
Tile patterning on free-form surfaces that reduces tile cutting
Chaoyu DU*, Tom VAN MELE, Philippe BLOCK

*Block Research Group, ETH Zurich
Stefano-Franscini-Platz 1, 8093 Zurich, Switzerland

chaoyu.du@arch.ethz.ch

Abstract
We propose a new strategy for generating staggered patterns for standard, rectangular tiles on free-form
surface. The given input surface is firstly tessellated into near-square quadrilateral faces using a re-meshing
algorithm. Afterwards, we run a matching algorithm that assigns each tile to two adjacent faces. We use
binary integer programming to find a tessellation on the surface that minimises the number of unique tiles
and tiles that are not staggered. Lastly, we generate the tiles and post-process the tessellation result.

Keywords:

tile vaulting, tile pattern, free-form surface, quadrangulation, binary integer programming

1. Introduction
Shells and vaults are efficient structures whose form follows the flow of forces. They emerge again in
contemporary architecture because of the emergence of computational form-finding techniques to design
them as well as for their sustainability. Specifically, for longer spans, shell structures require less material
quantities and for funicular vaults lower-strength materials, which typically have reduced embodied carbon
coefficients [1]–[3].

Among the methods of constructing shells and vaults, thin-tile vaulting is a 600-year-old Mediterranean
technique that requires minimum formwork during its construction and relies on traditional manufacturing
of the tiles. The flexibility offered by non-uniformly spacing of the tiles, by using small offset deviations
in the mortar joints, a wide range of shell geometries can be achieved with standard tile shapes. However,
tile vaulting dropped in popularity due to (among many factors) the high cost of skilled labour, emerging
competitive materials, namely steel and concrete, modern building codes and the onset of modernism that
favoured straight lines [4]–[6] . The construction of tile vaults involves skilled masons adjusting the
direction of the tile, handling the mortar thickness, and cutting the tiles on site dextrously to follow the
curvature and gradually fill the surface. This process can become especially challenging when the surface
is geometrically intricate [7], [8].

Recent research suggests that this complexity can be partially overcome with the help of robotic fabrication
and augmented reality, as the tiles can be precisely registered in 3D. The craft-specific tasks can be executed
in a fully automated manner or by collaboration between humans and machines [9]–[11]. However, the
main challenge remains in the generation of tiling patterns, i.e., where, and how to place the single-sized
tiles on a free-form surface.

This paper focuses on how to compute a tiling pattern on a free-form surface and tries to find a global
solution to the tiling pattern that can achieve both aesthetic requirements and reduce fabrication complexity,
which means a minimal amount of customised cutting on-site. Specifically, this paper focuses on the shells
and vaults with small to medium span and surface curvature large compared with the tile size.

2. Related work

2.1 Surface geometry and tile pattern
The process of traditional tile laying involves a series of technical decisions that impact various aspects of
a structure, such as its strength, stability, aesthetics, constructability, and cost-effectiveness [1], [6], [8].
This section will discuss two examples of tile-laying patterns, examining the challenges and opportunities
they present in terms of research and construction.

Guastavino vaulting is not only structural but also decorative [6]. The sophisticated decorative tile patterns
exposed in their buildings (Figure 1. left) are accomplished by highly skilled masons by applying a final
decorative layer from below. This step allowed the creation of more complex tile patterns without
consideration of the construction sequence. However, in some cases, it’s simply impossible to use a single
pattern to fill a surface, for example, using a herringbone pattern to construct a dome without compensating
for the smoothness and customised cutting (Figure 1. middle). In such situations, Guastavino uses multiple
pattern patches instead of using a single pattern, which not only makes the vault decorative but also resolves
the tiling problem for the three-dimensional forms.

The method of separating the shell in a full or partial manner also exists in other designs, to accommodate
the surface aesthetics and tessellation pattern. For example, the glass vault is a doubly-curved barrel vault
built by two robotic arms without a centring [10]. It adopts a herringbone pattern to interlock the bricks and
defines a clear construction sequence for the robots to build alongside the first arch, and from bottom to
top. To accommodate the amplified gap sizes due to curvature changes at the scale of the final structure,
the tessellation pattern is shifted by half a brick along the reset lines (Figure 1. right), along which the
herringbone pattern stops. Moreover, the vault uses irregular tiles at the boundary to ensure compete pattern
on the shell surface.

