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ABSTRACT

This paper presents a methodology to assess the stability of vaulted masonry structures using Thrust
Network Analysis (TNA). It offers a new numerical strategy to compute the Geometric Safety Factor
(GSF) of a given structure by directly evaluating its minimum thickness. Moreover, it provides an
approach for tracing the vault’s stability domain based on its extreme thrust values, which indicates
the robustness of the structure. Together, these outcomes represent a proper measure of the safety level
of masonry structures. Such results are obtained from constrained nonlinear optimisation problems
(NLPs) with appropriate objective functions and constraints enforcing the limit analysis’ admissibility cri-
teria. Networks with fixed horizontal projection are considered, for which the spatial geometry is a func-
tion of the independent force densities and the height of the support vertices. A faster, interactive
procedure is proposed to improve the selection of such independent force densities. The range of appli-
cations of the present method includes arbitrary network topologies and different support conditions.
Beyond analytically described geometries, the method can deal with geometries obtained numerically
(e.g. from point clouds). The presented strategy is implemented in a Python-based package, and relevant
applications illustrate the method’s potential in assessing the stability of three-dimensional historic
vaulted structures.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The assessment of three-dimensional unreinforced masonry
(URM) structures is a complex subject in structural engineering
that demands specific analysis tools and methods to provide ade-
quate output about the safety of an existing structure. Currently,
such specialised methods and tools are not widely available [1].

The collapse of masonry structures occurs due to a lack of sta-
bility rather than insufficient material strength [2,3]. For this rea-
son, the application of Equilibrium Methods based on Limit
Analysis constitutes a valid method to assess masonry structures.

Heyman’s three material assumptions [4] provide a rigorous
framework for applying Limit Analysis to masonry structures
[2,5]. According to the safe theorem of limit analysis, a structure
is safe if an admissible internal stress state can be found. As a con-
sequence of Heyman’s assumptions, admissible stress states must
be compressive and contained within the structural envelope.

Equilibrium methods model the internal forces in the structure
and allow for identifying these admissible stress states. Among its
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advantages, limit analysis equilibrium methods can be applied
even if detailed information about material properties and stereot-
omy are unknown. Moreover, the application of the safe theorem
guarantees that the solution is conservative, i.e., that it corre-
sponds to a lower-bound estimation of the collapse state.

The search for admissible stress states has been extensively and
historically applied for arches using the thrust line method [2,5,6]
and has been extended to axisymmetric structures such as sliced
domes [7-9] and spiral stairs [ 10]. However, extending equilibrium
methods to general three-dimensional structures is challenging
because of their intrinsic high indeterminacy. In recent years, var-
ious lower-bound equilibrium formulations have been developed
to cope with the assessment of three-dimensional masonry struc-
tures. These strategies can be divided in two groups: thrust surface
and thrust network approaches.

The first group, thrust surface approaches, represents the inter-
nal forces in the masonry as a continuous membrane having the
forces computed through the use of the Airy Stress Functions
(ASF). Initially proposed in [11] and further developed in [12-
15], the method approximates the continuum surfaces in a regular
polyhedral domain. In [16], NURBS are used to describe the sur-
faces, and in [17,18], triangular and quad meshes are considered.
Using this approach, the magnitude of the membrane forces are
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taken from the curvature of the ASF, and the vertical equilibrium is
computed with differential equations. Thus, an admissible stress
state can be identified by verifying that the membrane is contained
within the geometric bounds of the masonry (intrados and extra-
dos) and that the ASF is concave (compression-only).

The present paper focuses on the second group, thrust network
approaches, in which the internal stress states are represented by a
discrete network of forces. This methodology was proposed in
[19,20] as Thrust Network Analysis (TNA). TNA has been applied
in combination with optimisation algorithms [21,22], and it is
recognised as a flexible and suitable method for a wide range of
assessment scenarios, i.e., dealing with diverse sets of supports
and discontinuities. In TNA, the stresses are considered as normal
forces along the edges, and external forces are applied to the ver-
tices of the network. By restricting the loading case to vertically
applied forces, the vertical and horizontal equilibria can be decou-
pled [19]. In this method, distinct treatments to the horizontal
equilibria are possible. In its original formulation [20], the horizon-
tal equilibrium is computed by using a reciprocal graph to repre-
sent the magnitude and equilibrium of the internal forces. In an
ensuing publication [23], this indeterminacy is tackled by defining
the forces in the independent edges that form a basis of the forces
needed to describe the space of horizontally equilibrated solutions.
The latter has influenced recent studies [24], in which a con-
strained nonlinear optimisation problem was used to find states
of minimum and maximum (horizontal) thrusts. With TNA, an
admissible stress state corresponds to a thrust network with com-
pressive normal forces contained within the envelope of the
structure.

However, even with the advances in the literature to date,
determining the level of stability or closeness to collapse of
masonry structures with lower-bound equilibrium methods is
not straightforward. Indeed, finding only one admissible stress
state is sufficient to guarantee that the structure is safe in its con-
figuration, but it does not give any additional information about
the level of stability, which is a crucial requirement for an overall
stability assessment. The level of stability can be assessed through
the Geometric Safety Factor (GSF) [25], which has been achieved
for simple shapes in previous research using different strategies:
by minimising the vertical distance to the middle surface in
[23,22,26], by linearly decreasing the structural section in
[27,20], and by successively generating geometries with reduced
thicknesses until admissible solutions can no longer be computed
[28,29]. However, the first two strategies do not consider a proper
orthogonal reduction of the structural thickness, while the third
strategy requires the definition (or creation) of multiple geome-
tries and the solution of the corresponding mechanical problems.

This paper introduces a novel strategy to directly compute the
structure’s GSF as a result of a constrained nonlinear optimisation
problem (NLP) by directly minimising the structural thickness sub-
jected to the limit analysis’ admissibility criteria. This formulation
can be applied to masonry structures of any shape and cope with
cases in which the structural geometry is defined by analytical
expressions, or when only an approximated (non-analytic) geome-
try is available, e.g., from surveying point clouds.

Nonetheless, the GSF alone is not sufficient to provide a com-
plete description of the structural robustness. Additional informa-
tion can be obtained from the ratio among the maximum and
minimum (horizontal) thrusts exerted by the structure
[30,31,28], which relates to the size of the admissible stress states.
Therefore, besides providing a direct optimisation to compute the
GSF, this paper develops a procedure to trace the structure’s stabil-
ity domain until the collapse state. This domain is defined through
the extremes of maximum and minimum (horizontal) thrusts for
decreasing structural thicknesses (i.e., until its limit thickness).
Its area represents a proper measurement of the space of admissi-
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ble stress states and together with the GSF it offers a proper assess-
ment strategy that can be applied to general geometries with
minimal input information.

The strategy presented in this paper is implemented in a
Python-based tool within the COMPAS open-source framework
[32]. The numerical optimisations are solved with Sequential Least
Squares Programming (SLSQP) techniques [33], using an analytical
description for the gradients and computing the equilibrium with
independent edges as in [23].

The organisation of the paper is as follows: Section 2 presents
the limit analysis theoretical background; Section 3 formalises
the numerical procedure to obtain thrust networks with different
spatial distributions; Section 4 introduces the different optimisa-
tion problems used to determine the structure’s GSF and to trace
the stability domain; Section 5 shows applications of the present
methodology to the assessment of distinct vaulted masonry struc-
tures, including domes (5.1), square cross vaults (5.2), and a case
study obtained from a point cloud (5.3) based on the central nave
cross vault of the Amiens Cathedral. Finally, Section 6 summarises
the results obtained and points to future work.

2. Theoretical background

The main aspects of the limit analysis applied to masonry struc-
tures are described in this section. The lower-bound limit analysis
is described in Section 2.1. Following, the concepts of limit state
and stability domain are formalised in 2.2. Then, the specific thrust
networks needed to perform the assessment are defined in 2.3.

2.1. Lower-bound limit analysis of masonry structures

Limit Analysis focuses on the collapse states of the structure
rather than computing its current stress state [34]. Heyman [4]
shows that limit analysis holds for URM structures under three
assumptions:

(i) masonry’s compressive strength is infinite,
(ii) masonry’s tensile strength is considered null, and
(iii) no sliding occurs between the elements of the structure.

