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a b s t r a c t

The patterns of many structural systems must fulfil a property of two-colourability to partition their
elements into two groups. Such examples include top versus bottom layers of continuous beams in
elastic gridshells, corrugated versus non-corrugated directions in corrugated shells or warp versus weft
threads in woven structures. Complying with such constraints does not depend on the geometry but on
the topology of the structure, and, more specifically, on its singularities. This paper presents a search
strategy to obtain patterns that fulfil this topological requirement, which represent only a fraction of
the general design space. Based on an algebra for the exploration of the topology of quad meshes,
including a grammar and a distance, a topology-finding algorithm is proposed to find the closest
two-colour quad-mesh patterns from an input quad-mesh pattern. This approach is expressed as the
projection to the two-colourable subspace of the design space. The distance underlying the definition
of the projection measures the similarity between designs as the minimum number of topological
grammar rules to apply to modify one design into another. A design application illustrates how two-
colour topology finding can complement workflows for the exploration of structural patterns with
singularities informed by the system’s topological requirements.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Context

Many structural systems and patterns rely on a bi-partition
f their elements into two groups where elements of the same
roups are not connected. This partition property is further called
wo-colouring. Two-colouring relates to colouring the elements
using only two colours without having adjacent elements of the
same colour. Fig. 1 illustrates this property for different systems
with partitions in red and blue of nodes, panels or beams.

A necessary condition for a nexorade to have an alternation
f nodes turning right and left is the two-colouring of its nodes
Fig. 1(a)). This alternation provides uniformity and preserves
ymmetry, as opposed to a design with non-alternated nodes [1].
necessary condition for origami to be flat-foldable is the two-

olouring of its faces in a checkerboard pattern, as demonstrated
y Maekawa’s theorem [2] (Fig. 1(b)). This property guarantees
he alternation of panels facing upwards or downwards when
olded. A necessary condition for an elastic gridshell to be made of
wo independent sets of continuous beams forming the top and
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bottom layers is the two-colouring of its beams (Fig. 1(c)). This
partition avoids having continuous beams weaving between the
two layers, to ease the planar layout process and avoid inducing
additional bending pre-stresses due to the lifting process [3].

This partition also occurs at the scale of the structure of
orthotropic materials, for directions with different properties, as
in wood, composite or textile materials.

These two-colour requirements and properties are purely
topological, independent from the geometry of the pattern.

1.2. Literature review

Table 1 provides a literature review of the structural sys-
tems for which pattern elements must respect a two-colouring
property to provide a binary partition between two states.

Different types of two-colouring exist for patterns based on
quad meshes, which do not entail the same topological require-
ments. Quad meshes are meshes with quads, meaning quadrilat-
eral faces, only. Regular vertices in quad meshes have a valency
of four, meaning that they are adjacent to four other vertices, or
three if they are on the boundary. Singular vertices, or singulari-
ties, are vertices that do not fulfil these rules, as they are adjacent
to a different number of vertices. These singularities control the
fulfilment of two-colouring properties.

Map colouring inspires the term colouring, coming from graph
theory [25]. The chromatic number of a graph is the minimum
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Fig. 1. Two-colour organisation of elements in patterns based on the partition
into two groups, in red and blue, without having elements of the same group
connected to each other. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Review of structural systems based on patterns with two-colour elements.
Structural
system

Pattern
element

Binary
states

Reciprocal structures:
nexorades,
interlocking structures
[1,4–6]

Vertex Rightwards or
leftwards turn

Origami and folded shells
[2,7–10]

Face Upward or
downward facing

Elastic gridshells
[11–14]

Polyedge Top or
bottom layer

Woven structures
[15–17]

Polyedge Warp or
weft direction

Membranes Polyedge Strip width
or length

–

Corrugated shells
[18,19]

Polyedge Corrugation
direction

Developable envelopes
[20,21]

Polyedge Ruling
direction

Circular and
cyclidic meshes
[22–24]

Face X or Y
axis

Fig. 2. The three types of two-colourability for quad-mesh patterns.

umber of colours that can be used to colour all the nodes while
o pairs of adjacent nodes have the same colour. In Fig. 2(a), the
ertices of the mesh can be two-coloured as only two colours are
ecessary. Colouring is a labelling operation, where the colours
an be replaced by the relevant binary states to encode specific
ata, like ‘up’ versus ‘down’ or ‘left’ versus ‘right’. Similarly, face
olouring relates to colouring all faces while no adjacent faces
ave the same colour, as in Fig. 2(b). Only face adjacency over
he edges, not the vertices, counts. Polyedge colouring relates
o colouring all polyedges while no crossing polyedges have the
ame colour, as in Fig. 2(c). Connected extremities of polyedges
o not count as crossings.
Polyedges refer specifically to quad-mesh polyedges. Quad-

esh polyedges connect edges that are topologically opposite to
2

Fig. 3. Patterns stemming from the principal stress directions for different
loading conditions on a plate supported on its four corners. Integration of
cross fields yields two-colour patterns by definition. Each cross field direction
corresponds to one of the two groups of elements, in red or blue. But this design
method has some limitations. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

each other across the regular four-valent vertices. They stop at
singularities, at boundaries or when forming a closed loop.

Quad mesh vertex and face colouring do not correspond to
the same problem on two dual meshes, despite the dual relation
between vertices and faces. Indeed, the dual mesh of a quad mesh
is, a priori, not a quad mesh, as singular vertices become singular
faces, which are not quads.

Not any quad mesh guarantees these two-colouring properties
and therefore is suitable for application to the systems in Table 1.

Quad-mesh patterns resulting from the integration of cross
fields such as the principal curvature directions [20,21,26] and the
principal stress directions [27] fulfil the polyedge two-colouring
property by definition. Indeed, two groups of non-overlapping
elements partition the resulting polyedges. The groups corre-
spond to the two directions in the cross-field, as in Fig. 3 for
two patterns stemming from the principal stress directions for
different loading conditions on a plate supported on its four
corners. Note that the singularities in pink have even valencies,
of two, six or eight, for those off the boundary. Nevertheless,
designing two-colour patterns relying on a cross-field requires
information regarding the geometry or the statics system, for
instance, and is hard to combine with other design strategies.

Caigui et al. [28] generate two-colour checkerboard patterns
following the diagonals of quad meshes. This approach is equiv-
alent to applying the ambo Conway operator [29] on any mesh,
producing two families of faces: one from the initial vertices and
one from the initial faces. However, the resulting patterns are
not quad meshes due to singular vertices or faces in the initial
quad mesh, which translate into singular faces in the final mesh,
breaking the quad-mesh constraint, which is necessary for some
structural patterns.

