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Abstract 
We propose a new strategy for generating staggered patterns for standard, rectangular tiles on free-form 
surface. The given input surface is firstly tessellated into near-square quadrilateral faces using a re-meshing 
algorithm. Afterwards, we run a matching algorithm that assigns each tile to two adjacent faces. We use 
binary integer programming to find a tessellation on the surface that minimises the number of unique tiles 
and tiles that are not staggered. Lastly, we generate the tiles and post-process the tessellation result. 
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1. Introduction 
Shells and vaults are efficient structures whose form follows the flow of forces. They emerge again in 
contemporary architecture because of the emergence of computational form-finding techniques to design 
them as well as for their sustainability. Specifically, for longer spans, shell structures require less material 
quantities and for funicular vaults lower-strength materials, which typically have reduced embodied carbon 
coefficients [1]–[3].  

Among the methods of constructing shells and vaults, thin-tile vaulting is a 600-year-old Mediterranean 
technique that requires minimum formwork during its construction and relies on traditional manufacturing 
of the tiles. The flexibility offered by non-uniformly spacing of the tiles, by using small offset deviations 
in the mortar joints, a wide range of shell geometries can be achieved with standard tile shapes. However, 
tile vaulting dropped in popularity due to (among many factors) the high cost of skilled labour, emerging 
competitive materials, namely steel and concrete, modern building codes and the onset of modernism that 
favoured straight lines [4]–[6] . The construction of tile vaults involves skilled masons adjusting the 
direction of the tile, handling the mortar thickness, and cutting the tiles on site dextrously to follow the 
curvature and gradually fill the surface. This process can become especially challenging when the surface 
is geometrically intricate [7], [8].  

Recent research suggests that this complexity can be partially overcome with the help of robotic fabrication 
and augmented reality, as the tiles can be precisely registered in 3D. The craft-specific tasks can be executed 
in a fully automated manner or by collaboration between humans and machines [9]–[11]. However, the 
main challenge remains in the generation of tiling patterns, i.e., where, and how to place the single-sized 
tiles on a free-form surface.  

This paper focuses on how to compute a tiling pattern on a free-form surface and tries to find a global 
solution to the tiling pattern that can achieve both aesthetic requirements and reduce fabrication complexity, 
which means a minimal amount of customised cutting on-site. Specifically, this paper focuses on the shells 
and vaults with small to medium span and surface curvature large compared with the tile size. 



2. Related work 

2.1 Surface geometry and tile pattern 
The process of traditional tile laying involves a series of technical decisions that impact various aspects of 
a structure, such as its strength, stability, aesthetics, constructability, and cost-effectiveness [1], [6], [8]. 
This section will discuss two examples of tile-laying patterns, examining the challenges and opportunities 
they present in terms of research and construction. 

Guastavino vaulting is not only structural but also decorative [6]. The sophisticated decorative tile patterns 
exposed in their buildings (Figure 1. left) are accomplished by highly skilled masons by applying a final 
decorative layer from below. This step allowed the creation of more complex tile patterns without 
consideration of the construction sequence. However, in some cases, it’s simply impossible to use a single 
pattern to fill a surface, for example, using a herringbone pattern to construct a dome without compensating 
for the smoothness and customised cutting (Figure 1. middle). In such situations, Guastavino uses multiple 
pattern patches instead of using a single pattern, which not only makes the vault decorative but also resolves 
the tiling problem for the three-dimensional forms.  

The method of separating the shell in a full or partial manner also exists in other designs, to accommodate 
the surface aesthetics and tessellation pattern. For example, the glass vault is a doubly-curved barrel vault 
built by two robotic arms without a centring [10]. It adopts a herringbone pattern to interlock the bricks and 
defines a clear construction sequence for the robots to build alongside the first arch, and from bottom to 
top. To accommodate the amplified gap sizes due to curvature changes at the scale of the final structure, 
the tessellation pattern is shifted by half a brick along the reset lines (Figure 1. right), along which the 
herringbone pattern stops. Moreover, the vault uses irregular tiles at the boundary to ensure compete pattern 
on the shell surface.  