Figure 1. left: some examples of Guastavino tiling patterns[6]; middle: the dome at the Chapel of Our Lady (photo
credits: Michael Freeman); right: tiling pattern and reset lines of the glass vault [10].

2.2 Computational tile and brick laying
A few researchers have tackled the problem of tile laying to find a suitable mediation between aesthetics
and structural behaviour. Shaghayegh [12] developed a design tool that can semi-automatically tessellate
bricks on a curved surface by sequentially projecting the tiles. The workflow requires the designer to first
choose a pattern in 2D and the start point of the first tile. Afterwards, the algorithm can compute the location
of the adjacent tile by referring to the previous ones. However, the transformation and projection of the
next tile is based on the local positions of the previous tiles, and thus globally, cutting the tiles is inevitable.

Adiels et al. [13] compute the geodesic distance on the curved surface to guide their tessellation process.
This approach yields several benefits, such as effectively aligning patterns with boundaries and enabling

the creation of running bond designs. However, this method faces challenges to accommodate other tiling
patterns and singularities, where tiles need to be arranged circularly.

Unlike these methods based on geometry, Panozzo et al. [14] formulate the patterning as a 2-colouring
graph problem on a quad mesh, i.e. the staggered pattern is created by removing every second edge of a
regular grid. Although this research does not focus on tessellation with rectangular tiles, the approach of
combining geometric and topological methods serves as an inspiration for our research.

2.3 Surface paneling and rationalisation
Surface panelling, a related topic to tile laying, involves filling a curved surface with geometric or
manufacturing constraints. The problem is typically tackled through a two-step process: first, segmenting
the shape into smaller pieces, and then, approximating each segment with a panel within a given tolerance
[15], [16].

According to Pottmann et al. [17], good segmentation is crucial to achieving an accurate approximation.
This can be accomplished through techniques such as polygonal mesh layout, re-meshing, and patch
decomposition. Though segmentation is usually a decision driven by the designers, a good segmentation
can lead to a good approximation.

One typical approximation task is driven by the need to fabricate the panels with a limited number of moulds
to reduce the overall cost. Eigensatz et al. [16] assign the panel type, such as planar, cylindrical or custom,
to each segment and interleave discrete and continuous optimisation steps to improve the quality of the
panelling and to reduce the number of moulds while still keeping the kink angles and gaps within tolerance.

Approximation can also be driven by a desired panel shape. Shape-up [18] is an optimisation framework
for geometry processing that enforces shape constraints in a local-global iterative algorithm. In the local
step, the distance between each vertex in the mesh and its projections under multiple constraints is encoded.
The global step then minimally relocates the vertices on the mesh to match the projected fragments and
solves a single energy function to minimise deviation from the local shape approximation, input surface,
and surface smoothness.

3. Proposed approach
In this paper, we propose a three-step method to generate tile-laying patterns on a free-form surface, as
shown in Figure 2. This method finds a global solution to tessellate the surface and while keeping the need
for unique cutting small.

Figure 2. The proposed three-step tile patterning workflow.

The three steps are:

1. quadrangulation: generating a global quad mesh from the input surface;
2. matching: finding a (mostly) surface-covering combination of pairs of two neighbouring

quadrilateral faces; and,
3. tiling: generating tile geometries.

3.1. Quadrangulation
We first convert the input surface into a quad mesh. Quadrangulation is an important topic in computer
graphics and architectural geometry [19]. Similar to the panelling task described in Section 2.3, a good
initial quadrangulation can reduce the efforts of post-processing and further optimising the mesh surfaces.
We aim to partition our reference surface into a semi-regular quad mesh, whose quadrilateral faces are close
to squares of equal size and where the number of singularities remains small.

We have considered two approaches. The first one is based on parametrisation, which means mapping the
surface embedded in 3D to a domain in 2D and tessellating the 2D domain by regular grids. However, to
reduce distortion, we need to find a correct set of seams either to cut the geometry and restitch it or the
correct placement of singularities, which is challenging to compute and easily leads to areas with locally
high distortion. These situations are not ideal for our tile arrangement in the next steps.