1.3. Problem statement

Not all quad meshes can be two-coloured, and actually, most
quad meshes cannot, as seen farther in this paper. The three-
valent singularities in pink in Fig. 4 do not allow this alternation
between two groups of strip elements, in red and blue. Therefore,
a third group, in green, is necessary to avoid having elements of
the same group overlapping each other. This topological design
does not allow the partition of continuous beams into two layers,
as suitable for elastic gridshells to prevent having beams weaving
between the two layers, for instance.

Most generation algorithms, with the noteworthy exception of
the specific cross-field integration scheme, do not handle this re-
quirement. Designers need exploration algorithms to address the
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Fig. 4. A quad-mesh pattern with three-valent singularities, in pink, is an
example of a topology that cannot be two-coloured in red and blue. A third
group of strip elements, in green, is necessary to avoid having elements of
the same group overlapping each other. This topology is not suitable for the
design of an elastic gridshell made of continuous beams organised in two layers
without having beams weaving between the two layers. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

specific problem of two-colouring of quad meshes. Such meth-
ods can be used as a post-refinement step to the generation
of structured quad meshes with a low number of singularities
already placed as to preserve geometrical qualities and features,
completing the toolbox of mesh design [30–33].

1.4. Research objectives

For the aforementioned structural systems, design strategies
nd search algorithms are required to modify quad meshes into
wo-colour quad meshes. The input quad mesh should inform the
eneration of the output two-colour quad mesh by sharing some
egree of similarity with it, to preserve the initial design intent.
his search relates to finding the projection of a quad mesh onto
he subspace of two-colour quad meshes. This similarity must be
efined and this projection developed. The designs found should
e the best in the sense of topological similarity, which does not
irectly relate to a geometry-dependent performance. Moreover,
he most similar topology is not necessarily unique if several
esigns are found at the same distance. Such designs can then be
orted and selected based on other application-specific metrics,
elated to topology or not.

In structural design, a variety of exploration means allow the
esigner, architect or engineer, to interactively explore design
paces constrained to structurally sound or fabrication affordable
esigns. Correspondingly, to provide exploration freedom to the
esigner, the projection algorithm should be extended to provide
ot only the most similar design but a set of most similar designs
hat offer different design directions.

.5. Contributions

This paper introduces two-colour topology finding for the de-
ign of singularities in quad-mesh patterns using a projection
earch. Section 2 details the problem parameterisation of the two-
olouring of the different elements in quad meshes. The challenge
f singularity requirement is identified and an index-based and a
raph-based characterisations are presented. Section 3 presents
grammar for topological exploration of quad-mesh singularities

nducing the definition of a topological distance based on this

rammar. Section 4 develops the projection algorithm to find the

3

Fig. 5. Quad mesh with two-colour polyedges but without two-colour vertices
nor faces due to the odd number of elements along the closed polyedges.

Fig. 6. Quad mesh with two-colour vertices but without two-colour faces nor
polyedges due to the odd number of elements around the singularity.

Fig. 7. Quad mesh without two-colour vertices, faces nor polyedges due to the
odd number of elements along the closed polyedges and around the singularities.

most similar two-colour quad meshes from a quad mesh, accord-
ing to the grammar-based distance. The projection is extended
to provide two-colour quad meshes that are less similar but that
offer other design directions. Section 5 tests this algorithm on
validation examples providing insightful numerical values and
applies it on a design case for two-colour topology finding of
patterns for an elastic gridshell.

This research is implemented in compas_singular [34] as a
Python package of COMPAS [35], an open-source Python-based
computational framework for collaboration and research in ar-
chitecture, engineering and digital fabrication.

2. Two-colour problem parameterisation

For the search of two-colour quad meshes, identification and
characterisation of the requirements of the three different types
of two-colouring are necessary.

A quad mesh can respect all, some or none of the three types
of element two-colouring: vertices, faces and polyedges.

The quad mesh in Fig. 5 has two-colour polyedges. Neverthe-
less, its vertices and faces cannot be two-coloured. Indeed, the
closed polyedges have an odd subdivision, which does not allow
this binary alternation of the vertices and faces along it.

The quad mesh in Fig. 6 has two-colour vertices. Nevertheless,
its faces and polyedges cannot be two-coloured. Indeed, the sin-
gularity with an odd valency, equal to five, does not allow this
binary alternation of the five faces and polyedges around it.
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Fig. 8. The strip data in a quad mesh as lists of opposite edges across the quad
faces.

Table 2
Dependencies between two-colouring types and topological aspects in quad
meshes.
Two-colourability type Vertices Faces Polyedges

Singularity requirement No Yes Yes
Density requirement Yes Yes No

The quad mesh in Fig. 7 mixes odd-subdivided polyedges
nd odd-valency singularities. Therefore, its vertices, faces and
olyedges cannot be two-coloured.
The different types of two-colouring depend on different topo-

ogical aspects of a quad mesh: its singularities and its density.
able 2 summarises these dependencies.
The two requirements for two-colouring are treated separately

sing a coarse quad mesh and by considering its topological face
trips. On the one hand, the density requirement depends on the
ensity of the strips. On the other hand, the singularity require-
ent depends on the combination of the strips. The following
ection details the strip structure in quad meshes.

.1. Strip structure

The strips of quad faces provide a suitable structure in quad
eshes to perform exploration without breaking the quad con-
traint. Indeed, quad meshes contain a structure of strips of quad
aces, which constitute a topological description of quad meshes
t a larger scale than quad faces. Quad mesh strips depend on the
opology of a quad mesh, not its geometry. Strips are constructed
ased on the relationship between pairs of opposite edges across
uad faces. The strip data is collected as a list of edges facing
ach other across the adjacent quad faces, as shown in blue in
ig. 8 for a nine-strip coarse quad mesh in black and its boundary
ighlighted in red. A strip is open when its extremity edges are
n the boundary, as strips A to H, or closed if it forms a loop, as
trip I.
These strips also correspond to the independent parameters

or densification of a quad mesh [33]. Strips also apply in different
4

Fig. 10. The vertex and face elements along a closed strip are two-coloured if
subdivided by an even number of elements.

ways for digital [36] or physical [37] modelling approaches, also
referred to as loops, rings or chords.

Strips can also be used to describe and parameterise the two
requirements for quad-mesh two-colouring.

2.2. Density requirement

Vertex and face two-colouring depend on density, on the
contrary to polyedge two-colouring.

For an open strip as in Fig. 9, any density subdivision can
be chosen for the open strip while having vertex and face two-
colouring. Therefore, if the quad mesh only has open strips, vertex
and face two-colouring applies.

However, a requirement applies regarding closed strips. In
Fig. 10, the closed strip is subdivided by six elements so its
vertices and faces are two-coloured. However, in Fig. 11, the
closed strip is subdivided by five elements and does not fulfil
the constraint. Therefore, the density of the crossing strips is
corrected to an even number to provide two-colour vertices and
faces.