These assumptions, even if crude, accurately model masonry
structures, because: (i) the levels of stress encountered are usually
low and far from the material’s compressive strength; (ii) the ten-
sile strength of the material is two orders of magnitude less than
its compressive strength, while the mortar connecting the blocks
is usually weak or decayed; and (iii) existing historic URM struc-
tures, in general, were built carefully with appropriate stereotomy
or construction details to avoid sliding failure.

Within the limit analysis theory, the static and kinematic theo-
rems can be used to provide information about the collapse of the
structure. The former, also known as the safe theorem, states that if
any admissible stress field is found for a given structure, then the
structure is safe under the applied loads, and the solution corre-
sponds to a lower-bound of the collapse state. The latter, also
known as the unsafe theorem, states that once a kinematically
admissible mechanism is found, the structure is unsafe under the
applied loads, and the solution corresponds to an upper-bound of
the collapse state [35-38].

This paper focuses on the safe theorem. The stress states are
represented by a thrust network (TN), where axial forces are con-
sidered in the edges, and the external loads are applied in the ver-
tices of the network. From these assumptions, an admissible stress
state corresponds to a compressive TN entirely contained within
the envelope of the structure [4,2]. The numerical procedure to find
such equilibrium states will be described in Section 3.
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A few known cases have been documented in the literature in
which Heyman’s assumptions don’t hold, or can be relaxed. The
reader is referred to [39,40] for a discussion on failure modes con-
sidering sliding, which can not be taken into account with the pre-
sent methodology as no specific stereotomy is considered.
Additionally, in [41-43] the appearance of tensile resistance due
to friction in the joints of masonry is discussed, which is especially
significant for specific stereotomies. In the present formulation,
tensile forces could also be taken into account by relaxing the
compression-only requirement, however, this publication holds
to the compression-only assumption (ii) across all edges of the
network.

2.2. Limit state and stability domain

Finding one admissible stress state informs if the structure in its
configuration is safe or not, but it does not provide information
about the level of stability. Assessing the level of stability implies
answering how far the structure is from the collapse state, and
how stable it is in its current configuration. The first question
can be answered through the evaluation of the GSF, while the sec-
ond demands an evaluation of the stability domain. In the next
subsections, a theoretical overview of these concepts is provided.

2.2.1. Limit state

Heyman [4] defines the GSF as the ratio among the current
structural thickness (t) and the minimum thickness (tm,) of the
tightened cross-section, which still contains an admissible stress
state. A minimal thickness structure is said to be at its limit state,
as only one admissible stress state is possible, i.e., the correspond-
ing domain of admissible stress states reduces to a singleton [13].
Therefore, the GSF represents a measure of how far the structure is
from its limit or collapse state.

Similar reasoning can be used to describe the collapse state cor-
responding to external incremental loads, described by the so-
called collapse multiplier [5]. Dealing with incremental loads is
also possible with the present methodology; however, we limit
the scope of the present paper to the case of self-weight only.

2.2.2. Stability domain

The stability domain of a given masonry structure is the set of
all admissible stress states. A reasonable measure of this domain
is represented by its extreme (minimum and maximum) thrusts.
Instances of such representation are present in the literature
[30,29]. For all but the limit state, the minimum and maximum
thrust will correspond to different stress states and have distinct
horizontal thrust values. However, at the limit state minimum
and maximum thrust coincide.

Thus, this work traces the stability domain for reduced values of
thickness, until the collapse state (i.e., when the thickness is min-
imum). Understanding how the stability domain changes as a func-
tion of the thickness gives a direct measure of the robustness of the

real thickness

minimum thickness

(a) (b)
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structure from its initial state, until the collapse state. This robust-
ness can be associated with the structure’s capacity to carry addi-
tional imposed loads or undergo external settlements.

Therefore, the stability domain of the structure in its configura-
tion together with the evaluation of the GSF represents a proper
measure of the safety level.

2.3. Specific thrust networks

To investigate the structure’s limit state and stability domain,
three specific thrust networks are defined:

e Minimum Thickness Network: the thrust network correspond-

ing to the minimum thickness. In this paper, the geometrical

description is based on the middle surface of the structure with
the thickness applied orthogonally to it. The well-known mini-
mum thickness problem of an arch is illustrated in Fig. 1a.

Minimum Thrust Network: the thrust network resulting in the

minimum horizontal thrust exerted on the supports. For a 2D

arch, this solution is the deepest possible thrust line solution
in the structure (Fig. 1b).

e Maximum Thrust Network: the thrust network associated
with the maximum horizontal thrust exerted on the supports.
For 2D arches, the maximum thrust state corresponds to the
shallowest possible thrust line solution in the structure (Fig. 1c).

The GSF can be directly obtained by solving the minimum thick-
ness problem (Section 2.2.1) while finding the limits of (minimum
and maximum) thrusts for a given envelope allows tracing the sta-
bility domain (Section 2.2.2).

A known connection with kinematics exists for these states [2],
the minimum thrust forms when an outward displacement is
imposed to the structure (passive state), and the maximum thrust
when an inwards displacement is imposed (active state).

The following sections will cover the numerical procedure
required to find such specific thrust networks as solutions to NLPs.

3. Numerical implementation

This Section presents the numerical implementation to com-
pute admissible TNs. In Section 3.1, the equilibrium equations in
networks are expressed in matrix form. In Section 3.2, TNs with
fixed horizontal projection are introduced and the equilibrium
equations are rewritten as a function of the independent force den-
sities, as in [23]. Section 3.3 presents a fast numerical method to
select independent edges. In Section 3.4, the limit analysis’ admis-
sibility constraints are formulated numerically.

3.1. General equilibrium of networks

A network composed of n vertices, in which n; are internal and
n, are support vertices, connected by m edges is considered. The

i minimum thrust i maximum thrust

(c)

Fig. 1. Illustration of the objective function for an arch discretised with 20 blocks: (a) minimum, and real thickness allowing computation of the GSF; (b) minimum thrust

with the deepest thrust line; (c) maximum thrust with the shallowest thrust line.
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topology of the network is represented by the connectivity matrix
C [m x n] [44], which is sliced in the submatrices C; [m x n;] and C,
[m x ny], corresponding to the internal and support vertices. Let
X,y,z be the vertex coordinates of the network, py, py,p, the n;-
dimensional vectors representing the forces applied on the internal
vertices, and q the force density vector whose i-th component g; is
the ratio between the edge’s force f; and length I;. By introducing
the coordinate differences matrices U = diag(Cx),V = diag(Cy),
and W = diag(Cz) [m x m] storing the Cartesian lengths of each
edge, the 3n; equilibrium equations of the network vertices can
be written as:

C'uq=p,, (1a)
C'Vq=p,. (1b)
C'Wq =p,. (1c)

The equilibrium summarised by Eqgs. (1) describes a spatial TN
(defined through its vertices position) as a function of the edge
force densities q. In Section 3.2 the particular case in which the
horizontal projection of the network is fixed is described.

3.2. Thrust networks with fixed horizontal projection

In the present work, two key assumptions are made. The first
assumption imposes that the horizontal projection of the network,
called form diagram [19] is fixed. The second assumption is that
only gravity loads (p,) are considered, which are calculated after
projecting each vertex to the middle surface of the structure and
computing its tributary area. As a result, the horizontal and vertical
equilibria can be decoupled, and 1a and 1b can be combined and
rewritten as:

cu
where E [2n; xm] is the (horizontal) equilibrium matrix, which is
known for a network with fixed horizontal projection.

Let Q = diag(q) [m x m] be the diagonal matrix of force densi-
ties, then the vertical equilibrium equation (Eq. (1¢)) can be rewrit-
ten such that the height of the internal vertices z; can be computed
as a function of force densities q and support heights z,:

z = (€1QC) ' (p, - (€1QC,)z,), (3)

where, for the convenience of computing compression-only TNs,
the convention adopted here assumes compression forces and grav-
ity loads as positive, as in [23].

Vectors Ry, Ry, and R, [ny, x 1] store the magnitude x-, y-, z-
components of the thrust exerted on the supports. Since no hori-
zontal loads are considered, they can be expressed as follows:

Ry — C[Uq, (42)
R, = C;Vq, (4b)
RZ = Cl-gwq - pz,b: (4C)
where p,, [n, x 1] represents the share of the self-weight (i.e.,

tributary area) which is lumped to the support vertices.