Thus, we instead adopt a field-guided approach, which uses an orientation field and prioritises higher
distortion reduction. This approach is typically composed of three steps:

1. Generate an orientation field. This orientation field is driven by principal curvature and defined
continuously over the surface. If the field is locally not smoothly aligned in a region, a singularity
can occur, resulting in an irregular vertex in the quad mesh, which in our case, means an irregular
tile.

2. Compute a position field, determining where the vertices are placed. Since square faces are
preferred, the sizing function should be isotropic.

3. Synthesise the quad mesh.
We use the QuadriFlow algorithm without boundary constraints for this re-meshing step [20]. It allows for
the efficient production of scalable quad meshes with minimal distortion while maintaining a low number
of singularities. We use the tile dimension to estimate the target mesh edge length. In general, the algorithm
provides a reasonable approximation of the half-tile locations; however, some level of distortion is
inevitable. Here we present two quadrangulation outcomes for a surface (as illustrated in Figure 3, left and
middle), and evaluate their area and angle distortion with respect to the squares. For this surface, the
presence of the singularity can cause the faces near it to become smaller and more distorted, resulting in
overlapping tiles. If the singularity is removed, bigger gaps will appear in the middle of the shell. If neither
of the two solutions is satisfactory, we can further enhance the mesh quality by imposing square shape
constraints. For the latter, we use the shapeup optimisation solver implemented in libigl [21], and the
outcome is displayed in Figure 3, right. It is important to note though that due to the shapeup optimisation
the shape of the mesh deviates from the original input shape.

Figure 3. Left and middle: quadrangulation result with singularities without singularities; right:
quadrangulation result after shapeup optimisation.

3.2. Maximal matching
Section 3.1 has discussed how to generate a high-quality quadrilateral mesh with faces close to squares of
equal size. Based on this mesh, an arrangement of rectangles can be generated by connecting pairs of
adjacent faces. One face can only be connected either 1 time or 0 times. If it is not connected, the face
represents a half-tile, which needs additional cutting. Thus, maximising the pair of adjacent faces to
generate as many tiles as possible can be formulated as a graph-matching problem.

Given the set of faces 𝐹 and the possible edges 𝐸 that connect adjacent faces, the goal is to find the maximal
number of matched edges 𝐸′, where 𝐸′ is a subset of 𝐸, such that no two edges in 𝐸′ share an adjacent face.

This problem can be formulated as a binary integer program:

Let edge connectivity x! ∈ {0, 1}, 𝑥" = 1 if 𝑒 ∈ 𝐸′, else 𝑥" = 0. For one face, let 𝐸(𝑓) denote all edges
that connect a face 𝑓. Taking Figure 4. left as an example. For face 𝑓!, the edges that connect to it are listed
in 𝐸(𝑓!) = {𝑒"!, 𝑒#!, 𝑒!$, 𝑒!%}. One face can be at most connected to one adjacent face. If 𝑓! and 𝑓% are
connected, for example, 𝑥!% = 1 and x"! = x#! = x!$ = 0.
Our problem can be written as follows:

max 	4 	𝑥"
"∈$

	

𝑠. 𝑡.		4 	𝑥" 	≤ 1, ∀𝑓 ∈ F
"∈$(&)

We use the Gurobi Optimizer [17] to solve the binary integer program (1). Figures. 3-2, middle and right,
show the matching result for a 10x10 grid and an 11x11 grid. The total number of faces for an 11x11 grid
is odd, resulting in one unmatched face. Note that many edges are parallel, which can cause continuous
mortar joints in real tile-laying. We address this problem in the next section.

Figure 4. left: A mesh composed of nine faces and the connectivity between them. 𝑓! and 𝑓% are a
connected face pair; middle and right: the matching result for a 10x10 grid and an 11x11 grid using binary
integer program (1).

3.3 Staggered pattern
In tile vaulting, the tiles are often staggered to avoid continuous mortar. To avoid parallel edges, as is the
case in Section 3.2, we can formulate them as penalties in the objective function.
We introduce a new set of variables y!(,!* to describe neighbouring parallel edges. Let y!(,!* ∈ {0, 1},
y!(,!* = 1 if and only if both 𝑒(, 𝑒* ∈ 𝐸+, else y!(,!* = 0. Taking the example in Figure 4. left, edge 𝑒,-
has only two neighbouring parallel edges 𝑒./, and 𝑒01. We know that 𝑓! and 𝑓% are connected, so 𝑥,- = 1.