 

  
Figure 1. left: some examples of Guastavino tiling patterns[6]; middle: the dome at the Chapel of Our Lady (photo 
credits: Michael Freeman); right: tiling pattern and reset lines of the glass vault [10]. 

2.2 Computational tile and brick laying 
A few researchers have tackled the problem of tile laying to find a suitable mediation between aesthetics 
and structural behaviour. Shaghayegh [12] developed a design tool that can semi-automatically tessellate 
bricks on a curved surface by sequentially projecting the tiles. The workflow requires the designer to first 
choose a pattern in 2D and the start point of the first tile. Afterwards, the algorithm can compute the location 
of the adjacent tile by referring to the previous ones. However, the transformation and projection of the 
next tile is based on the local positions of the previous tiles, and thus globally, cutting the tiles is inevitable.  

Adiels et al. [13] compute the geodesic distance on the curved surface to guide their tessellation process. 
This approach yields several benefits, such as effectively aligning patterns with boundaries and enabling 



the creation of running bond designs. However, this method faces challenges to accommodate other tiling 
patterns and singularities, where tiles need to be arranged circularly. 

Unlike these methods based on geometry, Panozzo et al. [14] formulate the patterning as a 2-colouring 
graph problem on a quad mesh, i.e. the staggered pattern is created by removing every second edge of a 
regular grid. Although this research does not focus on tessellation with rectangular tiles, the approach of 
combining geometric and topological methods serves as an inspiration for our research. 

2.3 Surface paneling and rationalisation 
Surface panelling, a related topic to tile laying, involves filling a curved surface with geometric or 
manufacturing constraints. The problem is typically tackled through a two-step process: first, segmenting 
the shape into smaller pieces, and then, approximating each segment with a panel within a given tolerance 
[15], [16].  

According to Pottmann et al. [17], good segmentation is crucial to achieving an accurate approximation. 
This can be accomplished through techniques such as polygonal mesh layout, re-meshing, and patch 
decomposition. Though segmentation is usually a decision driven by the designers, a good segmentation 
can lead to a good approximation.  

One typical approximation task is driven by the need to fabricate the panels with a limited number of moulds 
to reduce the overall cost. Eigensatz et al. [16] assign the panel type, such as planar, cylindrical or custom, 
to each segment and interleave discrete and continuous optimisation steps to improve the quality of the 
panelling and to reduce the number of moulds while still keeping the kink angles and gaps within tolerance.  

Approximation can also be driven by a desired panel shape. Shape-up [18] is an optimisation framework 
for geometry processing that enforces shape constraints in a local-global iterative algorithm. In the local 
step, the distance between each vertex in the mesh and its projections under multiple constraints is encoded. 
The global step then minimally relocates the vertices on the mesh to match the projected fragments and 
solves a single energy function to minimise deviation from the local shape approximation, input surface, 
and surface smoothness. 

3. Proposed approach  
In this paper, we propose a three-step method to generate tile-laying patterns on a free-form surface, as 
shown in Figure 2. This method finds a global solution to tessellate the surface and while keeping the need 
for unique cutting small.  

 
Figure 2. The proposed three-step tile patterning workflow.  

 

The three steps are: 

1. quadrangulation: generating a global quad mesh from the input surface;  
2. matching: finding a (mostly) surface-covering combination of pairs of two neighbouring 

quadrilateral faces; and,  
3. tiling: generating tile geometries.  



3.1.  Quadrangulation 
We first convert the input surface into a quad mesh. Quadrangulation is an important topic in computer 
graphics and architectural geometry [19]. Similar to the panelling task described in Section 2.3, a good 
initial quadrangulation can reduce the efforts of post-processing and further optimising the mesh surfaces. 
We aim to partition our reference surface into a semi-regular quad mesh, whose quadrilateral faces are close 
to squares of equal size and where the number of singularities remains small.  