To keep the projection fixed, i.e., to guarantee that Eq. (2) holds,
Block et al. [23] introduced the independent force densities q;4-
They correspond to a base (k independent columns) of the null-
space of the equilibrium matrix E. Let qq., and q;,q be the force
densities associated with the dependent and independent edges,
respectively. By slicing the equilibrium matrix E into two sub-
matrices, Eqep [2n; x (M — k)] and Einq [2n; % k], corresponding to
the (m — k) dependent and k independent edges the horizontal
equilibrium can be written as follows:
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qdep - _EdepEindqinda (5)

with E;ep as the generalised inverse or Moore-Penrose pseudo-
inverse of Eqp. Eq. (5) describes the relation between g, and q;,q
through a linear map using the sliced E matrices. In this sense, for
a given 4, qqep can be directly computed solving the horizontal
equilibrium and keeping the horizontal projection of the network
unchanged. A method to find the nullspace of E, i.e., determine
the independent edges, is presented in Section 3.3.

3.3. Finding independent edges

The independent force densities q;,4 correspond to the basis of
the nullspace of the equilibrium matrix E [45,46]. Multiple differ-
ent sets of edges can be chosen to span the null space of E [47].

Previous works [23,45,24] applied a Gauss-Jordan Elimination
(GJE) to find the reduced row-echelon form (RREF) of E. However,
this method is known to be imprecise, especially for ill-conditioned
matrices, and time-consuming for large E. This work proposes an
interactive method, as in [48], based on Singular Value Decompo-
sition (SVD) which is more robust and less time-consuming.

In this interactive method, the matrix E is reconstructed column
by column. Each time a column is added, the matrix rank is
checked through SVD. After such addition, if the rank of the matrix
is not increased, then the column belongs to the nullspace of E, and
the corresponding edge can be taken as an independent.

Finding the independent edges for large networks was the bot-
tleneck in terms of time consumption in previous studies [23].
Therefore, refining this process improved the computational pipe-
line, and will be used for the formulation of the optimisation in
Section 4.

3.4. Admissible thrust networks

Following the assumptions of 2.1, admissible stress states are
defined numerically in this Section. An admissible stress state is
represented by thrust networks of purely compressive forces lying
within the structural geometry. The compression-only require-
ment is enforced constraining the force densities to be positive,
i.e., imposing a non-negative qcomponent-wise. As it is not guar-
anteed that a positive q;,4 will result in a positive q (Eq. (5)), the
compression-only requirement has to be enforced for all edges.

The geometric admissibility criterion is enforced in the vertices
of the thrust network, constrained to lie within the structural
thickness. Specifically, the elevation z; of each vertex i is con-
strained to lie between intrados (z'®) and extrados (z!®). Fig. 2 illus-
trates these constraints geometrically.

A special treatment is given to the support vertices. As for the
internal vertices, the height z; of each support vertex j must also
be constrained between intrados (z/?) and extrados (z/®). However,
in some cases, as illustrated by the dome in Fig. 2, the projection of
the supports on the intrados may not exist. Whenever such a con-
dition occurs, a positive parameter zy,, is assumed as illustrated in
Fig. 2.

Additionally, to guarantee the geometric admissibility criterion,
another constraint has to be imposed: the thrust exerted on the
supports must not cross the vault geometry. With respect to the
support j, this can be achieved by requiring that the thrust R; is
contained in the support base defined by h; (highlighted in
Fig. 2). In the numerical optimisation, this constraint is expressed
by introducing the vector b; = [by;, by;,0.0] that connects the hori-
zontal projection of support j to h;.
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thrust network

intrados

support: a4

reactions
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,_——extrados

Fig. 2. Thrust network obtained from a (fixed in plane) form diagram where support vertices and reactions (or thrusts) are highlighted in red. The admissibility criteria is
highlighted: the height of each internal i, and a support j vertex must be constrained among intrados (z* or zj®) and extrados (z/"® or z/®), and a special treatment is given to
supports that have no projection in the intrados by considering the parameter zn,. Additionally, the thrust exerted on each support R; must not cross the limit of the extrados
h;. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Formulation of nonlinear optimisation problems

Following the formulation presented in Section 3, this Sec-
tion frames the search for specific thrust networks described in
2.3 as nonlinear constrained optimisation problems (NLPs).

Section 4.1 formulates the optimisation required to find the
extreme minimum and maximum horizontal thrusts of a given
form diagram and a given masonry envelope. Section 4.2 formu-
lates the optimisation required to find the minimum thickness,
which requires that the constraints are modified to consider the
variable boundary geometry of the thrust networks. The minimum
thickness problem (4.2) is presented for analytically described
geometries in Section 4.2.1, and strategies to cope with the case
of non-analytic geometries are discussed in Section 4.2.2. Sec-
tion 4.3 gives details about the nonlinear solver used, and Sec-
tion 4.4 briefly discusses the influence of different starting points.

4.1. Min-max thrust optimisation

The first optimisation problem refers to the minimisation and
maximisation (min-max) of the horizontal thrust subjected to the
limit analysis’ admissibility criteria.

The variables of the optimisation are the independent force
densities q;,q and the height of the supports z, used to describe
the internal vertex heights z; computed per Eq. (3). The objective
function f; for this problem (6a) is the sum of the norm of the hor-
izontal reactions Ryj, and Ry; at each support j computed per Egs.
(4a) and (4b). This objective function is linear and depends exclu-
sively on the independent force densities q;,4. The positive form of
f1 minimises the horizontal components of the thrust, providing
the minimum (or passive) thrust state for the vault (Fig. 1b). Con-
versely, the negative form (—f, ) maximises the thrust on the struc-
ture, finding the maximum (or active) state (Fig. 1c). The NLP can
be expressed as follows:

minimise f, =+ /R + Ry, (6a)
subject to  qq, > 0, (6b)
2% < Zi(Qipg, 20) <28, for i=1,2,...n, (6¢)
by — ’% xzy; >0, for j=1,2,...m, (6d)
\bw-|—’§—i'j xZpj = 0, for j=1,2,...n, (6e)
0 < Ginas < Gmax> for 1=1,2,..k, (6f)
with:

e constraint (6b) modelling the unilateral behaviour, i.e., the vec-
tor of dependent force densities (qqe,) from Eq. (5) must be non-
negative;

e nonlinear constraint (6¢) imposing that the vertices of the
thrust network z; are contained within the upper and lower
bounds of the masonry z® and z® respectively;

e nonlinear constraints (6d) and (6e) requiring that the force
exerted on each support does not cross the limit of the extrados
(h;) defined by the components by; and by; (see Fig. 2). More
specifically, the support rise (z,;) times the reaction slopes
(|Rxj/Rzj|, or |Ry;j/R,;j|) must be bounded by |by;l|, or |by;| . The
absolute values are considered since Ry; and Ry; or by; and by;
may assume positive or negative values according to the posi-
tion (x;,y;) of the support in the plane;

¢ constraint (6f) bounding the independent force densities q;,4 to
be positive and limited by the parameter q,,,, > 0.

In the present formulation, gradient and jacobian matrices are
obtained analytically and are described herein.