(1)

Assume 	𝑓.	 and 	𝑓/ are connected, 𝑥./ = 1 . Now, we have a pair of parallel neighbouring edges,
so	y!,-,!./ = 1. In our objective, we can penalise this situation.

The optimisation problem with penalties can be written as follows:

max 	4 	𝑥"
"∈$

− 	𝑤	 ∗4𝑦"(,"*
	

	

𝑠. 𝑡.		4 	𝑥" 	≤ 1, ∀𝑓 ∈ F,
"∈$(&)

	

𝑥"(+ 𝑥"* − 𝑦"(,"* ≤ 1, ∀𝑦"(,"*

The weight 𝑤 for the penalty term can be chosen to tell the optimiser how it should balance between
avoiding unmatched faces and parallel edges if no solution is possible that avoids both.

The solutions found by Gurobi for the 10x10 and 11x11 grids are shown in Figure 5. The results show high
similarities to state-of-the-art patterns observed in tile vaults built by expert masons. Our algorithm can also
generate a staggered pattern for mesh with singularities (Figure.5 right).

Figure 5. left and middle: staggered pattern for a 10x10 grid and an 11x11 grid, respectively; and right:
staggered pattern for mesh with singularities, which are shown as red dots.

3.4 Other patterns
Other tile patterns, e.g., a running-bond or herringbone pattern, can be targeted by replacing the penalty
term for parallel edges described in Section 3.3 with a different term that penalises or rewards certain
combinations of edges.

For example, we can optimise for a running-bond pattern by using a term that rewards pairs of parallelly
shifted edges, as shown in Figure 6. left (i.e. the edges are in neighbouring columns or rows of the grid but
“shifted” by one row/column). This can be done by introducing a new set of binary variables z!(,!* ∈ {0, 1},
which exists for every neighbouring shifted pair 𝑒(, 𝑒* ∈ 𝐸. Again, as in Section 3.3, we add a set of
constraints that enforces z!(,!* = 1 if and only if both 𝑒(, 𝑒* ∈ 𝐸+. These constraints look different because
the z!(,!* contributes positively to the objective function while the y!(,!* in Section 3.2 contribute
negatively. Our problem is written as follows:

max 	4 	𝑥"
"∈$

+𝑤3 ∗4𝑧"(,"*
	

	

𝑠. 𝑡.		4 	𝑥" 	≤ 1, ∀𝑓 ∈ F,
"∈$(&)

	

𝑧"(,"* ≤ 𝑥"(, 𝑧"(,"* ≤ 𝑥"*, ∀𝑧"(,"*

(2)

(3)

Figure 6. Running bond pattern and the connected face pairs; middle and right: running bond pattern
outcome using quad mesh from Figure 3. right.

3.5 Generate tiles
After the matching process, the tile geometries can be generated using the facial information of the matched
faces. We establish the origin of the tile by determining the midpoint of the line that connects the two
centroid points of the face, and consider the direction of the line as the tile's length direction. Next, we
compute the best-fit plane of all the vertices on the two faces, with the plane's normal being used as the
thickness direction of the tile. By calculating the cross product of these two directions, we obtain the height
direction, allowing us to construct the tile using these three directions. We implemented this step in Rhino
7 using the COMPAS framework [22]. The results are displayed in Figure 3. and Figure 6., right.

4. Results and discussion

4.1 Results
We apply the tile laying method explained in section 3 to the doubly curved free-form shells shown below.
Our method produces satisfactory results for the shallow shell with small curvature (as depicted in Figure
7.), accurately computing the quadrilateral mesh and staggered pattern without any noticeable gaps or
overlaps. However, for the shell shown in Figure 8., taking the geometry of [8], we observe larger gaps in
regions with higher curvature, as explained in Section 3.1.

Figure 7. input mesh, tiled surface with irregular tiles at the boundary, and quadrangulation and matching
outcome of a shallow shell.

Figure 8. input mesh, tiled surface with irregular tiles at the boundary, and quadrangulation and matching
outcome of a shell with higher curvature.

