, because the remaining horizontal reaction force Fh can be taken 
by the horizontal restraint of the slab.  (Fig. 2c).  

- Finding the geometry of the supporting structure of horizontally unrestrained 
slabs (e.g. a roof of free standing pavilion), such that all of its free nodes are in 
equilibrium for the given loads of the slab and the remaining horizontal force 
components in the plane of the slab are equilibrated. Therefore, both the 
positions of free nodes and ground supports have to be modified (Fig. 2d). 
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Figure 2: Given a) dead load Q of the slab and support forces, F v, b) for an arbitrary 
geometry, the support structure in not in equilibrium in node N, as forces F r and F h are not 
balanced; c) shows a support structure in equilibrium with a horizontally restrained slab; 
and d) a support structure in equilibrium with the slab without horizontal restraint. 

3 Method 

In this section the form-finding method will be described for the two categories, 
horizontally restrained and unrestrained slabs. In Section 3.1, the generation of 
support structures that balance the vertical force components in the slab, is 
described. This method can be used for designing horizontally restrained slabs. In 
Section 3.2, additional equilibrium conditions are formulated as extension to the 
method described in 3.1, in order to solve for both vertical and horizontal force 
components simultaneously. This method can be used for designing horizontally 
unrestrained slabs. 
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The form-finding method is applied to a slab with given self-weight and 
support positions. Furthermore, a set of vertical support forces, F1

v… Fn
v, 

balancing the dead load Q of the slab is assumed as given2 (Fig. 3). Additionally, a 
network of struts in space is given. These determine the connectivity of the 
structure and the starting point of the iterative form-finding procedure. The only 
restriction to the connectivity of the network is that each support of the slab has to 
be connected to exactly one strut, as otherwise the member forces of these struts 
cannot be uniquely defined; the nodes at the supports of the slab would become 
statically indeterminate. 
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Figure 3: A generic plate with given support positions and forces. 

3.1 Finding Vertical Equilibrium  

As described in Section 2.2, for a horizontally restrained slab (Fig. 2c), the 
objective is to find the position of the free nodes Ni such that those nodes are in 
equilibrium. If the slab is restrained in at least two points, the resulting horizontal 
force components Fi

h in the slab can be equilibrated within the plane of the slab 
either with a tension or compression funicular or a by a truss.  

Two conditions have to be satisfied for the vertical equilibrium of the structure:  
For each support i of the slab, a horizontal force Fi

h has to exist such that the 
support force Fi

v can be balanced by the force Fi in the supporting strut: 

Fi = Fi
v + Fi

h    1) 

For each free node Ni, the forces Sj in the m neighboring struts have to be in 
equilibrium, so the residual force Ri at each node has to be zero: 

0
1

==∑
=

m

i
ii SR     2) 

In the two-dimensional example (Fig. 2c and 2d), for node N, the forces in the 
neighboring struts would be S1 = F1, S2 = F2, and S3 = Fr. In order to achieve the 
two equilibrium conditions 1) and 2), the structure is solved as a tension network 
consisting of zero length springs [Harding and Shepherd 2011], and subsequently 
the sign of the forces is switched, resulting in a compression-only solution.  

 

                                                        
2 Note that again within the lower-bound theory, these can be chosen, if it is indeed assumed that the 
slab has enough bending stiffness to distribute the forces in those proportions to the supports. One 
possible set of support forces could be obtained using an FE analysis tool. 
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Starting with the provided initial geometry of the network of struts and the vertical 
force components F1

v… Fn
v, the initial forces F1… Fn in the struts are computed 

using trigonometry (as described below in step I). Next, the scalar c is calculated, 
defined as the inverse of the average magnitude of the initial forces F1… Fn in the 
struts connected to the slab. This scalar relates the level of pre-stress of the springs 
to the magnitude of given vertical force components.  
 In each step of the form-finding process, the following tasks are performed:  

I.  The forces in the struts connected to the slab are calculated as  

 |Fi| = c · |Fi
v| sin-1 αi, whereby Eq. 1) is directly satisfied, αi being the angle 

between strut i and the slab. 