The gradient of f; is a function of the independent force densi-
ties only, and each of the scalar component j of df,/dq;,q, repre-
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senting the sensibility of the objective function with respect to the
j-th independent force density can be obtained by applying the
chain rule as:

IRy
(1) - o) -5

\/ Rx,i + R)le 7

where the sign =+ reflects the minimisation of maximisation of the
thrust, the notation ();; represents the (i,j) matrix element, and
the terms dRy/9q;,q and dRy/9q;q [, x k] are computed by Egs.
(9a) and (9b). To simplify notation, the derivative 9q/9q;,q is
denoted 9Q [m x k] and can be computed by blocks as:

Mge
_ q _ BQ?ng _ EdepEmd (8)
Ming | Yina I '
ind

where I, represents the k-dimensional identity matrix. It follows
that the derivatives of the horizontal reaction can be written as:

ORy ORyx 0q T

= =C,U0Q, 9a
8qind aq 8q1nd Q ( )
ORy ORy 0q T

=— =CVoQ. 9b
0ing 09 0Qing VR (50)

The jacobian matrix is computed for the constraints by applying
the chain rule. The constraint on the height of the free vertices (6b)
requires the application of the chain rule to Eq. (3). As the self-
weight p, is based on the projection of the network on the middle
surface of the masonry, the weights are computed only at the
beginning of the problem and do not change with the heights of
the thrust network (9p,/0z = 0). Therefore, the vector 9z;/9q;,q
[n; x k] is computed as:

oz oz 0q
aqind 8q 8qind

and, similarly, the vector 9z;/9z, [n; x np] can also be computed
deriving Eq. (3) as follows:

o~ —(clac) 'cfag,, (1)

— —(cfQC) 'c'wog, (10)

Regarding the partial derivatives of constraints (6d) and (Ge), let
Fy; denote the left side of constraint (6d) for each support i. It is of
interest to define the derivatives of the vertical reaction with
respect to the problem variables R,/q;,q [n, x k] and R,/z,
[ny x np] as:

0z

R, Mind
0

= ClwaQ + C{QC
Oing Q »Q

0z,
(12a) %% = ¢;QC {f_b} ,(12b)
ny
and with these, it follows that dFy;/0z;, can be expressed as the col-
umn vector [n, x 1]:
T
) (13)
i

(ln )T o ij‘Rx.i| <8Rz
b /i R;, 8Zb
where the notation (); represents a slice in the i-th line of matrices,
resulting in a vector of size [1 x n,]. The term OFx;/dq;,q can be
expressed as the column vector [k x 1] in Eq. (14), where the + sign
reflects the sign of Ry;:

OFi _ Zvi ( < R, ) < IRy ) )
Zxd Ral( %) £ IR, 14
aqind Rz ‘ ! | 8qind | : ‘ 8qmd ( )

and an analogous procedure is applied to constraint (6e) to find the
derivatives with respect to the y-direction.

The formulation presented in this chapter allows for computing
minimum and maximum thrusts for TNs described by a fixed form

an.i _
oz n

R
Rz.j
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diagram projection and constrained to a geometrical envelope and
reaction bounds. This formulation is a sequence of a previously
published paper [29], improved with the analytical description of
the sensitivities. The formulation is similar to the one described
in [24] with the addition of constraints 6d and 6e and reformula-
tion to describe the geometry of the structure based on its middle
surface.

4.2. Minimum thickness optimisation

As discussed in Section 2.3, finding the minimum thickness is
relevant to compute the GSF. This section shows how the optimisa-
tion problem (6a-6f) can be modified to such an aim. In Sec-
tion 4.2.1, cases in which the bounds of the structure are known
analytically are presented. Subsequently, strategies to cope with
the case of non-analytically describable surfaces are discussed in
Section 4.2.2.

4.2.1. Analytical formulation of minimum thickness

This section is devoted to structures that can be described ana-
lytically from a shape function describing the middle surface of the
structure and a thickness applied orthogonally to this middle sur-
face. To this aim, three multi-variable functions are defined to
model a given structure: s, (X:,;), Sis (X, ¥;, t), and syg(X;, ¥;, t) repre-
senting the middle, the intrados, or lower-bound (LB), and extra-
dos, or upper-bound (UB). One example of such an analytical
surface is the dome studied in Section 5.1 and described through
Eqs. 21a,21b and 21c. Once the intrados and extrados of the geom-
etry can be described as a function of the thickness parameter ¢t of
the masonry structure, the problem can be written by using the
objective function f, as below:

=t, 15
mipimie f2 - (153
subject to  qq, > 0, (15b)
ZluB(t) g‘Zi(qindvzb) gZ}JB(t)v for i= 1727'~'n7(15c)
by(t) — % x2Zp; 2 0, for j=1,2,...n,, (15d)
Ry; .
by;(t) — R, xzp; >0, for j=1,2,...n,, (15e)
Ogqindl < Gmaxs for l:1727~~~k7 (15f)
t >0, (15g)
with:
e nonlinear constraint (15c) expressing the heights of

intrados z!®(t) and extrados zPB(t) as a function of the
structural thickness t using the shape functions sig(x;,y;, t) and
sus(xi,y;,t) computed at the horizontal coordinates (x;,y;) of
vertex i;

e nonlinear constraints (15d) and (15e) requiring that the thrust
on the support does not cross the extrados, as in 6d and 6e, with
the difference that the geometry parameters by(t) and by(t) are
here defined also as a function of the structural thickness t;

e constraint (15f) bounding the independent force densities to be
positive and limited by the maximum force density parameter
maxs and

e constraint (15g) bounding the parameter t to be positive. If the
optimum value of ¢ is higher than the vault’s original thickness
to the structure is unstable. In that case, the resulting minimum
thickness can give an idea of how far the structure is from a
stable thickness.
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Regarding the sensitivities, the additional variable t adds a col-
umn to the jacobian matrix. This column influences constraints
15¢, 15d and 15e. Therefore, the only modification is the addition
of the column vectors 9z8/ot and 6z'8/dt [n x 1] representing
the sensitivities on the upper and lower bonds with regards to a
change in the thickness parameter t. Similarly, the sensitivity of
parameters by, and by also enter the jacobian matrix with the col-
umn vectors dby /0t and dby /9t [ny, x 1]. These derivatives depend
upon the shape defined.

The gradient of the objective function is not a function of either
Qinq O Z, and its derivative with respect to the structural thickness
is of, /ot = 1.

The present methodology enables finding the minimum thick-
ness as a direct optimisation and can be applied to any shape once
a closed-form representation of the intrados and extrados is known
and can be expressed by the functions s;g(x;,y;,t) and sys(X;,y;, t)
mentioned above. However, to cope with cases where intrados
and extrados can not be analytically described, which arise when
assessing existing masonry structures, the following section dis-
cusses an approach for general surfaces, e.g. those described by a
point cloud.

4.2.2. General formulation of minimum thickness

This section introduces the numerical strategies used to
describe the relevant surfaces (intrados, extrados and middle sur-
faces) as approximated offset meshes. There are multiple ways to
define a perpendicular offset of a piecewise smooth surface
[49,50]. In the present formulation, this offset is linear and takes
its direction from the normal unit vectors n; of each surface.

This paper presents two different strategies, called A and B, to
deal with offsets, based on the available information about the
structural geometry. Strategy A (Fig. 3a) considers that the eleva-
tion z™ of the middle surface =™ on each vertex (x;,y;) of the form
diagram is known. The new intrados z}® and extrados z® bounds
are computed as a function of the half-thickness t/2 through oppo-
site offsets along the direction of the middle surface’s unit normal
vectors n". Conversely, strategy B (Fig. 3b) assumes that intrados
=™ and extrados =" surfaces are known with elevations z!* and
zP®, respectively. The new bounds are computed through an offset
in the direction of the normal vectors nt® and n!8, respectively, to
the interior of the structural domain, considering the offset dis-
tance o. For both strategies, the offset is computed linearly by pro-
jecting the normal vectors n; = [fix;, fly;, ;] perpendicularly onto
the vertical direction. The magnitude of the vertical projection
proj,(n;) is computed by Eq. (16) as a function of n.

(a)
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By considering the vertical projections in the offsets, the new
bounds corresponding to each vertex (x;,y;) in the form diagram
can be calculated directly. The position of the bounds may present
a deviation from the exact position if an analytical curved descrip-
tion was available, and this deviation is larger in vertical portions
of the structure, i.e., close to its springings. The application in Sec-
tion 5.2 on cross vaults analyses such deviations. The optimisation
problems for the two strategies are formalised below:

Strategy A: from middle surface

The optimisation problem starting from the middle surface =™,
defined by heights z™ for the i vertices of the form diagram (Fig. 3a)
is defined in Egs. (17):

L ¢ 17
minimise f, =t, (17a)
subject to  qq, > 0, (17b)
2%(t) = 27 7§proj,~((ﬁ{“), for i=1,2,...n, (17¢)

2(t) = 20 +§projk(ﬁ§“), for i=1,2,...n, (17d)

Z8(t) < zi(Qing, 20) < 2B(), for i=1,2,...n, (17e)

0< Qind) < Imax> for I= 1727---k7 (17f)

t>0. (17g)

The optimisation minimises the thickness t and constraint (17e)

bounds the heights z; taking into account the normal unit vectors
n" as illustrated in Fig. 3a. This procedure could be modified to
take into account structures with variable thickness by properly
modifying constraints (17c¢) and (17d).