4.2 Performance
To evaluate the performance of our method in section 3, we conduct tile patterning on a shell with
dimensions (d) as shown in Figure 9. left. The shell is supported at its four corners and tessellated with tiles
measuring 280 × 140 × 15 mm. We ensure that all the quadrilateral faces have edge lengths greater than
140 mm. The dimension of the shell and the number of the faces are shown in Figure 9. right. The
experiments are performed on a MacBook Pro (2020) with macOS 13.2.1, Apple M1 CPU and 8 physical
cores. The computing time for section 3.1 is less than 1 second, and the computing time for section 3.2
using Gurobi Optimiser v10.0.0rc2 is listed in Figure 9. right. The time is the total (real) time reported by
the time command. Our results indicate that the computing time grows exponentially with the input size.
For a shell covering an area of approximately 50 m2, the computing time is about 3 minutes.

Figure 9. left: The input shell geometry; right: comparison of different shell dimensions, number of faces
derived from section 3.1, and the corresponding computing time for section 3.2.

Shell dimension Number of faces Time (section 3.2)

1.5 m 89 0.01 sec

2.5 m 185 0.20 sec

3.0 m 270 1.29 sec

4.5 m 531 8.85 sec

5.8 m 1192 30.58 sec

7.2 m 1679 183.19 sec

4.3 Contribution
Our approach tackles tile laying as a three-step global problem instead of a sequence of local problems. The
presented approach allows us to adapt to different laying patterns by modifying the objective function in
the matching step (as described in Section 3.4). Compared to other state-of-the-art methods, our approach
can significantly reduce the need for customised cutting in the tiling pattern, particularly for smaller shell
surfaces where the curvature is high in comparison to the tile dimension. For nearly developable surfaces,
our approach can almost automate the tile-laying process, with little decision-making from the designers.
For other free-form surfaces, our approach requires the designer to run an optimisation step after the
variable quadrangulation to find a tileable mesh or separate the input surface into more developable patches.

4.4 Discussion
Our method relies purely on geometry and topology. We can compute different design solutions by
changing the direction of the orientation field, such as changing it by 45 degrees or modifying the objective
function in our matching step. However, our method cannot avoid distortion at the singularities, and in most
cases, the resulting quadrangulation cannot align with the input surface boundary. The responsibility of
balancing constructability and aesthetics still lies with the designer.

Additionally, solving the matching problem using a binary integer program solver can be prohibitively
expensive for larger inputs (as discussed in Section 4.2). To deal with larger input sizes, one can split the
input into smaller parts and solve the problem one part at a time.

Finally, our method does not consider structural behaviour. If we extend this method for tessellation patterns
in masonry structures, there is potential for improvements by aligning the orientation field with the direction
of force flow within the structure.

Acknowledgement
This research is supported by the A/T doctoral fellowship at ITA, ETH Zurich. Thanks to Ziqi Wang for
the discussions and the suggestion for using Shape-Up for the shape optimisation step. Thanks to Stephan
A. Kollmann for the discussion about the binary integer program, and correcting the notations in Section 3.

Code
Source code for reproducing the case studies is available from the corresponding author upon request.

Reference
 [1] D. López, T. Mele, and P. Block, “Tile vaulting in the 21st century.,” Inf. Constr., vol. 68, p. 162,

Dec. 2016, doi: 10.3989/ic.15.169.m15.
[2] C. De Wolf, M. Ramage, and J. Ochsendorf, “Low Carbon Vaulted Masonry Structures,” J. Int. Assoc.

Shell Spat. Struct., vol. 57, no. 4, pp. 275–284, Dec. 2016, doi: 10.20898/j.iass.2016.190.854.
[3] D. López López, T. Van Mele, and P. Block, “The combination of tile vaults with reinforcement and

concrete,” Int. J. Archit. Herit., vol. 13, no. 6, pp. 782–798, Aug. 2019, doi:
10.1080/15583058.2018.1476606.

[4] M. W. A. Asali, “Craft-inclusive Construction,” p. 248.
[5] M. Ramage, “Guastavino’s Vault Construction Revisited,” Constr. Hist., vol. 22, pp. 47–60, 2007.
[6] J. Ochsendorf and M. Freeman, “Guastavino Vaulting: The Art of Structural Tile,” Feb. 2010.