We have considered two approaches. The first one is based on parametrisation, which means mapping the 
surface embedded in 3D to a domain in 2D and tessellating the 2D domain by regular grids. However, to 
reduce distortion, we need to find a correct set of seams either to cut the geometry and restitch it or the 
correct placement of singularities, which is challenging to compute and easily leads to areas with locally 
high distortion. These situations are not ideal for our tile arrangement in the next steps.  

Thus, we instead adopt a field-guided approach, which uses an orientation field and prioritises higher 
distortion reduction. This approach is typically composed of three steps:  

1. Generate an orientation field. This orientation field is driven by principal curvature and defined 
continuously over the surface. If the field is locally not smoothly aligned in a region, a singularity 
can occur, resulting in an irregular vertex in the quad mesh, which in our case, means an irregular 
tile.  

2. Compute a position field, determining where the vertices are placed. Since square faces are 
preferred, the sizing function should be isotropic. 

3. Synthesise the quad mesh.  
We use the QuadriFlow algorithm without boundary constraints for this re-meshing step [20]. It allows for 
the efficient production of scalable quad meshes with minimal distortion while maintaining a low number 
of singularities. We use the tile dimension to estimate the target mesh edge length. In general, the algorithm 
provides a reasonable approximation of the half-tile locations; however, some level of distortion is 
inevitable. Here we present two quadrangulation outcomes for a surface (as illustrated in Figure 3, left and 
middle), and evaluate their area and angle distortion with respect to the squares. For this surface, the 
presence of the singularity can cause the faces near it to become smaller and more distorted, resulting in 
overlapping tiles. If the singularity is removed, bigger gaps will appear in the middle of the shell. If neither 
of the two solutions is satisfactory, we can further enhance the mesh quality by imposing square shape 
constraints. For the latter, we use the shapeup optimisation solver implemented in libigl [21], and the 
outcome is displayed in Figure 3, right. It is important to note though that due to the shapeup optimisation 
the shape of the mesh deviates from the original input shape.  

 

 
Figure 3. Left and middle: quadrangulation result with singularities without singularities; right: 
quadrangulation result after shapeup optimisation. 



3.2. Maximal matching 
Section 3.1 has discussed how to generate a high-quality quadrilateral mesh with faces close to squares of 
equal size. Based on this mesh, an arrangement of rectangles can be generated by connecting pairs of 
adjacent faces. One face can only be connected either 1 time or 0 times. If it is not connected, the face 
represents a half-tile, which needs additional cutting. Thus, maximising the pair of adjacent faces to 
generate as many tiles as possible can be formulated as a graph-matching problem. 

Given the set of faces 𝐹 and the possible edges 𝐸 that connect adjacent faces, the goal is to find the maximal 
number of matched edges 𝐸′, where 𝐸′ is a subset of 𝐸, such that no two edges in 𝐸′ share an adjacent face.  

This problem can be formulated as a binary integer program: 

Let edge connectivity x! ∈ {0, 1},  𝑥" = 1 if 𝑒 ∈ 𝐸′, else 𝑥" = 0. For one face, let 𝐸(𝑓) denote all edges 
that connect a face 𝑓. Taking Figure 4. left as an example. For face 𝑓!, the edges that connect to it are listed 
in 𝐸(𝑓!) = {𝑒"!, 𝑒#!, 𝑒!$, 𝑒!%}. One face can be at most connected to one adjacent face. If 𝑓! and 𝑓% are 
connected, for example, 𝑥!% = 1 and x"! = x#! = x!$ = 0. 
Our problem can be written as follows: 

max 	4 	𝑥"
"∈$

	

𝑠. 𝑡.		4 	𝑥" 	≤ 1, ∀𝑓 ∈ F
"∈$(&)

 

We use the Gurobi Optimizer [17] to solve the binary integer program (1). Figures. 3-2, middle and right, 
show the matching result for a 10x10 grid and an 11x11 grid. The total number of faces for an 11x11 grid 
is odd, resulting in one unmatched face. Note that many edges are parallel, which can cause continuous 
mortar joints in real tile-laying. We address this problem in the next section.  