The gradient of the objective function (17a) is the same as in the
previous problem, and the jacobian matrix is added with the col-
umn vectors considering the influence of the thickness t to the
bounds on the heights of the vertices. For each vertex i, this is com-
puted as:

0z'8 o
a—'t:—iproll}(nim) (18a)
oz® o

4 = proj(A") (18b)

Strategy B: from intrados and extrados

The optimisation problem starting from intrados and extrados
is formulated herein considering z’® and z'® for the i vertices of
the form diagram. The variable « representing the offset magnitude
from intrados and extrados is introduced (Fig. 3b). To minimise the
thickness, the objective function f; maximises «, and the optimisa-
tion problem can be written as:

maximise f; = o, (19a)

Gind -Zp %
subject to  qq, > 0, (19b)

zPB

a projk(ﬁ?“)

. ~LB:
a proji(fi~)
LB

%

a ﬁ}“B

(b)

Fig. 3. Two different offset strategies as from the available geometrical information: (a) strategy A considering a known middle surface £™, of heights z™, and obtaining
extrados z’® and intrados z!® by offsetting ™ up and down of half-thickness t/2 along proj, (n™) defined as function of the normal vectors i™; (b) strategy B considering
known outer surfaces £'®, and "®, defined at z'® and z'%, used to obtain the new bounds by offsetting these surfaces along proj, (it®) and proj, (%), defined as function of the

unit normal vectors n® and aP® considering the offset magnitude o.
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Z%(0) = Z1® + aproj,(m®), for i=1,2,...n, (19¢)
2% (a) = 2"® — aproj,(nt®), for i=1,2,...n, (19d)
28 (o) < zi(Qipg, 2n) < 2B(0), for i=1,2,...n, (19e)
0 < Gingy < qmax, for 1=1,2,...k, (19f)
xeR. (19g)

Once the maximum offset oy« is found, the minimum thickness is
calculated as tni, = to — 2 * max for the initial constant thickness to.
As in the previous problem, this procedure could be modified to
take into account structures with variable thickness by properly
modifying constraints (19c) and (19d).

The gradient of the objective function is not a function of either
Qing OT Z, and its derivative with respect to o is df;/0ax = 1. The
jacobian matrix is added with the column vectors considering
the influence of « to the bounds on the heights of each vertex i as:

LB

a—;{ =proj, (i) (20a)
oz® o
o = — Proji(n®) (20D)

The problems defined in this Section are computationally effi-
cient and allow for computing the minimum thickness, and conse-
quently, the GSF of non-analytically described geometries. In
Section 5.3, these surfaces will be obtained from point clouds,
which are common outputs from laser scanner surveys from
ancient masonry buildings.

4.3. Nonlinear solvers

Although the NLPs described in Sections 4.1 and 4.2 have linear
objective functions, the constraints set on the heights of the ver-
tices of the form diagram are nonlinear, calculated via Eq. (3) from
the variables q;,4 and z,, requiring the inverse of the matrix
D' = (clQC) .

This paper implements a version of the Sequential Least Squares
Programming (SLSQP) [33], available in the open-source Python
library Scipy [51]. This solver linearises the constraints at each iter-
ation, dealing efficiently with the hard constraints in the heights,
z;. This solver allows finding an optimum solution for most of the
problems in a few seconds.

The numerical problem is set up and solved within a python
environment through the COMPAS framework [32].

4.4. Starting points

Due to the nonlinear nature of the problems described, the
choice of starting point influences the convergence time and the
solvability of the examples. The starting point does not need to
always be feasible. However, it has been observed that starting
from an equilibrated distribution of compressive-only force densi-
ties is strictly necessary to solve the optimisation problems with
SLSQP. To that end, a preconditioning optimisation is adopted to
minimise the load-path, as in [52].

5. Numerical applications

A series of numerical applications, with increasing complexity,
are presented herein. First, the case of a hemispherical dome hav-
ing a known analytical description is discussed (Section 5.1), which
allows benchmarking the present methodology against different
approaches. Section 5.2 presents the example of a cross vault,
where both cases- analytic and non-analytic geometry descriptions
- are compared. The last example (Section 5.3) presents how the
strategy could be applied in a practical assessment scenario, in
which the geometry is obtained from a point cloud. Together the
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examples show the flexibility of the methodology and its scope
of application.

When reported, the time required to solve the optimisation
problems is computed from a laptop with 2.2 GHz Intel Core i7
(17-8750H) and 16 GB of RAM.

5.1. Hemispherical dome

The first numerical application looks at a hemispheric dome
described analytically by the thickness parameter t. The dome’s
geometry is defined by an initial thickness t, = 0.50,m, radius
r=500m (ie, to/r=0.10), and <centre at point
(X¢,¥Y¢,0.0) = (5.0,5.0,0.0). In this case, the functions sp,s;z and
sy representing middle, lower-bound, and upper-bound can be
described for every point i in the form diagram with planar coordi-
nates (x;,y;) as:

Sm,y1) = /12 — (6 — X2 — (s = ye)? (21a)

Sup(X6,Vis ) = /(T4 £/2) = (% = X — (3 — Vo) (21b)

s xynt) = | V=827 = (=% = =y i (6= = 0 =3 < (1= 1/2)°
—Zmin otherwise

(21¢)

The dome has weight density y = 20 kN/m?3. The self-weight is
computed considering the area of the dome’s middle surface and
its thickness, resulting in a total self-weight Wy, = 1570 kN. The
geometry of the dome obtained with thickness-over-radius
to/r = 0.10 is depicted in Fig. 4.

5.1.1. Form diagrams considered

The form diagram topology is chosen to represent the meridian
and hoop stresses which are known to appear in domes [7,25,9].
For a given topology, the discretisation level will define the geom-
etry of the form diagram. The discretisation will be parametrically
defined by the tuple (np, ny), with the first representing the num-
ber parallels (or hoops) while the second the number of meridians
(Fig. 5). To capture the influence of the mesh discretisation, a sen-
sitivity study varying the parameters (np,ny) will be carried out.
Specifically, the number of parallels np will be varied from 4 to
24, in steps of four, while the number of meridians ny from 12
to 24, also in steps of four, to total 24 different diagrams. Supports
are assigned to the vertices on the perimeter of the diagram. The

extrados

middle

intrados

centre
(5.0,5.0,0.0)

Fig. 4. Intrados, middle and extrados surfaces of the hemispheric dome having
thickness-over-radius to/r = 0.10.



R. Maia Avelino, A. lannuzzo, T. Van Mele et al.

supports

independent
edges

Fig. 5. Form diagram obtained with 20 parallels np, and 16 meridians ny and
highlight in its independent edges (blue) and supports (red). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

form diagram obtained with (np, ny) = (20, 16) is depicted in Fig. 5.
This diagram is composed of 640 edges, from which 33 are inde-
pendent (blue).

5.1.2. Analytical approach to minimum thickness

The optimisation presented in Section 4.2.1 is executed for 24
discretisation levels. The objective function minimises the thick-
ness of the structure (Eqs. (15a-15g)), starting from the initial
thickness t, = 0.50 m. Constraints are applied in the height of all
the vertices, requiring that they remain between the intrados and
extrados of the dome described by Eqs. (21b) and (21c). Specifi-
cally, zmin = 0.0 is assumed for these analyses. The starting point
for each optimisation is the minimum load-path solution, as
defined in Section 4.4. As a benchmark, the results are compared
with the minimum thickness of a masonry hemispherical dome
obtained by Heyman [25] using membrane equations and vali-
dated recently in [9]. Particularly, using the adimensional parame-
ter thickness-over-radius, the minimum thickness obtained in [25]
iS tmin /T = 0.042. The results of minimum thickness-over-radius for
the 20 discretisation levels are presented in Fig. 6.