The even number of subdivisions is necessary and sufficient
for each closed strip of the quad mesh. This requirement sets a
constraint on the sum of the density parameters dj of the strips
j crossing the closed strip i to be even. A strip counts each time
it crosses the closed strip, as there can be multiple crossings kij
between strips i and j. This constraint formalises as:

∀i ∈ Sc,
∑
j∈S⊥

i

kijdj ∝ 2, (1)

where Sc is the set of closed strips and S⊥

i the set of strips crossing
the strip i.

Characterisation and fulfilment of the density requirement are
more direct than for the singularity requirement, as shown in the
following section. Therefore and according to Table 2, fulfilling
face two-colouring, which depends both on the densities and
singularities, and polyedge two-colouring, which depends only on
the singularities, are more complex and become the focus of the
next investigations.

2.3. Singularity requirement

Face and polyedge two-colouring depend on the singularities,
on the contrary to vertex two-colouring. Indeed, the number of
faces and polyedges looping around a singularity in a quad mesh

is equal to its valency n and is not necessarily even. On the
Fig. 9. The vertex and face elements along an open strip are always two-coloured.
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Fig. 11. The vertex and face elements along a closed strip are not two-coloured if subdivided by an odd number of elements. This number of elements can be tuned
nto an even number by modifying the density of the crossing strips.
Fig. 12. Non-two-colourable coarse quad meshes because of odd numbers of
strips.

Fig. 13. The even numbers of strips around the non-boundary vertex in pink
nd along the boundary guarantee the fulfilment of the singularity requirement
or two-colouring. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

ontrary, the number of vertices is equal to twice its valency 2n
nd is therefore even. The number of strips is equivalent to the
umber of faces and polyedges.
In Fig. 12, three colours are necessary to colour the three strips

round the inner vertex in Fig. 12(a) and along the boundaries in
ig. 12(b) without crossings of strips of the same colour. There-
ore, these topologies do not fulfil the singularity requirement for
ace and polyedge two-colouring, as two-colour alternation is not
ossible.
However, the topology in Fig. 13 fulfils face and polyedge

wo-colouring thanks to the even number of strips: six strips
round the non-boundary vertex in pink and six strips along the
oundary.
A quad mesh fulfilling the singularity requirement for two-

olouring is equivalent to fulfilling the following condition: the
umber of strips around each non-boundary vertex and along
ach boundary in the coarse quad mesh are even. The require-
ent on the boundaries depends on all the singularities along
5

the boundary. The evenness requirement is equivalent to strip
two-colouring: strips should be coloured using only two colours
without having crossings between strips of the same colour.

For further dealing with the singularity requirement, a coarse
mesh is used in parallel, which reduces the density while preserv-
ing the singularity structure, for a more efficient computation.
Fig. 14 illustrates how such a coarse mesh is obtained from an
input dense mesh: the polyedges that form the boundaries and
the ones that stem from the singularities are extracted to obtain
the connectivity of the coarse mesh. The relation between the
parent elements in the coarse mesh with the child elements in
the dense mesh is stored to find the corresponding modifications
to apply. As such, the exploration of the set of singularities is
conceptually and computationally independent of density thanks
to the coarse mesh.

Two complementary approaches characterise the singularity
requirement for two-colouring, with different pros and cons for
the search of two-colour quad-mesh patterns.

2.3.1. Index-based characterisation
The two conditions on the even number of strips around the

inner vertices and along the boundaries can be translated from
the number of strips to the indices of the vertices. The index of q
vertex describes its irregularity in the mesh. A regular vertex has
an index of 0 and a singular vertex a non-null index, positive or
negative. The index iv of a vertex v in a quad mesh is expressed
as:

iv =
n0 − nv

4
, (2)

with nv the actual valency of vertex v and n0 the regular
valency, equal to 4, or 3 if the vertex is on the boundary. Using the
index instead of the valency allows a more uniform expression of
the characterisation of the singularity requirement.

An even number of strips around each vertex v in the set of
non-boundary vertices V \ ∂V translates into their index iv being
proportional to 1/2:

∀v ∈ V \ ∂V , iv ∝ 1/2, (3)

and an even number of strips along each boundary ∂Vk translates
into the sums of vertex indices iv along each boundary being
proportional to 1/2 as well:

∀∂Vk ∈ ∂V ,
∑
v∈∂Vk

iv ∝ 1/2. (4)

This vertex-based characterisation allows directly assessing if
a quad mesh fulfils the singularity requirement for two-colouring.
A metric to minimise is derived to provide a measure on the
degree of fulfilment of this requirement by integrating the two
conditions in Eqs. (3) and (4):∑

(|iv| mod 1/2) +

∑
(|

∑
iv| mod 1/2). (5)
v∈V\∂V ∂Vk∈∂V v∈∂Vk
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Fig. 14. From an input quad mesh, the connectivity between the singularities in pink is extracted to obtain a lighter coarse mesh in black and its relation with the
underlying dense mesh in grey for more efficient computation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
,

This characterisation does not provide direct information on
ow to fulfil the singularity requirement for two-colouring, even
hough this metric can serve for stochastic search.

Another characterisation, more suitable for deterministic search
s expressed on a graph encoding the strip data, presented in the
ollowing section.

.3.2. Graph-based characterisation
The singularity requirement can be expressed via state-of-the-

rt graph colouring, on a graph encoding the connectivity of the
uad-mesh strips.

trip graph. A graph is introduced to extract and compress the
ecessary connectivity data of the quad-mesh strips. This strip
onnectivity consists of the crossings between the strips over the
aces, as having a set of two-colour strips without strips of the
ame colour overlapping is equivalent to fulfilling the singularity
equirement.

Each strip of the mesh converts into a node in the graph
nd each face of the mesh converts into an edge of the graph,
onnecting the nodes of the two corresponding strips that cross
ver the face. The strip graph is constructed as illustrated in
ig. 15:

1. collect the strips, in dashed lines, in the quad mesh
(Fig. 15(a));

2. for each mesh strip S, a graph node N is added at the
centroid of the mesh strip: Smesh = Ngraph (Fig. 15(b));

3. for each mesh face F , a graph edge E is added connecting
the two crossing strips, potentially the same strip in the
case of self-crossings: Fmesh = Egraph (Fig. 15(c)).

The quad mesh and the strip graph, as shown in Fig. 15(d), fea-
ture a duality, though different from the type of duality between
two meshes.

The graph encodes some but not all of the topological data.
However, this simplified graph encodes all the necessary data to
assess and explore two-colouring of quad-mesh strips.