II. All struts that are not connected to the slab supports are modeled as zero length 
springs; the forces Si are proportional to the strut length, with an initial level of 
pre-stress of 1: Si = li / li

0; li is the actual length of the strut, and li
0 is the initial 

length of the strut. 

III. The position of each free node is updated: N = N + k · Ri , k is a small scalar, 
defining the step size of the procedure (e.g. k = 0.1).  

This procedure is iteratively repeated, until the sum of residual forces ∑ Ri is 
smaller than a given threshold ε. After convergence, all forces have to be divided 
by c in order to calculate the real member stresses and support forces that are in 
equilibrium with the given vertical loads F1

v… Fn
v. In order to accelerate 

convergence, one might introduce velocities to solve the problem with a dynamic 
relaxation formulation [Barnes 1999] or apply more advanced solving strategies, 
such as a Runge-Kutta solver [Kilian and Ochsendorf 2005]. Instabilities in the 
solving procedure occur due to vanishing spring lengths in the case of very large 
differences in the magnitudes of the given vertical forces. 

3.2 Finding Horizontal Equilibrium  

In order to find an equilibrium state of the support structure, with the additional 
constraint that all horizontal force components in the plate should be in 
equilibrium, hence resulting in a free-standing structure, two more equilibrium 
conditions are added to Equations 1) and 2). A set of in-plane forces Fi

h is in 
equilibrium if and only if their sum is zero: 

0
1

==∑
=

n

i

h
iFR     3) 

and if the sum of the moments they induce, around any point in the plate, is zero: 

0
11

=== ∑∑
==

n

i
i

h
i

n

i
i hFMM   4) 
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with hi being the perpendicular distances to the line of action of the force Fi
h from 

a chosen point O (Fig. 4). 
To integrate these two additional constraints in the form finding process, the 

slab is translated and rotated, inclusive its supports, at each iteration, such that its 
position and rotation moves towards a balanced state. Therefore, one should 
initially define an arbitrary point O to calculate the resulting moment M.  

In each step of the solving procedure described in Section 3.1, two more steps 
are added, which are performed subsequently after step III: 

VI. The system of the slab, together with its supports and point O, is rotated in 
plane by the angle k1 ·M degrees. 

V.  The system of the slab, with slab supports and point O, is translated 
horizontally by the vector k2 ·R.  

Both k1, k2 are a small constants defining the step size of the solving procedure. 
Experience has shown that k1, k2 being about two order of magnitude smaller than 
k renders good results. 
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Figure 4: left: slab with horizontal force components F1
h… Fn

h acting at the supports, and 
the perpendicular distances h1 from the chosen point O to their line of action; right: slab 
with the equivalent actions M and R. 

3.3 Implemented Prototype 

Based on the algorithm described in Section 3.1 and 3.2, a prototypical tool for 
form-finding efficient support structures for slabs has been implemented for the 
CAD software Rhinoceros [McNeel 2012], using the scripting language 
RhinoPython [Baer 2012]. A dynamic relaxation method is implemented as solver 
for the implementation. 

As input, the user has to draw a starting geometry for the support structure as a 
network of lines, define slab and ground supports as points, construct the outline of 
the slab as a closed curve, and provide the loads of the slabs as vertical lines, 
drawn from the slab supports. The tool has two modes: “horizontally restrained”, 
in which case the position of the slab is kept fix (Fig. 5a-b), and “horizontally 
unrestrained”, in which case the slab, together with its support points, are 
translated and rotated until a position is found for which the resulting rotational 
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moment and force resultant from the horizontal force components in the slab 
vanish (Fig. 5c-d).  

 

a) b)

c) d)
 

Figure 5: a) support structure for a slab that is horizontally not in equilibrium, a resulting 
force and a moment are acting; b) a funicular system, constructed within the plane of the 
slab, transferring the horizontal support force components to the slab’s external restraints; c) 
the slab has been rotated and translated, the slab is horizontally in equilibrium; d) a 
funicular tension system balancing the horizontal force components in the slab, and a 
horizontal compression strut balancing the horizontal force components at the ground 
supports. 