The results obtained in this analysis show that only the number
of parallels np affects the minimum thickness value, since the
graph of Fig. 6 shows that the solutions corresponding to different
ny values collapse to the same curve. Moreover, the results

0.05
benchmark (t/r) = 0.042
__0.04+
=
o
2
8 0.034
o
>
Q
& 0.02
L}
% —— ny=12
S nw=16
0.014 —e— ny=20
—o— ny=24
---benchmark
0.00 T T T T T T
4 8 12 16 20 24

number of parallels (np)

Fig. 6. Minimum thickness sensitivity study for the 24 discretisation levels
considered. Curves are grouped according to the number of meridians ny.
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obtained are always under-conservative, since the minimum thick-
ness calculated is inferior to the theoretical minimum thickness
from [25]. This deviation is larger for coarse discretisations
(np = 4), meaning that these are not appropriate to model the
dome problem. However, the deviation decreases with denser form
diagrams, resulting in errors lower than 2% for np > 20. The com-
putational burden needed to solve the optimisation problems of
the present sensitivity study are reported in Table 1. The solving
time varies from 0.1 to 1.9 s, depending on the discretisation
(np,ny) level.

The solution of the minimum thickness problem for
(np,ny) = (20, 16) is depicted in Fig. 7. On such plots, the unloaded
edges are excluded, while the thickness of the remaining edges is
proportional to the force carried and computed as the product of
the force-density times the length of the edge, namely f; = q; * 1.
In addition, the vertices touching the intrados are denoted with
blue dots while the ones touching the extrados are labelled in
green. The minimum thickness-over-span obtained for this prob-
lem is tm,/r = 0.041, and the GSF of this structure is equal to
GSF = to/tmin = 2.44.

Regarding the internal distribution of the forces in the mini-
mum thickness solution (Fig. 7), a bi-axial compressive cap is
observed in the upper portion of the dome and a uniaxial stress
state forms towards the supports, where the hoop forces vanish.
The height of the supports is z, = +0.421 m in a position such that
the vector of the reaction forces extends to the outer perimeter of
the dome (see Fig. 7c). The forces inside the structure vary from
0.0 kN (in the edges that are not drawn) to 84.6 kN. In the perime-
ter of the top compressive cap, the thrust network touches the
extrados of the structure, and close to the base, it touches the intra-
dos. Such a stress field is compatible with Heyman'’s 'orange slice’
mechanism proposed in [25] for an outward (passive) radial dis-
placement of the supports. In the following section, we will discuss
the extremes, minimum and maximum thrusts for the initial thick-
ness of the structure t,/r = 0.10.

5.1.3. Construction of the stability domain

As discussed in Section 2.2.2 and initially presented in [29],
besides defining the minimum thickness, or GSF, the stability
domain of a masonry vault can give information about the size of
the domain of admissible stress states and robustness of the struc-
ture. The domain is obtained by computing minimum and maxi-
mum thrusts for values of thickness between the initial and the
limit thicknesses.

The process is executed for (np,ny) = (20, 16). From the mini-
mum thickness obtained, a sequential optimisation is performed
for increasing values of thickness. At each step, the loads are scaled
to reflect the new thickness, and the minimum (T{“i“) and maxi-
mum (T{"™) thrusts are computed and plotted in the graph of
Fig. 8 as a percentage of the self-weight at each step (W;). This
graph represents the stability domain of this structure, limited by
the lines of maximum (red) and minimum (blue) thrust meeting at
the limit state. We observe that the stability domain shrinks
parabolically towards the limit state, which gives an idea of the
drop of the stability for reduced values of thickness.

From the stability domain of Fig. 8, we can check that the min-
imum and maximum thrusts for the initial state, t,/r = 0.10, corre-
spond to (T/W).;, = 19.9% and (T/W),.« = 62.6%. In the limit
state, (T/W)jimie = 24.3%.

The minimum and maximum thrust states are depicted in Figs. 9
and 10, respectively. The minimum thrust state (Fig. 9) returns a
solution that is qualitatively the same as the one from the mini-
mum thickness solution (Fig. 7), which again reflects Heyman'’s "or-
ange slice’ mechanism for an outward (passive) radial
displacement of the supports. In this mechanism, cracks form

max
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Table 1
Solving times [sec] for the minimum thickness problem assuming different discretisation tuples (1np, ny).
nv

np 12 16 20 24
4 0.1 0.2 0.2 0.3
8 0.2 0.2 0.2 0.2
12 0.2 0.3 0.4 0.5
16 0.2 0.3 0.5 0.7
20 0.8 1.6 1.7 1.9
24 0.4 0.6 0.8 1.1

(a)

(

b)

()

Fig. 7. Minimum thickness solution obtained for (np, ny) = (20, 16) resulting in ty, /7 = 0.041. Solution reported in (a) planar view, (b) perspective, and (c) principal cross-

section.

along the meridians where the hoop forces are null, and a top cap is
preserved uncracked. Numerically, this state can form since the
height of the supports is encountered below the reference datum
z, = —0.322 m (see Fig. 9¢). The forces in the structure vary from
0.0 kN to 83.5 kN.

For the maximum thrust solution (Fig. 10), a compressive ring is
activated in the base of the dome, while the extreme points touch-
ing intrados and extrados are found in the same location. This sug-
gests that under inward (active) displacement of the supports, a
global mechanism for the dome is not activated, and the stability
is ensured by the compressive ring in the base. The force value
on this ring attains 107 kN. It is also noted that this ring creates
a discontinuity on the thrust, as depicted in the section
(Fig. 10c). Depending on the discretisation near the base, the force
in the ring could attain infinity or be constrained by above by the
parameter ¢,,,,. Such results are discussed in detail in [29].

5.2. Rounded cross vault

The second example refers to a rounded cross vault of variable
thickness t on a square footprint with different springing angles p.
The geometry of the rounded cross vault is obtained by intersect-
ing two cylinders that have the same radius r. The square footprint
has base length Ilp=10.0m, centre point at (x.Y.,0.0)=
(5.0,5.0,0.0), and radius r = 5.0 m. To cope with the description
as a function of B, the effective span s is introduced, computed as:

s =lycos(B), (22)

which is used to compare the minimum thickness obtained for dif-
ferent springing angles 8, with the adimensional t/s.

The three-dimensional geometry obtained for g =0°, and
to = 0.50 m is depicted in Fig. 11a, and the effective span s conse-
quence of the springing angle § is illustrated in Fig. 11b.

GSF

1.0 1.5 2.0 2.5 3.0

70 . + + .
9 —e— maximum thrust
—~ 601 —e— minimum thrust
= ® limit state
= 501
£
.q_) 40-
z
T 301
?
3 20
c
=

10 T T T - - -

0.10 0.09 0.08 0.07 0.06 0.05 0.04

thickness-over-radius (t/r)

Fig. 8. Domain of stability obtained for the form diagram having discretisation (np, nm) = (20, 16). At the limit state, the GSF is plotted equals 2.44. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.).
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()

Fig. 9. Minimum thrust solution obtained for (np,nv) = (20, 16) and t,/r = 0.10: (a) plan view (a), perspective (b), and principal cross-section.
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For such parameters, the functions sy, s and syg representing
middle, intrados, and extrados can be described for every point i
present in the diagram with planar coordinates (x;,y;) as:

2 —(x—x)® if (x,y)€Q1,Q2

Sm (Xi,Yi, £) = ~ (23a)
2 —(yi—-y) if (xy) €Q3,Q4
V627 = (- x? i (x,y;) €Q1,Q2
Sus(X;,y;, t) = 5 5
Vi +t/2)7 — -y i (x.) € Q3,04
(23b)
(r—t/2)* — (xi —x)* if (xi.y;) €Q1,Q2and (x; —x)* < (r—t/2)
S (Xi, Y, t) =

(r—t/2* = (y;—y)* if (x.y;) €Q3.Q4and (y; —y.)* < (r - t/2)°
otherwise

~Zmin

(23¢)

where the quadrants Q1, Q2, Q3 and Q4 are depicted in Fig. 11a.

The weight density assumed is y = 20 kN/m3. The self-weight is
applied considering the area of the middle surface of the cross
vault and its thickness. For t, =0.50m and p=0° the self-
weight is Wy = 1141 kN.

5.2.1. Form diagrams considered

Unlike the well-known dome example, assuming a form dia-
gram modelling the mechanical behaviour in the cross vault is
not straight-forward [53]. In fact, the stability of cross vaults has
been subject to multiple studies conducted with different mod-

(b)

Fig. 10. Maximum thrust solution obtained for (np,ny) = (20,16) and t,/r = 0.10: (a) plan view (a), perspective (b), and principal cross-section.