For efficiency, the graph is computed on the coarse singularity
mesh of the initial mesh, meaning the mesh that has a minimal
density while capturing the connectivity between the singulari-
ties. Fig. 16 shows the data management process of the presented
algorithm:

1. from the dense input quad mesh M , the coarse singularity
quad mesh MO is generated, which also stores the parent–
child relations between the strips of the two meshes;

2. from the coarse mesh MO and its strip structure, the strip
graph G0 is computed;

3. the two-colouring algorithm, based on element deletion, is
applied on the strip graph G0 to obtain a two-colour strip
graph G0 (detailed later);
2

6

4. the strips in the coarse mesh MO that correspond to the
nodes deleted from graph G0 to graph G0

2 are deleted to
obtain a two-colour coarse quad mesh MO; and

5. the multiple strips in the dense input mesh M that corre-
spond to the strips deleted to obtain the two-colour coarse
mesh MO

2 are deleted, knowing the parent–child relations,
to obtain the two-colour mesh M2. Finally, the elements of
M2 are coloured.

As such, the densities of the strips of the input and output
dense meshes are the same but the evaluation of the topolog-
ical attributes via the coarse meshes and the computation of
the two-colour solutions via the strip graphs is done efficiently,
independently of density.

Graph colouring. The singularity requirement can be expressed as
colouring all the strips with only two colours without crossings
between strips of the same colour. This problem is equivalent
to node colouring of the strip graph. Indeed, each graph node
encodes a strip, and each graph edge encodes a strip crossing over
a face.

Node colouring is a classic problem of graph theory that aims
at finding the chromatic number. The chromatic number of a
graph is the minimum number of colours that can be used to
colour all the nodes while no pairs of adjacent nodes have the
same colour. The existing algorithms offer different benefits and
drawbacks in terms of speed and robustness to solve this NP-
hard problem [25,38]. However, determining the chromatic num-
ber is not necessary here. Assessing whether the graph is two-
colourable or not is sufficient.

To do so, the two-colouring process starts by colouring one
node. Then, the iterative process colours the nodes that are adja-
cent to the coloured nodes but not yet coloured. If an uncoloured
node cannot be coloured because already adjacent to nodes of
both colours, the process returns a False statement. If eventu-
ally all nodes are assigned a colour, the process returns a True
statement. In Fig. 17(a), two-colouring is not possible because one
node is adjacent to both colours, highlighted with dashed edges. A
third colour is necessary. In Fig. 17(b), two-colouring is possible,
after deleting one of the nodes of the previous graph.

The complexity of the algorithm equals the number of colour
checks between adjacent nodes, i.e. the number of graph nodes
multiplied by their valency. Let N be the number of nodes in
the graph (i.e. the number of strips in the mesh) and E be the
number of edges in the graph (i.e. the number of faces in the
mesh). Let us consider a line graph, which presents a minimum
connectivity for a two-colour graph. A line graph with N nodes
has E = N − 1 edges and needs 2E = 2(N − 1) checks
between adjacent nodes. Therefore, the line graph has a com-
plexity O(N) and O(E). Let us consider a complete bipartite graph,
which presents a maximum connectivity for a two-colour graph.
A complete bipartite graph with N nodes has E = (N/2)2 edges

2
and needs 2E = N /2 checks between adjacent nodes. Therefore,
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Fig. 15. Construction of the strip graph of a quad mesh, encapsulating the strip connectivity of the crossings over the faces. Each mesh strip, in dashed lines, becomes
a graph node and each mesh face becomes a graph edge connecting the nodes of the crossing strips.
Fig. 16. An input quad mesh M is modified into a two-colour mesh M2 via the coarse mesh M0 that provides the connectivity between the singularities and the
trip graph G0 that is directly modified to become a two-colour graph G0

2 . The deleted nodes between the graphs give the corresponding strips to delete in the
wo-colour coarse mesh MO

2 and the parent–child relations from the coarse mesh MO give the corresponding strips to delete in M to finally obtain M2 .
he complete bipartite graph has a complexity O(N2) and O(E).
his worst-case scenario shows that the algorithm has a quadratic
orst-case complexity regarding the graph nodes O(N2) and a

inear one regarding the graph edges O(E). This depth-/breadth-
irst approach to check two-colourability in a linear or quadratic
ime is opposed to the various algorithms for colouring, which are
P-complete to check a k-colourability and NP-hard to find the
inimum k-colourability, i.e. the chromatic number [25].

xamples. The following examples apply graph-based character-
sation by building the strip graph and trying to colour it with
wo colours. The equivalence with index-based characterisation
s provided.

In Fig. 18, the coarse quad mesh has two-colour strips, ev-
denced by its two-colour strip graph. Therefore the densified
uad mesh fulfils the singularity requirement and has two-colour
olyedges. This graph-based characterisation is in line with the
7

Fig. 17. Attempts at two-colouring the nodes of a graph.

index-based characterisation. Indeed, the regular four-valent in-
ner vertex has an index of 0, which is proportional to 1/2, and
the sum of the indices of the four regular three-valent and four
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Fig. 18. Quad mesh with two-colour polyedges characterised by the two-colour
trip graph of its coarse quad mesh.

Fig. 19. Quad mesh without two-colour polyedges evidenced by the
three-coloured strip graph of its coarse quad mesh.

irregular two-valent vertices along the boundary equals 1, which
is proportional to 1/2. Therefore the singularity requirement for
two-colouring is fulfilled.

In Fig. 19 on the contrary, the coarse quad mesh does not
ulfil this requirement, as shown by its three-coloured strip graph.
or representation, full colouring is completed using the greedy
elsh–Powell algorithm [39]. This graph-based characterisation

s in line with the index-based characterisation. Indeed, the ir-
egular five-valent inner vertices have an index of −1/4, which is
ot proportional to 1/2. Therefore the singularity requirement for
wo-colouring is not fulfilled and the polyedges in the densified
esh cannot be two-coloured.
This graph-based characterisation of the singularity require-

ent for two-colouring of quad meshes using its strip structure
rovides a means for assessment. Combined with a suitable gram-
ar for the topological exploration of quad-mesh strips, this
pproach can develop into an interactive search algorithm.

. Quad-mesh topological exploration

Based on the strip structure, suitable for two-colouring char-
cterisation, a grammar that modifies the quad-mesh strips, and
onsequently the singularities, is detailed. Then, a distance based
n this strip grammar is defined to evaluate the topological
imilarity between two quad meshes, before developing the two-
olour projection in the next section.

.1. Topological grammar

A quad-mesh grammar with two low-level rules for addition
nd deletion of strips is detailed [33]. This grammar is purely
opological, independent from geometry. Fig. 20 illustrates the
wo reciprocal rules for different configurations of strips with the
nsertion of a strip along a polyedge for the addition rule and the
ollapse of a strip into a polyedge for the deletion rule, with the
8

Fig. 20. Quad-mesh grammar of low-level rules for addition and deletion of
strips in blue with different configurations.

Fig. 21. Steps for the deletion of a strip, collapsing into a polyedge.

strip and polyedge elements highlighted in blue. This grammar
allows non-linear exploration as any rule can be undone by its
reciprocal rule.