Accessed: Mar. 31, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Guastavino-
Vaulting%3A-The-Art-of-Structural-Tile-Ochsendorf-
Freeman./8c3f0fa2a96ab059a0441190450dc45c74a54850

[7] S. Rajabzadeh, “On the Computational Design of Free-form Masonry Vault,” 2015, doi:
10.6092/POLITO/PORTO/2616850.

[8] L. Davis, M. Rippmann, and T. Pawlofsky, “Innovative funicular tile vaulting: A prototype vault in
Switzerland,” 2012.

[9] T. Bonwetsch and F. Gramazio, “Digitally Fabricating Non-Standardised Brick Walls,” 2007.
Accessed: Mar. 31, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Digitally-
Fabricating-Non-Standardised-Brick-Walls-Bonwetsch-
Gramazio/9e38ea121835b2eb5f8464cddf6f06bf215d4fd3#citing-papers

[10] S. Parascho, I. X. Han, S. Walker, A. Beghini, E. P. G. Bruun, and S. Adriaenssens, “Robotic vault:
a cooperative robotic assembly method for brick vault construction,” Constr. Robot., vol. 4, no. 3–4,
pp. 117–126, Dec. 2020, doi: 10.1007/s41693-020-00041-w.

[11] D. Mitterberger et al., “Augmented bricklaying: Human–machine interaction for in situ assembly of
complex brickwork using object-aware augmented reality,” Constr. Robot., vol. 4, no. 3–4, pp. 151–
161, Dec. 2020, doi: 10.1007/s41693-020-00035-8.

[12] S. Rajabzadeh and M. Sassone, “Brick Patterning on Free-Form Surfaces,” Nexus Netw. J., vol. 19,
no. 1, pp. 5–25, Apr. 2017, doi: 10.1007/s00004-016-0305-9.

[13] E. Adiels, M. Ander, and C. Williams, “Brick patterns on shells using geodesic coordinates,” 2017.
[14] D. Panozzo, P. Block, and O. Sorkine-Hornung, “Designing unreinforced masonry models,” ACM

Trans. Graph., vol. 32, no. 4, pp. 1–12, Jul. 2013, doi: 10.1145/2461912.2461958.
[15] M. Eigensatz et al., “Case Studies in Cost-Optimized Paneling of Architectural Freeform Surfaces,”

in Advances in Architectural Geometry 2010, Vienna, 2010, pp. 49–72. doi: 10.1007/978-3-7091-
0309-8_4.

[16] M. Eigensatz, M. Kilian, A. Schiftner, N. J. Mitra, H. Pottmann, and M. Pauly, “Paneling architectural
freeform surfaces,” ACM Trans. Graph., vol. 29, no. 4, p. 45:1-45:10, 2010, doi:
10.1145/1778765.1778782.

[17] H. Pottmann, M. Eigensatz, A. Vaxman, and J. Wallner, “Architectural geometry,” Comput. Graph.,
vol. 47, pp. 145–164, Apr. 2015, doi: 10.1016/j.cag.2014.11.002.

[18] S. Bouaziz, M. Deuss, Y. Schwartzburg, T. Weise, and M. Pauly, “Shape-Up: Shaping Discrete
Geometry with Projections,” Comput. Graph. Forum, vol. 31, no. 5, pp. 1657–1667, Aug. 2012, doi:
10.1111/j.1467-8659.2012.03171.x.

[19] D. Bommes et al., “Quad-Mesh Generation and Processing: A Survey,” Comput. Graph. Forum, vol.
32, no. 6, pp. 51–76, 2013, doi: 10.1111/cgf.12014.

[20] J. Huang, Y. Zhou, M. Niessner, J. R. Shewchuk, and L. J. Guibas, “QuadriFlow: A Scalable and
Robust Method for Quadrangulation,” Comput. Graph. Forum, vol. 37, no. 5, pp. 147–160, Aug.
2018, doi: 10.1111/cgf.13498.

[21] A. Jacobson et al., “libigl: A simple C++ geometry processing library,” 2013, Accessed: Mar. 31,
2023. [Online]. Available: https://opus.lib.uts.edu.au/handle/10453/167463

[22] “COMPAS.” https://compas.dev/index.html (accessed Nov. 30, 2022).