11

()

elling strategies, including discrete element [54], commercial finite
element software [35], and lower-bound equilibrium methods
[15]. In this section, we show how the proposed methodology rep-
resents a flexible and direct way to model the cross vault’s struc-
tural response and to estimate its level of stability. Two different
topologies are considered, as depicted in Fig. 12, named orthogonal
and fan-like diagrams. Both form diagrams are parametrised
according to the discretisation level defined by the number of sub-
divisions n varying in n = (10,12,14, 16, 18,20), resulting in six
meshes for each topology. Only the four corners of each diagram
are fixed. Fig. 12 highlights the two topologies and their indepen-
dent edges for a level of discretisation defined by n = 14. In this
case, the orthogonal diagram has 448 edges, of which 12 are inde-
pendent, while the fan-like diagram has 784 edges, of which 30 are
independent.

5.2.2. Analytical minimum thickness

A sensitivity analysis is carried out using the 12 diagrams stud-
ied, assuming p = 0° and initial thickness t, = 0.50 m. The optimi-
sation problem in Egs. (15) of Section 4.2.1 is solved for each of
these form diagrams. In this specific problem, the constraints on
the outer limit of the extrados (Eqgs. (15d) and (15e)) are disre-
garded, since cross vaults are often laterally supported by appro-
priate buttressing systems. The results of minimum thickness-
over-span for the sensitivity analysis are depicted in Fig. 13.

Fig. 13 shows that the results of minimum thickness are highly
sensitive to the topology of the form diagram. For n = 20, the min-
imum thickness-over-span obtained with the orthogonal diagram
iS tmin/s = 0.033, which represents a reduction of 30% when
compared to the minimum thickness obtained with the fan-like
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Fig. 11. (a) Three-dimensional geometry of the cross-vault with thickness t = t, = 0.50 m and g = 0°, and highlight on the quadrants Q1, Q2, Q3 and Q4 useful for the

analytical description. (b) Springing angle § defining the effective span s.

diagram tn,;, /s = 0.047. Lower sensitivity is observed regarding the
level of discretisation. Overall, for finer meshes (higher n), the min-
imum thickness-over-span increases slightly. Indeed, from the
coarse n =10 to the finer n = 20, an increase of about 10% is
observed. These results show that the assumption on the flow of
forces is crucial for the solution of the minimum thickness prob-
lem. The time consumption to solve the optimisation problems of
this sensitivity study is presented in Table 2. The solving times vary
from 0.4 to 9.8 s depending on the diagram topology and level of
discretisation. Higher solving times are observed considering the
fan-like topology, since this diagram has more independent edges.

The same optimisation is performed for different levels of
springing angle g = (0°,5°,10°,15°,20°,25°,30°,35°,40°) assum-
ing n = 14. The results are depicted in Fig. 14:

As the springing angle increases, the minimum thickness
decreases. The minimum thickness-over-span obtained with the
orthogonal form diagram is as low as tyin/s = 0.008, for g = 40°.
Similar trends are obtained for both diagrams, and the orthogonal
diagram yields consistently smaller minimum thicknesses. In con-
clusion, the orthogonal diagram is better suited to the problem of
rounded cross vaults. A further study on the minimum thickness of
parametric cross vaults, considering different radius of curvature is
presented in [55].

In the following subsection, this study is repeated considering
the general procedure proposed in Section 4.2.2, which computes

independent

edges \

supports

n =14+

orthogonal diagram fan-like diagram

Fig. 12. Orthogonal (left) and fan-like (right) topologies considered for the
diagrams with discretisation n =14 and highlight in their independent edges
(blue) and supports (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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the minimum thickness without using the vault’s analytical
description.

5.2.3. General interpolation approach

Section 4.2.2 discusses a formulation to minimise the thickness
of vaulted structures when the analytical description is unknown.
The heights of the vault’s geometry are extracted, and the general
interpolation approach is executed assuming the two strategies A
and B (Figs. 3a-b). Strategy A is based only on the information
regarding the heights of the middle surface of the structure, while
strategy B assumes that the heights of intrados and extrados are
known. The results obtained with both strategies are compared
with the results from the previous section. This comparison is pre-
sented in Figs. 15 and 16, for the orthogonal and fan-like form dia-
grams respectively.

The results show that the deviations observed with strategy A
decrease with the increase in the springing angles, while
strategy B results in good approximations of the analytical val-
ues for all ranges of B. For strategy A, higher deviations are pre-
sent for low values of B due to the imprecision of the linear
offset in the corners of the vault, where the geometry of intra-
dos and extrados is almost vertical. Looking at the orthogonal

0.05
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Q
o — -
% 0.031
)
>
@
# 0.024
=
B4
o)
2
=

0.011

—e— Orthogonal Form Diagram
Fan-like Form Diagram
0.00 T T T T T T

10 12 14 16

discretisation (n)

18 20

Fig. 13. Sensitivity analysis performed computing the minimum thickness-over-
span assuming f = 0°. Results are grouped considering the two topologies (i.e.,
orthogonal and fan-like) in all discretisation levels.
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Table 2
Solving times [sec] for the minimum thickness problem assuming different discreti-
sation levels (n) with orthogonal and fan-like diagrams.

n orthogonal fan-like
10 0.4 0.7
12 0.6 14
14 0.6 2.7
16 13 2.9
18 1.5 5.5
20 2.5 9.8
0.05
—e— Orthogonal Form Diagram
Fan-like Form Diagram
0.041
@
=
2 0.031
)
>
Q
3 0.024
i=4
X
9
E=]
0.011
0.00 T T T T T T T T
0 5 10 15 20 25 30 35 40

springing angle (B) [*]

Fig. 14. Results of analytical minimum thickness obtained for orthogonal and fan-
like diagrams considering different springing angles p, for a level of discretisation
n=14.
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Fig. 15. Results of minimum thickness problem for the orthogonal diagram as
function of the springing angle  and obtained with the analytical description using
the two offset strategies: strategy A considers the bounds as an offset of the middle
surface, and strategy B describes the reduced geometry as an offset of the initial
intrados and extrados. Results are presented for a level of discretisation n = 14.

form diagram results (Fig. 15), the error at p = 40° goes down to
+2%, and —11%, while with the fan-like form diagram results
(Fig. 16), the error goes down to +2%, and —5% for B = 40°,
for the strategies A and B respectively. In practice, for g = 40°,
the highest deviation observed shows an error lower than
t/s = 0.001. Moreover, strategy A shows consistently conserva-
tive results, presenting a higher minimum thicknesses compared
to the analytical methodology, while strategy B results in
slightly under-conservative results.

In conclusion, these results encourage the application of the
method as a suitable tool to analyse general masonry vaults that
cannot be described analytically, particularly in the cases of non-
zero springing angles, which are common in historic constructions.
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Fig. 16. Results of minimum thickness problem for the fan-like diagram as function
of the springing angle g and obtained with the analytical description using the two
offset strategies: strategy A considers the bounds as an offset of the middle surface,
and strategy B describes the reduced geometry as an offset of the initial intrados
and extrados. Results are presented for a level of discretisation n = 14.

5.2.4. Construction of the stability domain

The stability domain is computed for the two adopted form dia-
grams (orthogonal and fan-like) of the cross vault to measure the
space of admissible solutions and to show the robustness of the
vault for decreasing values of thickness. We consider three spring-
ing angles B = (0°,20°,40°) and take the discretisation equals to
n = 14 for both diagrams (Fig. 12). The results are depicted in
Figs. 17 and 18.

The stability domain allows comparing the level of stability of
the different structures. The larger the stability domain, the more
stable the structure is. In both diagrams, it is clear that by increas-
ing the springing angle j, the stability domain increases along with
the corresponding GSF. Minimum and maximum thrust-over-
weight also tend to increase with the springing angle. The stability
domain shrinks linearly towards the limit state, which gives an
idea of the drop of the stability for reduced thicknesses. The stabil-
ity domain for the orthogonal form diagram is always larger, rein-
forcing the conclusions of 5.2.2 that this diagram is better suited to
the assessment analysis of rounded cross vaults.

The limit states obtained for 8 = (0°,20°,40°) using the orthog-
onal and fan-like form diagrams are depicted in Figs. 19 and 20,
respectively. In these figures, the touch-points at extrados (green)
and intrados (blue) are highlighted. These touch-points suggest
hinge lines with mechanisms appearing in the vault. The solutions
in Figs. 19 and 20 show two hinge lines touching the extrados run-
ning parallel to the openings and crossing at the midspan of the
vault. Additionally, touch-points in the intrados are observed in
the vault’s creases close to the supports.