The addition and deletion of strips have corresponding oper-
ations on the strip graph. Deleting a mesh strip with its faces
induces deletion of the graph node with its edges. Adding a mesh
strip along a polyedge induces addition of a graph node connected
to the graph nodes of the strips crossing the polyedge.

To make a graph two-coloured, nodes must be removed. Only
adding nodes cannot solve this problem. Therefore, the search
method is based on the exploration of the combination of strip
deletions. Only the strip deletion rule is detailed.

3.1.1. Strip deletion
To delete a strip by collapsing it into a polyedge, the following

operations are sequentially applied on the strip, as illustrated in
Fig. 21:

1. get the edges of the strip to delete;
2. group the vertices per connecting edges;
3. delete the faces of the strip;
4. merge the grouped vertices into a new vertex.

Visually, the strip edges are collapsed to zero-length edges,
resulting in the collapse of the strip faces.

3.1.2. Boundary collapse
Deleting a strip can cause the collapse of a boundary if less

than three edges represent the boundary after deletion of the
strip edges. Strip refinement prevents this boundary collapse,
without changing the singularities, as shown in Fig. 22. To avoid
the collapse of the inner boundary due to the deletion of the strip
in blue, the remaining strips that end at this boundary are refined.
Before deleting a strip, a verification predicts boundary collapse
if:

|Estrip ∩ Eboundary| < 3, (6)

where Estrip is the set of edges of the strip and Eboundary is the set
of edges of the boundary.



R. Oval, R. Mesnil, T. Van Mele et al. Computer-Aided Design 137 (2021) 103030

t

m
d

3

o
m
o

r
t
s
d
t
i
e
o

n
t
r

Fig. 22. When deleting some strips, in blue, refining other strips avoids boundaries to collapse to less than three edges and close a boundary. (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)
Using this grammar to explore the design space of quad
eshes, a topological similarity can be expressed to define a
istance underlying the projection algorithm.

.2. Grammar-based topological distance

A distance – or metric – measures the similarity between two
bjects of the same design space. Here, the introduced distance
easures the topological difference between quad meshes based
n the previous grammar rules.
Metrics in computer science and information theory are also

uled-based, like the Hamming distance [40], which measures
he similarity between two strings as the necessary number of
ubstitutions to obtain one from the other, or the Levenshtein
istance [41], which resorts to substitutions, insertions and dele-
ions. A key requirement for any distance is to respect the triangle
nequality, which states that the distance between two objects is
qual or shorter than the sum of the distances between these two
bjects and any third object.
The quad-mesh topological distance is defined as the minimal

umber of strips to add and delete to go from one quad mesh
o another. The minimality condition is necessary to exclude
eciprocal addition and deletion of the same strip.

The distance d applies to two elements of the space E of all
quad meshes, with the same shape topology, meaning the same
number of handles and boundaries, and yields a positive integer
in N+:

d : E → N+. (7)

The three distance properties are verified:

• the distance is symmetric. The same minimal number of
rules apply from a topology A to a topology B and from B
to A, as for each addition or deletion strip rule there is a
reciprocal one:

∀(A, B) ∈ E2, d(A, B) = d(B, A); (8)

• the distance from a topology to itself is null because no rules
need to be applied and if no rules need to be applied then
two topologies are the same:

∀(A, B) ∈ E2, d(A, B) = 0 ⇐⇒ A = B; (9)

• the triangle inequality is satisfied: the same or a lower num-
ber of rules have to be applied to go directly from a topol-
ogy A to a topology C than going through an intermediary
topology B:

∀(A, B, C) ∈ E3, d(A, C) ≤ d(A, B) + d(B, C). (10)

Equality occurs if no rules between A and B and between B
and C are reciprocal and can compensate each other.

Successive application of strip rules generally increases by
one the distance and therefore decreases by one the similarity
with the initial design. Only the application of a reciprocal rule

cancelling a previous rule reduces by one the distance.

9

The number of deletion rules is not necessarily the number of
deleted strips. Deleting some strips can cause collateral deletion
of other strips whose faces are all included in the deleted strips.
Therefore, the application of a deletion rule counts as the appli-
cation of multiple deletion rules, equal to one plus the number of
collateral deletions.

Computing the distance between any two quad meshes is not
necessary for the projection algorithm. Only keeping count of
the number of deleted strips is sufficient and equivalent to the
topological distance, to find the most similar quad meshes.

4. Projection search algorithm

To perform two-colour topology finding, a search algorithm is
developed using the strip grammar rules. Starting with a quad
mesh that cannot be two-coloured, the most similar two-colour
quad meshes are found, according to the topological distance. The
output mesh is not necessarily unique when different two-colour
topologies are found at the same distance and the best design
can be selected based on various metrics specific to the design
application. This search for the closest two-colour quad mesh
is a projection onto the two-colour design subspace. Moreover,
the projection is extended to not only yield the closest design
but the closest ones in several directions that provide different
independent options to the designer. The presented algorithm
does not take addition rules into account as it uses only deletion
rules, simplifying the combinatorial search while still providing
the closest design. The resulting pool of solutions at greater
distances, i.e. less similar, is therefore reduced.

4.1. Search approach

The application of strip rules drives this search for two-colour
quad meshes, informed by the colouring of the strip graph.

4.1.1. Third-colour deletion
The design in Fig. 18 fulfils the two-colour requirement. How-

ever, the design in Fig. 19 does not. The graph cannot be two-
coloured, but completing the colouring process with a general
colouring algorithm like the Welsh–Powell algorithm [39] in-
forms on a solution to make this design two-coloured.

The graph has one node of the third colour green. Deleting the
corresponding third-colour strip yields the design in Fig. 23 that
can be two-coloured, evidenced by the strip graph with one node
less due to the strip deletion. Deleting the strip moved the five-
valent non-boundary singularities to the boundary, along which
the sum of the vertex indices is proportional to 1/2, in line with
the vertex-base characterisation.

However, multiple combinations exist to colour a graph with
three colours or more. Fig. 24 hints at this richness that goes
beyond the unique option yielded by a colouring algorithm. This
selection of nine coloured graphs suggests different sets of third-
colour nodes. They each correspond to a different set of strips to

delete to obtain a two-colour quad mesh.
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Fig. 23. Quad mesh with two-colour polyedges after deletion of the third-colour
strips, evidenced by the new two-colour strip graph of its coarse quad mesh.

Fig. 24. Some of the combinatorial richness of third-colour nodes, in green, to
elete to obtain a two-colour graph. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this
rticle.)

This combinatorial richness opens up an opportunity to yield
ultiple quad meshes of the two-colour subspace. The search
lgorithm proposes a strategy to sort out the most similar quad
eshes that provide different design directions. This approach

elates to a projection to the two-colour subspace, based on the
revious topological distance.