 
Figure 4. left: A mesh composed of nine faces and the connectivity between them. 𝑓!  and 𝑓%  are a 
connected face pair; middle and right: the matching result for a 10x10 grid and an 11x11 grid using binary 
integer program (1).  

 

3.3 Staggered pattern 
In tile vaulting, the tiles are often staggered to avoid continuous mortar. To avoid parallel edges, as is the 
case in Section 3.2, we can formulate them as penalties in the objective function.  
We introduce a new set of variables y!(,!* to describe neighbouring parallel edges. Let y!(,!* ∈ {0, 1}, 
y!(,!* = 1 if and only if both 𝑒(, 𝑒* ∈ 𝐸+, else y!(,!* = 0. Taking the example in Figure 4. left, edge 𝑒,- 
has only two neighbouring parallel edges 𝑒./, and 𝑒01. We know that 𝑓! and 𝑓% are connected, so 𝑥,- = 1. 

(1) 



Assume 	𝑓.	 and 	𝑓/  are connected, 𝑥./ = 1 . Now, we have a pair of parallel neighbouring edges, 
so	y!,-,!./ = 1. In our objective, we can penalise this situation.  

The optimisation problem with penalties can be written as follows: 

max 	4 	𝑥"
"∈$

− 	𝑤	 ∗4𝑦"(,"*
	

	

𝑠. 𝑡.		4 	𝑥" 	≤ 1, ∀𝑓 ∈ F,
"∈$(&)

	

𝑥"( + 𝑥"* − 𝑦"(,"* ≤ 1, ∀𝑦"(,"* 

The weight 𝑤 for the penalty term can be chosen to tell the optimiser how it should balance between 
avoiding unmatched faces and parallel edges if no solution is possible that avoids both. 

The solutions found by Gurobi for the 10x10 and 11x11 grids are shown in Figure 5. The results show high 
similarities to state-of-the-art patterns observed in tile vaults built by expert masons. Our algorithm can also 
generate a staggered pattern for mesh with singularities (Figure.5 right).  

 
Figure 5. left and middle: staggered pattern for a 10x10 grid and an 11x11 grid, respectively; and right: 
staggered pattern for mesh with singularities, which are shown as red dots. 

3.4 Other patterns 
Other tile patterns, e.g., a running-bond or herringbone pattern, can be targeted by replacing the penalty 
term for parallel edges described in Section 3.3 with a different term that penalises or rewards certain 
combinations of edges. 

For example, we can optimise for a running-bond pattern by using a term that rewards pairs of parallelly 
shifted edges, as shown in Figure 6. left (i.e. the edges are in neighbouring columns or rows of the grid but 
“shifted” by one row/column). This can be done by introducing a new set of binary variables z!(,!* ∈ {0, 1}, 
which exists for every neighbouring shifted pair 𝑒(, 𝑒* ∈ 𝐸. Again, as in Section 3.3, we add a set of 
constraints that enforces z!(,!* = 1 if and only if both 𝑒(, 𝑒* ∈ 𝐸+. These constraints look different because 
the z!(,!*  contributes positively to the objective function while the y!(,!*  in Section 3.2 contribute 
negatively. Our problem is written as follows:   

 

max 	4 	𝑥"
"∈$

+𝑤3 ∗4𝑧"(,"*
	

	

𝑠. 𝑡.		4 	𝑥" 	≤ 1, ∀𝑓 ∈ F,
"∈$(&)
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(2) 
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Figure 6. Running bond pattern and the connected face pairs; middle and right: running bond pattern 
outcome using quad mesh from Figure 3. right.  