5.3. Application to an existing geometry

To show how the proposed methodology can be applied to
estimate the safety of cross vaults in a practical assessment sce-
nario, the approximated geometry of the central nave at Amiens
Cathedral [56,57] is considered. The idealised three-dimensional
model is presented in Fig. 21a, from which the intrados and
extrados of the vault are extracted. The geometry extracted corre-
sponds to a rectangular pointed cross vault, with dimensions
6.0 x 11.2 m. The height from the impost line to the extrados is
475 m. The thickness extracted from the initial geometry is
to = 0.44 m. The point cloud depicted in Fig. 21b is retrieved from
the idealised geometry and is used as the starting point to assess
the stability of the vault. The point cloud is composed of 441
points for extrados and 441 points for intrados. Given that points
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Fig. 17. Domain of Stability and Geometric Safety Factor obtained with orthogonal form diagram for initial thickness to, and three different springing angles g = (0°,20°,40°)

showing calculated GSF of 1.5, 2.2, and 5.6, respectively. The area for each g between maximum and minimum thrust for different thickness is highlighted and corresponds to
the domain of admissible stress state computed.
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Fig. 18. Domain of Stability and Geometric Safety Factor obtained with fan-like form diagram for initial thickness t,, and three different springing angles g = (0°,20°,40°)
showing calculated GSF of 1.1, 1.3, and 2.3, respectively. The area for each  between maximum and minimum thrust for different thickness is highlighted and corresponds to
the domain of admissible stress state computed.
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Fig. 19. Solution of minimum thickness obtained with different g assuming the orthogonal form diagram. For (a) =0°, tpin /s = 0.033; for (b) f=20°, tmin/s = 0.023; and (c) for
B=40°, tmin/s = 0.009. Figures are shown with the same effective span s.

representing the intrados and the extrados are available, strategy of minimising the thickness of the structure by maximising the
B considering the information about these two surfaces is parameter o (Eqs. (19)) that represents the offset distance applied
adopted (Section 4.2.2b) to this case study. This strategy consists to intrados and extrados.
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Fig. 20. Solution of minimum thickness obtained with different g assuming the fan-like form diagram. For (a) f=0°, tmin/s = 0.047; for (b) f=20°, tmin/s = 0.037; and (c) for

B=40°, tmin/s = 0.022. Figures are shown with same effective span s.
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Fig. 21. (a) Approximate geometry of Amiens Cathedral assumed. (b) Point cloud extracted to execute the analysis: green points representing extrados and blue representing
the intrados. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

5.3.1. Form diagrams considered

The topologies from Fig. 22 are adopted, with the diagrams
stretched to match the rectangular footprint of the vault
(I, ly) = (6.0,11.2). The diagrams assume a level of discretisation
n=14.

5.3.2. Minimum thickness and stability domain

The minimum thickness is calculated for both diagrams, and the
results obtained show o,.,x = —0.16 and amax = 0.09 for orthogonal
and fan-like diagrams, respectively. Since the result for the orthog-
onal diagram is negative, this topology is not suitable for the
assessment of this problem, because it would result in a minimum
thickness superior to the actual thickness of the vault. Using the
fan-like form diagram, the minimum thickness is calculated as
tmin = 0.44 — 2 x omax = 0.281 m, which results in a GSF equals
to 1.56.

The stability domain is also traced for this pointed cross vault.
The results of minimum and maximum thrust for different values
of thicknesses (computed from different levels of offset «) are
depicted in Fig. 23. This diagram allows extracting maximum and
minimum thrust-over-weight ratios, which in this case are equal
t0 Tmax/W = 85% and Tpin/W = 70%. In addition, as the thickness
decreases towards the limit state, the stability domain shrinks lin-
early until the thickness of 0.32 m, after which the difference
among minimum and maximum thrusts drops sharply.
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Fig. 22. Rectangular diagrams (fan-like and orthogonal) used in the analysis of the
vault at Amiens Cathedral with highlight on the supports (red) and independent
edges (blue) of each topology. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

In conclusion, unlike the application on rounded cross vaults,
the fan-like form diagram is a more suitable force flow for the
pointed cross vault application of this section, as evidenced by
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Fig. 23. Minimum thrust solution obtained for the discretisation n = 14 and initial thickness t, = 0.44 m considering the fan-like form diagram.

\

Fig. 24. Thrust network obtained for the minimum thickness of the pointed cross
vault representing the vaults of Amiens Cathedral. The minimum thickness is
obtained with the fan-like form diagram, calculated as tm, = 0.281 m, which
results in a GSF = 1.56 for the problem.

the smaller limit thickness, which indicates that the forces on the
proposed geometry flow to the supports without accumulating
on the diagonals, or creases of the vault. In Fig. 24, the thrust net-
work obtained at the minimum thickness optimisation is pre-
sented, highlighting the points where it touches intrados and
extrados. Due to the scattered input data, the solution obtained
in this numerical simulation is not perfectly symmetrical. Addi-
tionally, since the computation of such diagrams, including all
the optimisation problems for minimum and maximum thrusts,
takes less than a minute, different force flows could be confronted
in practical assessment scenarios, searching for higher GSF, and
reducing the dependency on the network topology.

6. Conclusions

This paper introduces a new methodology to quantify the sta-
bility of vaulted masonry structures using Thrust Network Analy-
sis. Networks with fixed horizontal projection are considered
with their stress states described as a function of the force densi-
ties of the independent edges. The proposed approach formulates
and solves constrained nonlinear optimisation problems (NLP)
with specific objective functions. The method yields two assess-
ment outputs: the Geometric Safety Factor (GSF) and the stability
domain. The GSF is obtained by solving a direct NLP which has
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the minimisation of the structural thickness as its objective. This
minimisation considers a proper orthogonal reduction of the thick-
ness, which can be applied to analytically and numerically
described geometries. The stability domain is obtained by setting
the NLP objective to minimise and maximise the (horizontal)
thrust for decreasing structural thicknesses, resulting in a diagram
that gives a consistent measurement of the size of the space of
admissible stress states and of the robustness of the structure.

The numerical strategy is implemented within the Python-
based COMPAS open-source framework [32], specifically within
the COMPAS Masonry project [58], where different masonry anal-
ysis tools are also available. The effectiveness of the present
methodology is demonstrated in a series of case studies consider-
ing vaulted structures of increasing complexity.

Firstly, the values of GSF for a hemispherical dome are obtained
and compared with the literature showing small deviations of
around 2%. A sensitivity study is performed to the discretisation
level of the networks, identifying the discretisation required to
observe the convergence of the values of minimum thickness.
The stability domain is also obtained for the dome showing how
the level of stability drops towards the limit state.

Secondly, the GSF of parametric rounded cross vaults with dif-
ferent springing angles is calculated. Then, the results with the
analytical description of the geometries are compared to the
results obtained considering approximated meshes. The error by
considering approximated surfaces is low (down to 2%), especially
if realistic springing angles (i.e., greater than 20°) are considered.
The stability domain is obtained for cross vaults with different
springing angles and as a function of different form diagrams. It
shows how varying the form diagrams is important to performing
a proper assessment of cross vaults.

Finally, an approximated cross vault geometry of Amiens Cathe-
dral described by point clouds is analysed. With this input, the GSF
and the stability domain are obtained, reflecting the flexibility of
the present methodology.

Regarding the numerical implementation, the NLPs formulated
consider analytic expressions for the sensitivities and are solved in
a few seconds. A preconditioning step is necessary to select the
independent edges in the form diagram, which is executed with
an improved and fast interactive algorithm.

The main drawback of the method is the dependency of the
results on the assumption of the form diagram. After its selection,
the diagram remains fixed throughout the analysis. However, as
the solutions are always a lower bound of both the collapse state
and the GSF, different form diagrams are used on the same geom-
etry to look for larger GSFs and, thus, wider stability domains. Nev-
ertheless, future work will focus on adaptation strategies for the
form diagrams and further detailed investigations of their
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corresponding stability domains, as well as comparing the present
approach to others, such as rigid block equilibrium, discrete ele-
ment modelling, and finite element modelling.
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