.1.2. Unidirectional projection
The search algorithm only applies deletion rules. The re-

iprocal addition rule is excluded, which does not allow a bi-
irectional search. The search is therefore oriented by the succes-
ive application of deletion rules, defining the search direction.
Fig. 25 shows the directed graph for the search through the

3
= 8 combinations for the deletions of three strips.
The empty combination is upstream to all the combinations

nd the complete combination (1,2,3) is downstream to all the
ombinations. Considering a specific combination like (1), one
art of the graph is upstream, namely, the combination (-) and
ne part of the graph is downstream, namely the combinations
1,2), (1,3) and (1,2,3). Any other combination lies in a different
irection of the graph compared to combination (1). The search
lgorithm limited to deletion rules cannot obtain the mesh cor-
esponding to combination (2) from the mesh corresponding to
ombination (1). Nevertheless, the search can obtain the mesh
orresponding to combination (1,2) from the mesh corresponding
o combination (1) by deleting strip 2. Indeed, combination (1,2)
s part of the downstream direction from combination (1).

Finding the closest or most similar two-colour design is a
rojection to the design subspace of two-colour designs. This

rojection P applies to one element of the space E, of all quad

10
Fig. 25. This graph represents the search organisation through the combina-
tions of three deletion rules 1, 2 and 3. The search algorithm applies only
deletion rules, defining an orientation from the upstream combination (-) to
the downstream combination (1,2,3).

meshes, with the same shape topology, meaning the same num-
ber of handles and boundaries, and yields another one, or several
ones if there is equidistance to several two-colourable designs:

P :E → E,

M ↦→ M2
(11)

where M is a quad mesh and M2 the most similar two-colour
quad mesh, obtained from the projection on the subspace of
two-colour quad meshes.

If a quad mesh can already be two-coloured, applying two-
colour projection yields the same quad mesh. Therefore, the
idempotence definition of a projection is respected:

P2
= P . (12)

This property justifies the use of the term projection and
provides a visual means of understanding this algorithm: a ge-
ometrical equivalent is to consider the space of quad meshes
as a N-D space and the space of two-colour quad meshes as a
projected subspace.

4.1.3. Multi-direction projection
To find the closest designs first, the number of strip deletions

applies in increasing order. All combinations of strip deletions are
tested starting with one strip, then two strips, until the maximum
number of strips.

A seven-strip quad mesh that is not two-coloured serves as ex-
ample in Figs. 26 to 28. The figures show completely
coloured strip graphs for better understanding, though not
needed for computing.

In Fig. 26, some strip deletions yield two-colour quad meshes,
as deleting strips 1 and 2, but some do not, as deleting strip 3.
Here, the resulting two-colour quad meshes are at a distance of
one from the input quad mesh.

The application of more deletion rules on a two-colour quad
mesh yields another two-colour quad mesh. In Fig. 27, deleting
strips 1 yields two-colour quad mesh at a distance of one, there-
fore deleting strips 1 and 3 as well but at a distance of two. Such a
combination of rules is redundant because it yields another two-
colour design in the same direction but at a greater distance in
the two-colour subspace.

Nevertheless, combining multiple deletion rules allows finding
two-colour quad meshes at greater distances but in different
directions. In Fig. 28, deleting strips 3 and 6 separately does
not yield two-colour quad meshes but combining them yields
a two-colour quad mesh at a distance of two. Deleting strip 1,
for instance, provides a two-colour quad mesh at a distance of
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Fig. 26. Deleting one strip in a quad mesh that is not two-coloured may yield
wo-colour quad meshes or not.

Fig. 27. Deleting a second strip of a two-colour quad mesh is redundant because
it yields another two-colour quad mesh, but at a greater distance and in the
same direction.

Fig. 28. Deleting two strips separately may not yield two-colour quad meshes,
but can yield a two-colour quad mesh at a greater distance in a new direction.

one, but in another direction. Hence, the interest in such farther
two-colour quad meshes to provide an alternative to the designer.

Fig. 29 illustrates the principle of the algorithm for finding the
closest designs in the different design directions in the search
through the 23

= 8 combinations for the deletion of three strips
The result from strip deletions in pink are two-coloured, and the
ones in black are not. Finding a two-colour design removes all of
the downstream designs in the same direction from the search
algorithm, as highlighted by dashed circles and lines. The output
is the closest two-colour design in their respective directions,
represented by full pink circles. Deleting strips (1) yields a two-
colour design, so the search does not investigate deleting strips
(1,2), (1,3) and (1,2,3). Indeed, these combinations are part of
the same direction, even though they are two-coloured. Even
though deleting strips (2) and (3) does not yield two-colour
11
Fig. 29. Principle of the search algorithm for two-colour quad meshes. The
search yields only the closest two-colour quad meshes in independent design
directions. The two-colour quad meshes are highlighted in pink, and the
discarded quad meshes downstream are marked by dashes. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

designs, deleting strips (2,3) is investigated, as this combination is
independent of combination (1). Deleting strips (2,3) yields a two-
colour design, so the search does not investigate deleting strips
(1,2,3), although the search already discarded this combination.
The algorithm, therefore, reduces computation to the combina-
tions (1), (2), (3) and (2,3) only and returns the two-colour design
from the combinations (1) and (2,3).

This search approach, using an increasing number of rules,
guarantees that the design obtained first is the closest one.

The implementation of the search algorithm is detailed in the
next section.

4.2. Detailed algorithm

For an input quad mesh with n strips, the search algorithm
iteratively tests and discard all strip combinations:
n∑

k=0

(
n
k

)
= 2n. (13)

Starting with k = 0, the
(n
k

)
combinations of k strips among

he total n strips are enumerated and tested, k is increased by
ne and the operation is repeated.
For each combination, the rule applies to a copy of the in-

ut quad mesh and its strip graph with deletion of the mesh
trips and the graph nodes corresponding to the combination. The
earch tests the design against two criteria.

.2.1. Validity criteria
For each combination, a decision is made based on the validity

f the design against two criteria:

• on pattern topology: the new graph must be two-coloured;
and,

• on shape topology: the newmesh must have the same shape
topology.

attern topology. The new graph must be two-coloured. This
riterion is more decisive for low numbers of deleted strips.
ndeed, deleting strips deletes nodes in the graph, and subgraphs
f two-colour graphs are two-coloured.
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Fig. 30. Deleting some strips can yield a different shape topology, although
yielding a two-colour quad mesh.

Shape topology. The new mesh must have the same shape topol-
ogy. The mesh must be manifold, have the same number of
handles and boundaries. This criterion is more decisive for high
numbers of deleted strips. Indeed, deleting too many strips can
result in a different shape topology. In Fig. 30, deleting two strips
results in a different shape topology, splitting the boundary in
two. This combination is therefore not valid, although yielding a
two-colour design.