As soon as the algorithm converges and a state of equilibrium is reached, the 
forces in the struts are visualized as cylinders that have a section area proportional 
to its internal stress. Furthermore, the horizontal and vertical reaction forces of the 
support structure is generated as lines with arrowhead, both at the slab supports 
and at the ground supports (Fig. 5a-d). Depending on the layout of the horizontal 
forces, it might be possible to elegantly balance the horizontal reactions using a 
tension funicular restraint to the external restraints (Fig. 5b), or using a tension 
ring (Fig. 5d). In more complex cases it might not be possible to find a funicular 
solution, but it is always possible to use an in-plane strut-and-tie system, e.g. a 
truss, instead. Funicular solutions can be generated using techniques from graphic 
statics [Allen and Zalewski 2010], possibly implemented as computational 
modeling tool [Lachauer et al. 2011].  
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4 Design Explorations 

To demonstrate the power of the presented approach, two formal design 
explorations of free-standing, horizontally unrestraint roofs are presented. In the 
first case (Figs. 6 and 7), a branching structure with complex geometry is 
supporting a slender slab in a regular grid, while the ground supports are placed 
freely, reacting to potential special site constraints. Input network and resulting 
geometry are shown below (Fig. 6). In the second case (Fig. 8), a thick, 
cantilevering slab is supported by inclined, double-curved quadrilateral networks. 

 

 

Figure 6: above: input geometry with support network (black lines), roof outline (white 
rectangle), dead load forces (green arrows), and roof respectively ground supports (red and 
black points); below: resulting compression-only support structure, the roof is minimally 
rotated, and the slab is globally in balance.  

The shown supporting structure in both cases is the result of the direct 
translation of the force network into a tubular frame structure. To withstand 
horizontal and asymmetric load cases, it is assumed that the support structure acts 
in bending in those load cases, hence omitting the need for a stiffening scheme, 
such as with diagonal struts. Instead of literally materializing the network of struts, 
one could also interpret the resulting network as a three-dimensional discretization 
of force paths within surface structures such as shells or doubly curved walls. 
Especially novel fabrication techniques for surfaces structures such as robotically 
fabricated brick walls [Bonwetsch et al. 2007] and fabric formwork for concrete 
shells [Van Mele and Block 2011] may be paired are with this design method. 
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Figure 7: A slender concrete slab with the dimensions of 35 x 35 m, supported by a 
compression-only branching structure made out of steel. The free-form support structure 
forms a regular grid of 5 x 5 supports, with an 8 m spacing and is horizontally unrestraint.  

 

Figure 8: A thick, cantilevering, and horizontally unrestraint slab with the dimensions of 10 
x 14 m, supported by three doubly-curved, wall-like networks.  

5 Discussion 

The presented method is highly general and extensible, but still the solving 
procedure of the implemented tool can be improved. The presented examples 
solved within a few seconds on an Intel Core Duo Processor with 2.8 GHz. 
Solving speed could easily be improved multiple orders of magnitude by using a 
more advanced solver [Veenendaal and Block 2011], but also by using a compiled 
plug-in instead of a prototype implementation written in a scripting language. 
Currently the only way to influence the result of the form-finding process is to 
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vary the input geometry and topology of the supporting network. Especially when 
dealing with support forces that differ strongly in magnitude, the resulting 
networks may be distorted or instabilities might occur during the solving process. 
A direct control of the initial level of pre-stress of the springs by the designer 
would provide additional design freedom that is inherent to such complex, mostly 
structural indeterminate structures.    

6 Conclusion and Future Work  

The presented method offers a formally flexible and technically simple algorithm 
to design compression support structures for slabs, allowing the exploration of 
interesting hybrid structures combining e.g. branching and surface structures. It 
provides insights in the global equilibrium of the supported-slab system, not only 
of the support structure, but also of the in-plane forces of the slab. Future work 
will focus on the enhancement of user control, especially the initial level of pre-
stress of the springs.  A possibility for further generalization is the acceptance of 
non-vertical support forces as input, thereby enabling the “stacking” of such non-
standard compression supported slab systems to multi story buildings.    
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