3.5 Generate tiles 
After the matching process, the tile geometries can be generated using the facial information of the matched 
faces. We establish the origin of the tile by determining the midpoint of the line that connects the two 
centroid points of the face, and consider the direction of the line as the tile's length direction. Next, we 
compute the best-fit plane of all the vertices on the two faces, with the plane's normal being used as the 
thickness direction of the tile. By calculating the cross product of these two directions, we obtain the height 
direction, allowing us to construct the tile using these three directions. We implemented this step in Rhino 
7 using the COMPAS framework [22]. The results are displayed in Figure 3. and Figure 6., right.  

4. Results and discussion 

4.1 Results 
We apply the tile laying method explained in section 3 to the doubly curved free-form shells shown below. 
Our method produces satisfactory results for the shallow shell with small curvature (as depicted in Figure 
7.), accurately computing the quadrilateral mesh and staggered pattern without any noticeable gaps or 
overlaps. However, for the shell shown in Figure 8., taking the geometry of [8], we observe larger gaps in 
regions with higher curvature, as explained in Section 3.1. 

 
Figure 7. input mesh, tiled surface with irregular tiles at the boundary, and quadrangulation and matching 
outcome of a shallow shell. 



 
Figure 8. input mesh, tiled surface with irregular tiles at the boundary, and quadrangulation and matching 
outcome of a shell with higher curvature. 

4.2 Performance  
To evaluate the performance of our method in section 3, we conduct tile patterning on a shell with 
dimensions (d) as shown in Figure 9. left. The shell is supported at its four corners and tessellated with tiles 
measuring 280 × 140 × 15 mm. We ensure that all the quadrilateral faces have edge lengths greater than 
140 mm. The dimension of the shell and the number of the faces are shown in Figure 9. right. The 
experiments are performed on a MacBook Pro (2020) with macOS 13.2.1, Apple M1 CPU and 8 physical 
cores. The computing time for section 3.1 is less than 1 second, and the computing time for section 3.2 
using Gurobi Optimiser v10.0.0rc2 is listed in Figure 9. right. The time is the total (real) time reported by 
the time command. Our results indicate that the computing time grows exponentially with the input size. 
For a shell covering an area of approximately 50 m2, the computing time is about 3 minutes.   

 

       
 

Figure 9. left: The input shell geometry; right: comparison of different shell dimensions, number of faces 
derived from section 3.1, and the corresponding computing time for section 3.2.  

Shell dimension Number of faces Time (section 3.2) 

1.5 m 89 0.01 sec 

2.5 m 185 0.20 sec 

3.0 m 270 1.29 sec 

4.5 m 531 8.85 sec 

5.8 m 1192 30.58 sec 

7.2 m 1679 183.19 sec 



4.3 Contribution 
Our approach tackles tile laying as a three-step global problem instead of a sequence of local problems. The 
presented approach allows us to adapt to different laying patterns by modifying the objective function in 
the matching step (as described in Section 3.4). Compared to other state-of-the-art methods, our approach 
can significantly reduce the need for customised cutting in the tiling pattern, particularly for smaller shell 
surfaces where the curvature is high in comparison to the tile dimension. For nearly developable surfaces, 
our approach can almost automate the tile-laying process, with little decision-making from the designers. 
For other free-form surfaces, our approach requires the designer to run an optimisation step after the 
variable quadrangulation to find a tileable mesh or separate the input surface into more developable patches.  

4.4 Discussion 
Our method relies purely on geometry and topology. We can compute different design solutions by 
changing the direction of the orientation field, such as changing it by 45 degrees or modifying the objective 
function in our matching step. However, our method cannot avoid distortion at the singularities, and in most 
cases, the resulting quadrangulation cannot align with the input surface boundary. The responsibility of 
balancing constructability and aesthetics still lies with the designer. 

Additionally, solving the matching problem using a binary integer program solver can be prohibitively 
expensive for larger inputs (as discussed in Section 4.2). To deal with larger input sizes, one can split the 
input into smaller parts and solve the problem one part at a time. 

Finally, our method does not consider structural behaviour. If we extend this method for tessellation patterns 
in masonry structures, there is potential for improvements by aligning the orientation field with the direction 
of force flow within the structure. 
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