This example highlights an isolated graph node resulting from
collateral strip deletion. The rule deletions do not apply to this
trip, but all of its faces are part of the deleted strips. This combi-
ation of two rules creates a distance of three. The combination
ields a two-colour quad meshes too far, too early. The search
ust check the other combinations deleting fewer strips before.
herefore, the search discards such combinations.
The validity of the two criteria provides a reduction strategy

n the search over the 2n combinations.

.2.2. Search reduction
The search does not seek all two-colour designs, only the

losest ones for independent design direction. The number of
ests on downstream designs can, therefore, be reduced based
n the results against the two criteria of the upstream designs.
he downstream designs from a design are the ones at a greater
istance in the same direction. A combination of strips X is

downstream another combination of strips Y if X is a subset
f Y :

⊂ Y . (14)

If a combination of strips yields a two-colour quad mesh,
he downstream combinations are discarded during the search,
s they are farther in the same direction. If a combination of
trips yields a different shape topology, the search discards the
ownstream combinations, as applying more strip deletions will
ot restore the shape topology.
Thereby, this scheme reduces the iterative enumeration and

voids testing all combinations.

.2.3. Search termination
Termination does not occur after 2n tests but earlier. Indeed,

terative enumeration terminates before k reaches n, when the
educed search discards all of the downstream combinations.
he designer can also specify custom termination criteria, like
maximum distance as kmax or a minimum number of yielded

designs. More generally, the designer can terminate the search
when pleased with the current pool of design and does not wish
to search further.
12
get a quad mesh with n strips
enerate the strip graph of the mesh
tart an empty set for the two-colour topologies with the same
hape topology
tart an empty set for the discarding sub-combinations
nitiate k = −1
hile k < n do
k+ = 1
for each combination of k strips among the n strips do

if the combination causes collateral strip deletions then
discard combination

end
if one of the discarding sub-combinations is a subset of the
combination then

discard combination
end
copy the original mesh
delete the k strips of the copy mesh
if the shape topology is different then

add the combination to the set of discarding
sub-combinations

end
else

copy the original graph
delete the corresponding k nodes of the copy graph
if the graph is two-coloured then

add the copy mesh to the set of two-colour
topologies with the same shape topology
add the combination to the set of discarding
sub-combinations

end
end

end
end
return the successful topologies
Algorithm 1: Projection of a quad mesh to the closest two-
colourable quad meshes in independent directions.

Algorithm 1 provides the pseudo-code of the two-colouring
search.

The complexity of the search algorithm is exponential O(2n).
However, thanks to the search reduction scheme and termination
criteria, the actual number of tests is significantly below 2n.
nalytical evaluation of this number of tests is challenging but
umerical results are provided in the following section, which
pplies this algorithm on several test cases.

. Applications

The following examples validate the two-colour projection
earch algorithm and illustrate its application on a design sce-
ario as a tool for two-colour topology-finding.

.1. Validation tests

A set of examples validate this algorithm and provide some
umerical values on the influence of the reduction scheme, the
ize of the two-colour subspace and a heuristic termination rule.
The examples are shown in Figs. 31 to 34, with the found

wo-colour designs grouped by distance from the initial non-
wo-colour design. No user-based termination criterion is set.
eleting strips coarsens the mesh and can cause faces to overlap.
evertheless, the topology is correct and the overlaps removed
uring geometrical processing.
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Fig. 31. Two-colour projection applied to a seven-strip quad mesh with a
exagonal shape.

The initial design for the hexagonal shape in Fig. 31 is not
wo-coloured because of the two five-valent singularities. Two-
olour projection yields seven two-colour topologies, three are at
distance of one and four at a distance of two. Two-colouring
ecomes possible thanks to either merging the two five-valent
ingularities into a six-valent one or moving them to the bound-
ry.
The initial designs for the pentagonal shape in Fig. 32 are not

wo-coloured. They differ by one strip only, which was added
rom the design in Fig. 32(a) to the one in Fig. 32(b). The projec-
ion of the five-strip topology yields five two-colour topologies,
ll at a distance of one, while the projection of the six-strip topol-
gy yields eight two-colour topologies, all at a distance of two.
dding a strip resulted in having more but farther two-colour
opologies.

In Figs. 33 and 34, the initial designs are based on a skeleton-
ased decomposition of the shape, presented in [33].
The initial topology for the rectangular shape with one open-

ng in Fig. 33 yields nine two-colour topologies, only one at a
istance of one, and eight at a distance of two.
The initial topology for the rectangular shape with two open-

ngs in Fig. 34 yields 31 two-colour topologies.
Fig. 35 shows one of the two-colour designs from the example

n Figs. 33 and 34 after densification while fulfilling the den-
ity requirement for face two-colouring to produce checkerboard
atterns.
The detailed results for each example are in Tables 4 to 8

n the Appendix. Each table contains the number of potential
ombinations, the number of tested combinations due to the
earch reduction and the results against the two validity criteria:
he two-colour topologies with the right shape topology (O), the
on-two-colour topologies with the right shape topology (-) and
he topologies with a wrong shape topology (X). The total number
f yielded topologies is highlighted in green and the termination
riterion in red.
13
Fig. 33. Two-colour projection applied to a nine-strip quad mesh with a
rectangular shape with one opening.

Table 3
Summary results of the validation examples for two-colour projection search.
Figure 31 32(a) 32(b) 33 34

n 7 5 6 9 14
2n 128 32 64 512 16,384
% tested 10.2 15.6 37.5 11.1 6.1
% yielded 5.5 15.6 12.5 1.8 0.2
Time [s] 0.33 0.078 0.62 4.4 790

Table 3 shows the summary results per example: the number
of strips n, the total number of combinations for strip deletions
2n, the percentage of tested combinations and the percentage of
yielded topologies.

These results highlight:

• the significant decrease of tested combinations thanks to
the search reduction, especially for the topology with many
strips, with 6.1% for the 14-strip topology;

• the small part of combinations to yield the closest two-
colour topologies in the different design directions, espe-
cially for the topology with many strips, with 0.2% for the
14-strip topology;

• the fast computation time for low numbers of strips for
efficient user–machine interactivity; the drastic increase in
computation time for high numbers of strips, stressing the
Fig. 32. Two-colour projection applied to quad meshes with a pentagonal shape.
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Fig. 34. Two-colour projection applied to a 14-strip quad mesh with a rectangular shape with two openings.
Fig. 35. Chequerboard patterns obtained after fulfilment of the density and
singularity requirements for face two-colouring using the two-colour projection.

importance of the coarse mesh as a computation means
and the need for efficient implementations, with parallel
computing being a suitable means to run the multiple in-
dependent tests.

Termination occurs when there is no combination to be tested
or when there is no non-two-colour topology with the right shape
topology at a value k. These results intuit an earlier practical
termination criterion: stopping the procedure when increasing k
tops yielding two-colour topologies with the right shape topol-
gy. This criterion reduces by 34% and 27% the number of tests
or the 9-strip and the 14-strip topology, respectively.

Comparing the results for the two topologies that differ by one
trip in Fig. 32 illustrates the challenge in including strip additions
n two-colour projection. Although adding strips cannot make
topology two-coloured, as nodes and edges are added in the
14
graph, which cannot reduce its chromatic number, the projection
then yields more results but at a greater distance. The funda-
mental limitation is the infinite combinatorial richness in adding
strips. Nevertheless, a stochastic search using the index-based
characterisation could integrate the addition rules.

This search algorithm for two-colour quad meshes can apply
to two-colour topology finding of patterns for structural design.

5.2. Design application

The elastic gridshell is an example of a structural system that
benefits from a structural pattern extracted from a quad-mesh
with two-colour polyedges. These polyedges are partitioned into
two sets of continuous beams for the top and the bottom layers of
the gridshell to avoid having continuous beams weaving between
the two layers, reducing the bending pre-stress and easing the
layout process [3].

Fig. 36 shows the shape intent, similar to a trimmed torus
with a protrusion. To map this shape with a quad-mesh pat-
tern suitable for an elastic gridshell, polyedge two-colouring, and
therefore the singularity requirement, must be fulfilled.

Applying a skeleton-based decomposition [33] on this input
shape yields the coarse quad mesh in Fig. 37. However, this quad
mesh does not comply with the singularity requirement, because
of the five-valent singularities, evidenced by the three-coloured
strip graph and the index-based characterisation.

Applying the two-colour projection yields the four coarse quad
meshes with two-colour strips in Fig. 38. They all result from
one strip deletion and are therefore at a distance of one from
the initial coarse quad mesh. The topology fulfils the singularity
requirement for polyedge two-colouring thanks to merging the
initial five-valent singularities or moving them to the boundary.
The resulting quad meshes partition the continuous beams into
two groups, the top layer in red and the bottom layer in blue.
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Fig. 36. Shape intent to map a two-colour quad mesh for the structural pattern
f an elastic gridshell.

Fig. 37. A coarse quad-mesh that does not comply with the two-colouring
requirements. The five-valent singularities do not allow fulfilling the singularity
requirement, as evidenced by the three-colour strip graph.

Among the four designs, the best one can be chosen based on
topological argument, like minimising the number of singular-

ties on the boundary for aesthetics, or a geometrical one, like
inimum curvature in the polyedges to reduce the bending in

he beams. Both arguments, specific to this application, hint at
he third design in Fig. 38.

Thanks to two-colour topology finding, a set of suitable quad-
esh topologies are found, which can be further processed freely
 t

15
with the form-finding and structural-assessment means chosen
by the designer.

6. Conclusion

This paper introduced two-colour topology finding of quad-
esh patterns, tackling the two-colour topological requirement

or many structural patterns in a design exploration manner.
The proposed search algorithm provides not a unique solution

ut several design propositions, the most similar ones to the input
esign for different design directions.
The different types of two-colouring for quad meshes, along

ith the corresponding requirements and means for characterisa-
ion were identified. A topological grammar for the exploration of
he design space of quad meshes and its corresponding grammar-
ased distance were formalised. A projection search algorithm
as detailed to find the two-colour design subspace, validated on
est examples and applied to the topological design of patterns for
n elastic gridshell.
The algorithm simplifies the approach by constraining the

ombinatorial exploration to a finite design space using only
trip deletion rules, discarding the addition rules. Nevertheless,
onsidering strip addition can provide more design options, as
emonstrated in the validation example in Fig. 32. To tackle
uch unbounded exploration, a stochastic search, as opposed
o an enumerative search, using a metric like the index-based
haracterisation in Eq. (5) can be investigated.
The range of applications of two-colour quad-mesh patterns

ncludes structural as well as architectural and decorative ap-
lications. A stronger requirement for quad-mesh patterns pre-
erves the orientation between the strips of the same colour,
onstraining singularity design to 4k-valent, like eight-valent
ingularities, instead of 2k-valent singularities. A three-colouring
equirement also applies to triangulated-mesh patterns, con-
training the singularities to 3k-valent vertices, like nine-valent
ingularities, for the design of three-layered patterns for instance.
he presented approach can be extended to tackle these similar
roblems.
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Fig. 38. Two-colour coarse quad meshes resulting from two-colour topology finding and their corresponding quad-mesh patterns with two-colour polyedges
epresenting continuous beams for elastic gridshells.



R. Oval, R. Mesnil, T. Van Mele et al. Computer-Aided Design 137 (2021) 103030

e
E
n
a
t
t

Table 4
Detailed results of the two-colour
projection for the hexagonal shape
(Fig. 31).
k

(n
k

)
? O - X

1 7 7 3 4 0
2 21 6 4 2 0
3 35 0 0 0 0

Σ 63 13 7 6 0

Table 5
Detailed results of the two-colour
projection for the pentagonal shape
(Fig. 32(a)).
k

(n
k

)
? O - X

1 5 5 5 0 0

Σ 5 5 5 0 0

Table 6
Detailed results of the two-colour pro-
jection for the pentagonal shape bis
(Fig. 32(b)).
k

(n
k

)
? O - X

1 6 6 0 6 0
2 15 15 8 7 0
3 20 3 0 3 0
4 15 0 0 0 0

Σ 56 24 8 16 0

Table 7
Detailed results of the two-colour projec-
tion for the rectangular shape with one
opening (Fig. 33).
k

(n
k

)
? O - X

1 9 9 1 8 0
2 36 28 8 20 0
3 84 16 0 16 0
4 126 4 0 4 0
5 126 0 0 0 0

Σ 381 57 9 48 0

Table 8
Detailed results of the two-colour projection
for the rectangular shape with two openings
(Fig. 34).
k

(n
k

)
? O - X

1 14 14 0 14 0
2 91 91 2 83 6
3 364 282 20 236 26
4 1001 332 9 319 4
5 2002 202 0 202 0
6 3003 64 0 64 0
7 3432 10 0 10 0
8 3003 0 0 0 0

Σ 12910 995 31 928 36

Appendix

Tables 4 to 8 in the appendix contains the detailed results for
ach validation example in Section 5.1, shown in Figs. 31 to 34.
ach table contains the number of potential combinations, the
umber of tested combinations due to the search reduction
nd the results against the two validity criteria: the two-colour
opologies with the right shape topology (O), the non-two-colour
opologies with the right shape topology (-) and the topologies
16
with a wrong shape topology (X). The total number of two-colour
designs with the right shape topology is highlighted in green and
the termination criterion in red.
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